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Abstract—The variational multiscale element free Galerkin
method (VMEFG) is extended to address three-dimensional(3D)
steady-state convection-dominated problems. The scheme is
composed by developing the element free Galerkin method to
the 3D aspect and combined with the variational multiscale
method. In this work, the fine-scale solutions enable to be
acquired by bubble functions and then substituted into the
coarse-scale part to further find the coarse-scale solution.
The stability term is naturally determined in this process.
Furthermore, the arbitrary convex polygonal influence domain
technique is promoted to have an arbitrary convex polyhedral
influence domain, thus increasing the computing efficiency and
simplifying the algorithm. Meanwhile, the dimensionless size is
set to 1.01 for the influence domain, which makes the shape
function interpolative and explains the direct imposition of
the essential boundary conditions. For validating the efficiency
of this proposed method, four 3D steady convection-diffusion
equations are calculated, and the numerical solutions are
considered for comparison with those of the EFG method.
The results demonstrate that the VMEFG method can achieve
higher computational precision than the EFG method. More-
over, the present method can virtually eliminate the nonphysical
oscillations that arise in the EFG method while addressing the
convection-dominated problems.

Index Terms—element free Galerkin method, variational
multiscale method, convection-dominated, bubble functions, 3D
steady convection-diffusion.

I. INTRODUCTION

THE convection-diffusion equation is considered one of
the most widely used models, which involves various

engineering fields such as fluid dynamics and environmental
science. However, accurately finding the numerical solution
of convection-diffusion problems has become a challenging
study in computational mechanics. Yet, there are the main
numerical methods for solving convection-diffusion problem-
s that can be viewed in the literature [1]–[3]. Nonetheless,
these methods highly rely on the mesh quality and suffer
from difficulties in meshing complex domains. On account
of these deficiencies, various numerical methods, namely the
meshless method, have been well developed to avoid the
above-mentioned deficiencies in recent years, which have
achieved significant success in calculating partial differential
equations. The most attractive feature of the meshless method
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is that it does not rely on the mesh and only demands a
group of nodes distributed on the problem domain and its
boundaries.

Numerous meshless methods have been proposed so far.
More details on the categorization, application, and computer
implementation for meshless methods can be referenced in
some literature [4]–[7]. From these studies, it can be ob-
served that the element-free Galerkin method (EFG) serves as
a vital meshless method. It approximates the shape function
using the moving least squares method (MLS) [8], [9],
allowing continuous functions with higher-order derivatives
to be easily constructed even using a linear basis and ensuring
that the second-order derivative term in the stabilization term
is not neglected. Consequently, the EFG method guarantees
calculational accuracy and numerical stability. The algorithm
is quite simple, which has been proven to be a powerful
numerical method for discussing a series of physical and
engineering problems. For the strong convection-dominated
diffusion problem, it is difficult to simulate in mechanics
and mathematics because of its strongly hyperbolic nature
[10]. Nevertheless, the conventional meshless method based
on Galerkin weak forms can not numerically solve the
strong convection-dominated problem since it usually leads
to unphysical oscillations in the boundary or interior layers.

Over several decades, researchers have proposed a wide
range of stabilized methods to avoid spurious numerical
oscillations, which was presented in [11]. Combining these
methods with meshless methods has generated a series of so-
called stable meshless methods for dealing with convection-
diffusion problems. For example, Wu et al. [12] introduced
the SUPG scheme to eliminate over and under-shoots gen-
erated by the convection term in the Meshless Local Petrov-
Galerkin method (MLPG). Chen et al. [13] proposed a new
definition of the stability parameter in the Streamline Upwind
Meshless Petrov-Galerkin method (SUMLPG) to solve 2D
convection-diffusion problems with large Peclet numbers. To
the best of our knowledge, various other stable meshless
approaches have been introduced and applied to approximate
the solution of the convection-diffusion equation numerically.
A brief overview can be given below. The meshless method,
in combination with the Reproducing Kernel Particle Method
(RKPM), was adopted as an efficient approach towards the
2D advection-diffusion problem. Romão [15] numerically
solved the 3D convection-diffusion-reaction equations by
using Galerkin and least-square FEM. Cheng et al. [16]
presented the hybrid improved complex variable element-
free Galerkin method (H-ICVEFG) for 3D unstable state
advection-diffusion problems. Ma et al. [17] developed the
dimension splitting element-free Galerkin method (DSEFG)
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to solve 3D advection-diffusion problems.
Although these works have achieved accurate and stable

numerical solutions, a significant drawback is that the stabil-
ity parameter [18] is often defined by the given problem and
applied algorithm. Stated differently, whereas these methods
can perform the function of diminishing the spurious oscil-
lations, no valid algorithm is actually available to construct
stable parameters or functions intimately associated with the
stability and precision of the numerical method. Recently,
Zhang [19] incorporated the variational multiscale method
(VMS) in the EFG method, thus proposing the variational
multiscale element free Galerkin method (VMEFG). Hence,
the VMEFG method can fully utilize the benefits of the above
two methods. An important inherited feature of the present
method is that no user-defined stabilization parameters are
required. This method has successfully addressed diverse
engineering issues, and please consult these papers [20]–[24]
for details. Until now, some researchers have developed a few
methods on the basis of the VMEFG method. For instance,
by converting the shape function approximation method from
the MLS to be the interpolating moving least squares method
(IMLS), Zhang and Li [25] presented a variational multiscale
interpolating element free Galerkin method (VMIEFG) for
2D convection-diffusion and Stokes problems. Wang and Sun
[26] developed a hybrid VMEFG method by coupling the
dimension splitting method with the VMEFG method for
2D convection-diffusion problems. Recently, the VMEFG
method has also been studied and extended by several
researchers abroad. For example, Dehghan et al. [27] use the
VMEFG method with the moving Kriging interpolation for
discontinuous problems. Peddavarapu and Raghuraman [28]
proposed the Maximum entropy-based variational multiscale
element free Galerkin method by adopting first-order local
maximum entropy (LME) basis functions for scalar 2D
advection-diffusion problems.

Nevertheless, no published results are available for VME-
FG methods for 3D stable convection-diffusion problems.
Even up to date, there are few studies on meshless meth-
ods for 3D convection-diffusion problems. Investigating its
reasons are mainly twofold: one is that numerical calcula-
tions of 3D problems often tend to be more complicated
and computationally intensive, while the other is that other
methods still encounter difficulties in determining stability
parameters straightforward. And yet, the VMEFG method
can overcome these issues. Consequently, investigating the
VMEFG method for 3D convective-diffusion problems is of
great research value.

In this article, we apply the VMEFG method to solve
the 3D steady convection-diffusion problem. We have done
the work as follows. First, we obtain the fine-scale solution
using the bubble function and substitute it into the coarse-
scale to accept the coarse-scale solution numerically. The
the process naturally determines the stability term. Then, we
expand the nodal influence domain technique for the convex
polygon to the nodal influence domain of arbitrary convex
polyhedron. This technique allows avoiding the node search
process greatly and significantly reducing the bandwidth of
the global stiffness matrix, thus improving the computational
efficiency of the proposed method. In the end, letting the
influence factor of the nodal influence domain equal to 1.01
enables the shape function to satisfy the properties of the

Kronecker Delta condition so that it can directly impose
the essential boundary condition, leading to a considerable
improvement in the computating efficiency of the present
method.

The remainder of the paper is outlined as follows. In
Section II, the moving least squares (MLS) approximation
method and the extension of the arbitrary convex polygonal
influence domain technique are proposed. In Section III,
the derivation of the VMEFG method for solving the 3D
convection-diffusion equation is expressed. Four numerical
examples are presented to illustrate the effectiveness and
accuracy of the present method, and analysis is performed in
Section IV. Some conclusions and future studies are drawn
in Section V.

II. THE MLS APPROXIMATION AND THE EXTENSION OF
THE ARBITRARY CONVEX POLYGONAL INFLUENCE

DOMAIN TECHNIQUE

A. The MLS approximation

The MLS method is widely used to construct meshless
shape functions. The MLS approximation function for the
unknown function U(x) over the domain Ω is defined as
[29]

Uh(x) =
m∑
j=1

φi(x)µi(x) = φT(x)µ(x), (1)

where φ(x) is a complete polynomial basis function vector
with the number m, and x = [x, y, z]T is the 3D space
coordinate, while µ(x) = [µ1(x), µ2(x)..., µm(x)]T is co-
efficient vector needed to be sorted out. In three dimensions,
the linear basis function is chosen and can be written as
follows

φT(x) = (1, x, y, z). (2)

The unknown coefficient µ(x) in Eq.(1) can be found via
minimizing the weighted discrete L2 error norm below

J =
n∑

i=1

w(x− xi)[Ui − φT(xi)µ(x)]2, (3)

where n refers to the number of nodes that contain points x
in the nodal support domain , w(x− xi) indicates a weight
function of the influence domain of node xi, Ui is the node
value of the function U at node x = xi.

According to the minimization condition of Eq.(3), the
resulted system of linear equations with respect to the
coefficient µ(x) can be obtained as follows

A(x)µ(x) = B(x)U , (4)

in which

A(x) =
n∑

i=1

wi(x)φ(xi)φ
T(xi), (5)

B(x) = [w1(x)φ(x1), w2(x)φ(x2), ..., wn(x)φ(xn)],
(6)

wi(x) = w(x− xi). (7)

The vector µ(x) can be given as follows in the case that A
is invertible.

µ(x) = A−1(x)B(x)U . (8)
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Eq.(8) is substituted into Eq.(1) to yield

Uh(x) = φT(x)A−1(x)B(x)U =NT(x)U , (9)

in which the definition of the shape function is presented by

NT(x) = φT(x)A−1(x)B(x). (10)

Generally, the shape functions gained by MLS fail to
meet the Kronecker Delta conditional property at each node.
This means that the boundary conditions are impossible to
enable straightforward imposition. Nowadays, several tech-
niques have been proposed for this problem. For instance,
the Lagrange multiplier method and penalty method [30],
etc. Actually, these techniques may have the disadvantage
of increasing the complexity of solving the problem and
requiring more computational time. In this article, a brief
technique is employed to extend the nodal influence domain
of the cubic or spherical shape to arbitrary convex polyhedral
shapes, as described with more details in the next section
II-B.

B. Weight functions and the extension of the arbitrary convex
polygonal influence domain technique

The weight function can be arbitrarily chosen, while the
spline function has been broadly utilized in numerical exper-
iments. In this article, we choose the cubic spline function,
defined as follows

wi (x− xi) = w(q) =


2
3 − 4q2 + 4q3, q ≤ 1

2 ,
4
3 − 4q + 4q2 − 4

3q
3, 1

2 ≤ q ≤ 1,

0, q ≥ 1,

(11)

where q = ‖x−xi‖
ri

, ‖x− xi‖ indicates the distance from
point x to node xi, and ri = αρi represents the influence
radius of node xi, in which α and ρi denote the dimension-
less size of the influence domain and the distance between
two adjacent nodes, respectively. For 3D problems, the cube
or sphere is generally employed to be the nodal influence
domain. As for nodal influence domain with the cubic shape,
its weight function is determined as

wi(x) = w(qx)w(qy)w(qz), (12)

where qx = |x−xi|
rx

, qy = |y−yi|
ry

, qz = |z−zi|
rz

, rx, ry , rz
express the radius of the influence domain along x-axis, y-
axis, and z-axis respectively.

The nodal influence domain size significantly impacts the
computational accuracy of the points. Recently, Zhang et al.
[31] proposed the arbitrary convex polygonal influence do-
main technique adopted for 2D problems. In this technique,
the influence domain of rectangular or circular nodes of the
meshless method is expanded to any arbitrary polygon, which
provides high computational accuracy and considerably im-
proves the computing efficiency of the meshless method.
Considering these advantages, an extension of this technique
to 3D problems is presented in this paper.

In 3D space, the general influence domain is expanded
to arbitrary convex polyhedral shapes consisting of tetrahe-
drons. In this setting, when the dimensionless size of the
influence domain is close to 1, the Gauss points in each

tetrahedral background cell have only devoted the nodes in
that tetrahedron. Thus, the node search procedure can be
greatly avoided, and the bandwidth of the global stiffness ma-
trix is significantly reduced [32]. Besides, the shape function
is almost interpolative, leading that the essential boundary
conditions can still be dealt with directly. Overall, the ex-
tended techniques can improve computational efficiency and
simplify the imposition of essential boundary conditions.

Fig. 1: A tetrahedron cell in the convex polyhedron influence domian of
node xi

Taking a tetrahedron from the influence domain into con-
sideration (see Fig.1), we give a conclusion of the procedure
on how to compute the MLS shape function of node xi at
point x, where x generally represents the Gauss point.

(1) Identify the tetrahedron where point x belongs;
(2) Find point F ′ in which the line xix intersects the

plane B′C ′D′. The analytical expressions of the line can be
obtained by the node xi and point x, and the plane can be
determined by nodes B′,C ′,D′ in the tetrahedron cell, which
can easily get the intersection point by combining the two
analytical expressions;

(3) Determine the length of xiF
′ with the two-point

distance formulation;
(4) Employ the formula xiF = αxiF

′;
(5) The influence radius ri = xiF along the −−→xix direction

can be derived;
(6) As soon as the influence radiu ri and q are determined,

it is convenient to gain the weight function via Eq.(11). Then,
the shape function can be further determined by Eq.(12).

In this paper, we let α = 1.01. At this moment, this
technique possesses the above benefits.

III. THE VMEFG METHOD FOR CONVECTION-DIFFUSION
EQUATION

A. The standard weak form

In this paper, 3D steady convection-diffusion equation is
considered, which is given by the following equation with
the definition over the cubic domain Ω

c · ∇ − k∆U = f, in Ω, (13)

U = ψ, on Γ, (14)

where c = (cx, cy, cz)T , cx, cy , cz refer to the convective
coefficient along x-axis, y-axis and z-axis respectively, co-
efficient k ≥ 0 denotes the diffusivity, f and ψ represent a
known source term and the boundary condition.

Let V ⊂ H1(Ω) ∩ C0(Ω) represent the space of trial
functions for the unknown scalar field, then the variational
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form corresponding to Eq.(13) is to find U ∈ W = H1
0 (Ω)

satisfying

(w, c · ∇U) + (∇w, k∇U) = (w, f), ∀w ∈ V, (15)

where w denotes the weighting function for U , and (·, ·) =∫
Ω

(·)dΩ is the inner product in L2(Ω).

B. The VMEFG method

The VMEFG method is extended to derive a stable formu-
lation for the 3D steady convection-diffusion equation. The
main idea is splitting the scalar field and weight function
into coarse and fine scales. Then they are substituted into the
standard variational form. Thus, the problem can be divided
into coarse and fine-scale parts. Applying bubbles to express
the fine-scale can further yield the fine-scale solution. By
substituting the solution back into the coarse-scale part, we
can get the coarse-scale solution. In eliminating the fine
scales, the stability term is determined naturally. Assume
that the test function U and the weighting function w are
respectively divided into coarse and fine scales, denoted as

U = U + U ′, w = w + w′. (16)

As for 3D convection-diffusion problems, the derivation pro-
cess of the fine-scale and coarse-scale solutions approximates
that in 2D. So many details can be referred to in the articles
[32], [33]. Only the final weak form is presented below

(w, c · ∇U) + (∇w, k∇U)

+(c · ∇w + k∆w, τ(c · ∇U − k∆U))

=(w, f) + (c · ∇w + k∆w, τf),

(17)

where U(x) and U ′(x) represent trial function respectively
in coarse-scale and fine-scale, whereas w(x) and w′(x) are
weighting solutions respectively in coarse-scale and fine-
scale. τ is designated as the stability parameter given as the
following:

τ =
bcell1

∫
Ωcell b

cell
2 dΩ

(bcell2 , c · ∇bcell1 ) + (∇bcell2 , k∇bcell1 )
, (18)

in which bcell1 and bcell2 indicate the bubble functions for the
trial solutions and weighting functions, correspondingly. It is
worth noting that the bubble functions make the present 3D
problems different from 2D problems. The bubble function
is concisely introduced in the next Section III-C.

Eq.(17) represents the ultimate variational multiscale form,
and we compare it with the standard variational form. Note
that the third term at the left and second term at the right
in this equation expresses additional stability terms, which
preserve the fine-scale effects. Furthermore, the stabilization
parameter emerged spontaneously from addressing the fine-
scale problem.

The stable form Eq.(17) is eventually represented in coarse
scale for this problem. For keeping the representation simple,
we dropped the superimposed bars and identified the final
VMEFG form as

(w, c · ∇U) + (∇w, k∇U)

+(c · ∇w + k∆w, τ(c · ∇U − k∆U))

=(w, f) + (c · ∇w + k∆w, τf).

(19)

Associating Eq.(9) and Eq.(19) leads to the linear system of
equation as below

(M +K)U = S1 + S2, (20)

where U = [U1, U2, ..., Un], and

[M ]ij =

∫
Ω

Ni(c · ∇Nj)dΩ +

∫
Ω

∇Ni · k∇NjdΩ,

[K]ij =

∫
Ω

(c · ∇Ni + k∆Ni) · τ · (c · ∇Nj − k∆Nj)dΩ,

[S1]i =

∫
Ω

NifdΩ,

[S2]i =

∫
Ω

(c · ∇Ni + k∆Ni)τfdΩ.

C. Bubble functions

An appropriate bubble function bcell needs to meet the
following properties.

bcell>0, ∀x ∈ Ωcell;

bcell = 0, ∀x ∈ ∂Ωcell;

∃x ∈ Ωcell s.t. bcell(x) = 1.

In 3D case, the internal point that satisfies bcell = 1,
which is denoted by the point ( 1

4 ,
1
4 ,

1
4 ) of the unit reference

tetrahedron in this paper, and the bubble for the trial solution
in fine scale is defined as

bcell1 (x, y, z) = 256xyz(1− x− y − z). (21)

Concerning the weighting function in fine scale, the unit

Fig. 2: The buble function representing the fine-scale weighting function on
a unit referenced tetrahedron

reference tetrahedron is partitioned into four regions, as
depicted in Fig.2. The definition of the bubble functions on
these regions are given as follows

bcell2 (x, y, z) =

{
xyz

XbYbZb
, for x, y, z in region 1, 3, 4,

1−x−y−z
1−Xb−Yb−Zb

, for x, y, z in region 2,

(22)

where Xb, Yb and Zb indicate the position of the internal
virtual node in the background cell.
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Fig. 3: The elevation plots of solutions for Case 1 with 163 nodes (a) EFG solution (top,left); (b) VMEFG solution (top,right); (c) EFG absolute error
(bottom,left); (d) VMEFG absolute error (bottom,right).

IV. NUMERICAL EXAMPLE

In this section, for illustrating that the present method
has the capabilities in diminishing spurious oscillations near
various layers with its stabilizing features against 3D steady
convection-dominated diffusion problems, there are four 3D
steady convection-diffusion problems with the variable coef-
ficients to be solved that all have available analytical solution
of their own respectively.

For all the test problems, 4×4×4, 8×8×8, 16×16×16,
32× 32× 32 nodes are distributed uniformly in hexahedral
computational domain [0, 1]3 and 384, 3072, 24576, 196608
tetrahedron background cells for the use of numerical integra-
tion, respectively. We consider 16 points of Gauss quadrature
on each tetrahedral background integration cell to perfor-
m the integration throughout this section. Simultaneously
compared with the conventional meshless method EFG to
demonstrate the more validation of the VMEFG method in
addressing the convection-dominated diffusion problem. In
addition, the L2 error norm is defined as

‖Unum − Uexact‖L2 =

(∫
Ω

(Unum
i − Uexact

i )2dΩ

)1/2

.

Besides the L2 error norm, the L∞ error norm defined as
follows

‖Unum − Uexact‖L∞ = max
1≤i≤n

|Unum
i − Uexact

i |.

The above approach proves that the present method can
avoid numerical oscillations in the EFG method and obtain
more precise solutions. In conclusion, the VMEFG method
seems more applicable and precise than the EFG method

for this convection-dominated problem.

Example 1. For the first example, we consider the 3D
steady convection-diffusion problem over the spatial domain
Ω = [0, 1]3 with Dirichlet boundary conditions is taken into
account, and the governing equation is as follows

1

A

∂2U

∂x2
+

1

A

∂2U

∂y2
+

1

A

∂2U

∂z2
+
∂U

∂x
+
∂U

∂y
+
∂U

∂z
= 0.

This problem possesses the following analytical solution
that is available in reference [15].

U(x, y, z) = e−x + e−y + e−z.

Case 1 : We consider the value of A = 1. Fig.3 depicts
the numerical solutions acquired by the EFG and VMEFG
methods from a grid of 163 nodes in Case 1. From Figs.3(a)
and 3(b), it seems clear that the two methods are adequately
similar to each other in their results. Comparing Figs.3(c)
with 3(d), we can easily find that the absolute errors of the
VMEFG method are smaller as compared to that of the EFG
method.

For further analysis, we extract the solution in the z = 0.5
plane from the above numerical solution. Then we can depict
the numerical solution in the xy plane with z = 0.5, as
depicted in Fig.4. As can be clearly observed, the difference
between the two methods in the numerical solution is very
small. But it is crucial to note that the VMEFG method leads
to a more accurate solution than the EFG method.

Table I shows the L2 error norm of the EFG and VMEFG
methods. From this table, it can be directly seen that the
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Fig. 4: The elevation plots of solutions for Case 1 with 163 nodes in plane z = 0.5 (a) EFG solution (top,left); (b) VMEFG solution (top,right); (c) EFG
absolute error (bottom,left); (d) VMEFG absolute error (bottom,right).

TABLE I: Comparison of the L2 error norms and convergence rates for Case 1

Number of nodes h EFG rate VMEFG rate

125 1/4 1.540e-04 1.340e-04

729 1/8 4.903e-05 1.651 4.271e-05 1.649

4913 1/16 1.360e-05 1.850 1.186e-05 1.849

35937 1/32 3.581e-06 1.925 3.124e-06 1.924

two methods both have pretty small L2 error norms, but the
VMEFG method has a smaller error norm than the EFG
method under the same nodal distribution. Table I also lists
the convergence rate of these two methods. From this table,
the convergence rate of the VMEFG is nearly the same as
the EFG under the same circumstance and approximate to 2.
Generally speaking, the EFG and the VMEFG methods are
both stable when solving the ordinary convection-diffusion
problem.

In summary, the above comparison confirms that both
the EFG and the VMEFG method achieve approximately
two order accuracy, whereas the present VMEFG method
achieves a more accurate solution. Relatively, the stability
and effectiveness of these two methods are basically
equivalent for the convection-diffusion problems in the
general case.

Case 2 : We consider the value of A = 1000. In this
setting, the convection coefficients are 1000 times larger than
the diffusion coefficients, leading to a dominant convection
problem. Fig.5 explicitly describes the computational solu-
tions and absolute errors of the two methods obtained by

using 163 nodes. As shown apparently in Figs.5(a) and 5(c),
we can observe that the EFG solution is discontinuous with
large absolute errors. From Figs.5(b) and 5(d), it can be noted
that the VMEFG solution is smooth, and its absolute error is
relatively small, which ensures the stability and accuracy of
its calculation. In comparison, the VMEFG method is higher
stable and more accurate than the EFG method.

Furthermore, the numerical results in the xy plane with
z = 0.5 are depicted in Fig.6. As we can see intuitively
presented in Figs.6(a) and 6(c), the EFG solution varies
sufficiently with apparent oscillations, and the absolute error
is extremely large. In contrast with the EFG method, the
VMEFG solution is almost coincident with the exact solu-
tion, and its absolute error is relatively small, as shown in
Figs.6(b) and 6(d).

The above comparison confirms that the present VMEFG
method can avoid the oscillations that appeared in the EFG
method and obtain more precise solutions. In summary,
the VMEFG method is more available and precise when
compared with the EFG method for this convection-
dominated problem.
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Fig. 5: The elevation plots of solutions for Case 2 with 163 nodes (a) EFG solution (top,left); (b) VMEFG solution (top,right); (c) EFG absolute error
(bottom,left); (d) VMEFG absolute error (bottom,right).
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Fig. 6: The elevation plots of solutions for Case 2 with 163 nodes in plane z = 0.5 (a) EFG solution (top,left); (b) VMEFG solution (top,right); (c) EFG
absolute error (bottom,left); (d) VMEFG absolute error (bottom,right).
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TABLE II: Comparison of the L2 and L∞ norms of the error at k = 10−3 for Example 2

Number of nodes
EFG VMEFG

h L2 norm L∞ norm h L2 norm L∞ norm

125 1/4 4.16e+00 1.98e+02 1/4 1.01e-01 4.60e-01

729 1/8 1.82e-01 1.02e+00 1/8 4.68e-02 1.32e-01

4913 1/16 1.14e+01 6.02e+01 1/16 1.60e-02 4.48e-02

35937 1/32 5.04e-03 1.66e-02 1/32 4.45e-03 1.21e-02

TABLE III: Comparison of the L2 and L∞ norms of the error at k = 10−6 for Example 2

Number of nodes
EFG VMEFG

h L2 norm L∞ norm h L2 norm L∞ norm

125 1/4 4.15e+03 1.96e+04 1/4 8.91e-02 4.41e-01

729 1/8 1.53e+02 7.31e+02 1/8 3.64e-02 1.39e-01

4913 1/16 2.43e-02 1.10e-01 1/16 1.14e-02 3.06e-02

35937 1/32 7.91e-01 4.15e+00 1/32 3.73e-03 1.04e-02

Fig. 7: The elevation plots of solutions for Example 2 with 323 nodes (a) EFG solution (top,left); (b) VMEFG solution (top,right); (c) EFG absolute error
(bottom,left); (d) VMEFG absolute error (bottom,right).

Example2. This example considers the following dif-
ferential equation with small diffusion velocity k = 10−3

and k = 10−6, c = [1, 2, 1]
T. The choice of f allows the

exact solution to be given as follows, which can be found in
reference [35]

U(x, y, z) = sin(2πx)sin(2πy)sin(2πz).

The results are listed in Table II and Table III, which shows
the L2 norm and L∞ norm of the error when k = 10−3

and k = 10−6. For the two cases, with the step size refining

gradually, the error of the two methods both decreased. But in
any case, the error of the VMEFG method is always lower in
contrast to the EFG method under the same conditions. In the
convection-dominated case of k = 10−3, it can be obtained
from Table II that the VMEFG method has the accurate
computed solution, while the EFG method also can get a
satisfactory numerical solution with the step size refinement.

In the highly convection-dominated case of k = 10−6,
the L2 norm error gained by the EFG method is equal to
11.4 when reaching a mesh with h = 1/16. It may seem
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Fig. 8: The contour and elevation plots of solutions for Example 2 with 323 nodes in plane z = 0.25 (a) exact solution (first row); (b) EFG solution
(second row); (c) VMEFG solution (third row).

too high. Meanwhile, the error computed by the VMEFG
method is only equal to 0.0114. It can be calculated from
the data given in Table III, the convergence rate of the
VMEFG method approximates to 2. Hence, it is evident that
the VMEFG method is extremely stable while solving this
strong convection-dominated problem.

Fig.7 presents the numerical solutions and absolute
errors resulting from the EFG and VMEFG methods with
323 nodes on the domain when k = 10−6. It can be
observed that the computed solutions of the EFG method
are inaccurate enough, while the VMEFG method gains
adequately accurate solutions. Fig.8 plots the exact and
numerical results corresponding to the two methods in the
xy plane with z = 0.25 when k = 10−6. From Fig.8(b), it
can be found that there are sharp non-physical oscillations
that appear in the EFG solution. Nevertheless, Fig.8(c) is
basically indistinguishable from the exact plots, showing

that the VMEFG solution is smooth without oscillations.
Thus, the VMEFG method entirely prevents the oscillation
problem in the EFG method. Moreover, the VMEFG
method is still is capable of giving stabilized and satisfying
numerical solutions in this problem though the convection
is strongly dominant.

Example3. This example considers the following dif-
ferential equation in the absence of source term with small
diffusion velocity and can find be in reference [36]

−kUxx − kUyy − kUzz − 2tanh

(
x− 0.5

k

)
Ux

− 2tanh

(
y − 0.5

k

)
Uy − 2tanh

(
z − 0.5

k

)
Uz = 0,

whose exact solution is given by
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Fig. 9: The elevation plots of solutions for Example 3 with 323 nodes (a) EFG solution (top,left); (b) VMEFG solution (top,right); (c) EFG absolute error
(bottom,left); (d) VMEFG absolute error (bottom,right).
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Fig. 10: The elevation plots of EFG and VMEFG solutions of Example 3 with 323 nodes in plane y = 0.5 (a) EFG solution (top,left); (b) VMEFG
solution (top,right); (c) EFG absolute error (bottom,left); (d) VMEFG absolute error (bottom,right).
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Fig. 11: The elevation plots of solutions for Example 4 with 83 nodes (a) EFG solution (top,left); (b) VMEFG solution (top,right); (c) EFG absolute error
(bottom,left); (d) VMEFG absolute error (bottom,right).

U(x, y, z) =− tanh

(
x− 0.5

k

)
− tanh

(
y − 0.5

k

)
− tanh

(
z − 0.5

k

)
.

The Dirichlet boundary conditions are determined from
the exact solution. The calculations were carried out for the
dominated case with k = 10−3 using the EFG and the
VMEFG method by calculating 323 nodes. Analogous to
the previous examples, here we also present the plots of the
numerical results and absolute errors in Fig.9. The results in
Figs.9(a) and 9(b) show that the VMEFG solution is smooth
while the EFG solution is not. From Figs.9(c) and 9(d), we
also can find that the EFG method has large absolute errors,
while the VMEFG method has relatively small errors in this
case.

The numerical solutions and absolute error in the xz
plane with y = 0.5 are depicted in Fig.10. As far as we are
aware of the comparison between Figs.10(a) and 10(c), it
can be clearly noted that only a few oscillations appear in
the elevation plot for the VMEFG method. At the same time,
the EFG solution has apparent spurious oscillations, which
proves that the VMEFG significantly eliminates oscillations
in the EFG method. As shown in Figs.10(d) and 10(e), it can
be found that the error between the VMEFG solution and
the exact solution is quite small, while the EFG solution has
great errors. From what has been analyzed above, we can
conclude that the VMEFG can vastly eliminate oscillations
in the EFG method when the governing equation becomes
convection-dominated, illustrating that the VMEFG method

is applicable to the convection-dominated problem.

Example4. This example considered is the convection-
diffusion problem with a small constant diffusivity and the
flow velocity being c = [1, 1, 1]

T. The exact solution can be
refered to [37], given as below

U(x, y, z) = yz(1− y)(1− z)
(
x− e−(1−x)/v − e−1/v

1− e−1/v

)
.

Taking the convection-dominated cases with k = 10−3

into account, see Fig.11, the results are acquired by utilizing
83 nodes on the domain. Compared Fig.11(a) with Fig.11(b),
the difference in the computational solutions between these
two methods is quite big. But from Figs.11(c) and 11(d),
it can be intuitively observed that the absolute error of the
VMEFG method is much smaller than the EFG method.
That is, the computed solutions of the EFG method are quite
inaccurate compared to that of the VMEFG method, which
owns very accurate solutions.

Fig.12 displays the numerical results in the xy plane with
z = 0.5 computed by the EFG and VMEFG methods. From
Fig.12(b), it can be easily found that nonphysical oscillations
corrupt the numerical solution in the EFG method. Fig.12(c)
demonstrates that the VMEFG solution agrees well with
the exact solution. There are no oscillations appearing in
the VMEFG method. Therefore, the VMEFG method can
extremely avoid the oscillations that occur in the EFG
method under this circumstance.
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Fig. 12: The contour and elevation plots of solutions for Example 4 with 83 nodes in plane z = 0.25 (a) exact solution (first row); (b) EFG solution
(second row); (c) VMEFG solution (third row).

V. CONCLUSIONS

In this paper, the VMEFG method is extended to address
3D steady convection-dominated problems. In this article,
the bubble functions are used to determine the stability term
naturally, which is closely associated with the stability and
precision of the present method. The MLS approximation
with an arbitrary convex polyhedral influence domain is em-
ployed to approximate the shape functions for the VMEFG
method and let the nodal influence factor of the influence
domain be equal to 1.01. This approach makes the MLS
shape function interpolative, allowing the direct imposition
of the boundary conditions to simplify the proposed method
and improve the calculating efficiency. For illustrating the
effectiveness of this method, four examples concerning the
convection-diffusion equations have been solved. Numerical
results indicate that the VMEFG method can virtually avoid

the nonphysical oscillations involved in the EFG method for
dealing with the convection-dominated problem. Meanwhile,
the VMEFG method possesses higher computational accura-
cy than the EFG method. Insufficiently, the VMEFG solution
may exist a few oscillations in some highly convection-
dominated problems.

It is famously known that the adaptive algorithm works
well on refining nodes in the region where the solution dras-
tically varies. So in further study, we can adopt the adaptive
method to the VMEFG method for eliminating the above
defect and more complicated problems. Besides, the adaptive
VMEFG method can be applied for numerical experiments
to further investigate the 3D convection-diffusion problems
with time-dependent.
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