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Abstract—In this work, we investigate a class of nonlo-
cal Volterra-Fredholm integro-differential equations involving
Hilfer fractional derivatives and almost sectorial operators.
We prove our results by applying Arzela-Ascoli theorem and
Schauder’s fixed point technique. Moreover, we show the
fundamental properties of the representation of the solution
by discussing a case related to the associated semigroup. For
that, we consider compactness properties.

Index Terms—Hilfer fractional derivatives, mild solutions,
almost sectorial operators, measure of compactness.

I. INTRODUCTION

FRACTIONAL differential equations have attracted much
attention and have been the focus of many studies

due mainly to their varied applications in many fields of
engineering, biology, physics, biophysics, chemistry, control
theory, economy and so on; see [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10].

We also refer to the work in [2], where Debbouche and
Antonov studied the question of the existence of nonlin-
ear Hilfer fractional differential equations with controls.
Sufficient conditions are also established, where the time
fractional derivative is the Hilfer derivative. In [11], Zhang
and Zhou studied fractional Cauchy problems with almost
sectorial operators of the form{

LDα
0+$(ρ) = A$(ρ) + g(ρ,$(ρ))

I
(1−α)
0+ $(0) = $0, ρ ∈ [0, a],

where LDα
0+ is the Riemann-Liouville derivative of order

α, I
(1−α)
0+ is the Riemann-Liouville integral of order 1−α,

0 < α < 1, A is an almost sectorial operator on a complex
Banach space, and g is a given function.

Recently, in many published works, Hilfer fractional dif-
ferential equations have received attention [2], [6], [12].

Furati et al. in [13], considered nonlinear fractional differ-
ential equation involving Hilfer fractional derivative

Dα,β
a+ $(ρ) = g(ρ,$(ρ)), 0 < α < 1, 0 ≤ β ≤ 1,

I
(1−ψ)
a+ $(a+) = $a, ρ > a, ψ = α+ β − αβ, (1)

where Dα,β
a+ (.), I

(1−ψ)
a+ (.) are Hilfer fractional derivative and

Riemann-Liouville fractional integral, respectively, $a ∈ R.
The author used the Banach fixed point theorem to investi-
gate the existence and uniqueness and stability of global so-
lutions in the weighted space. Dheigude and Bhairat in [14],
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disccused the existence, uniqueness and continuous depen-
dence of solution for the problem (1) by using successive ap-
proximations and generalized Gronwall inequality. Oliveira
and de Oliveira in [15], proposed a new fractional derivative
the Hilfer-Katugampola fractional derivatives ρDα,β

a+ (.) and
generalized fractional integral ρI(1−ψ)

a+ (.). The authors used
Banach fixed point theorem to obtain the existence and
uniqueness of solution for a weighted Cauchy-type problem
(1).

In [16], Jaiswal and Bahuguna studied equations of Hilfer
fractional derivatives with almost sectorial operators in the
abstract sense:{

Dα,ψ
0+ $(ρ) +A$(ρ) = g(ρ,$(ρ))

I
(1−α)(1−ψ)
0+ $(0) = $0, ρ ∈ (0, T ],

Motivated by these results, here, we extend the previous
available results of the literature to a class of Hilfer fractional
integro-differential equations in which the closed operator is
almost sectorial. Moreover, we also consider compactness
case of the semigroup operator.

We consider nonlocal Volterra-Fredholm integro-
differential equations involving Hilfer fractional derivatives
and almost sectorial operators:

Dα,ψ
0+ $(ρ) +A$(ρ) = g

(
ρ,$(ρ), B$(ρ), Z$(ρ)

)
, (2)

I
(1−α)(1−ψ)
0+ [$(ρ)]|ρ=0 + h($(ρ)) = $0, (3)

where Dα,ψ
0+ is the Hilfer fractional derivative of order α ∈

(0, 1) and type ψ ∈ [0, 1]. We assume that A is an almost
sectorial operator on a Banach space Y with norm ‖.‖. Let
fi : J × Y −→ Y, i = 1, 2, ρ ∈ J := (0, T ], g : J × Y ×
Y × Y −→ Y and h : C(J : Y ) −→ Y to be given abstract
functions to be specified later. For brevity, we take

B$(ρ) =

∫ ρ

0

K(ρ, s)f1(s,$(s))ds,

Z$(ρ) =

∫ T

0

H(ρ, s)f2(s,$(s))ds.

The paper is structured as follows. In Section II, we
present necessary information about the Hilfer derivative,
almost sectorial operators, measures of compactness, mild
solutions of Eqs. (2) and (3) and some useful definitions,
results and lemmas. We discuss fundamental results for mild
solutions to Eqs. (2) and (3) and we prove the solvability
question, when associated semigroups is compact in Section
III.

II. PRELIMINARIES

In this section, we recall some basic definitions and
properties of the fractional calculus theory and auxiliary
lemmas which will be used throughout this paper, see ([4],
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[6], [10], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28]).

Definition 1. [4] The left-sided Riemann-Liouville fractional
integral of order α > 0 with a lower limit a for a function
x : [a,+∞) −→ R is defined as

Iαa+x(ρ) =
1

Γ(α)

∫ ρ

a

(ρ− s)α−1x(s)ds,

provided the right hand side is defined almost everywhere
(a.e.) on [a,+∞).

Remark 2. If a = 0, then we write Iαa+f(ρ) = (gα ∗ f)(ρ),
where

gα(ρ) =

{
1

Γ(α)ρ
α−1, ρ > 0,

0, ρ ≤ 0,

and, as usual, ∗ denotes the convolution of functions. Note
that limα−→0+ gα(ρ) = δ(ρ) with δ the delta Dirac function.

Definition 3. [4] The left-sided Riemann-Liouville fractional
derivative of order α > 0, n − 1 ≤ α < n, n ∈ N, for a
function x : [a,+∞) −→ R, is defined by

LDα
a+x(ρ) =

1

Γ(n− α)

dn

dρn

∫ ρ

a

1

(ρ− s)α−n+1
x(s)ds,

provided the right hand side is defined a.e. on [a,+∞).

Definition 4. [4] The left-sided Caputo’s fractional deriva-
tive of order α > 0, n− 1 < α < n, n ∈ N, for a function
x : [a,+∞) −→ R, is defined by

CDα
a+x(ρ) =

1

Γ(n− α)

∫ ρ

a

1

(ρ− s)α−n+1
x(n)(s)ds

= In−αa+ x(n)(ρ), ρ > a,

provided the right hand side is defined a.e. on [a,+∞).

Definition 5. [16] The left-sided Hilfer fractional derivative
of order 0 < α < 1 and type ψ ∈ [0, 1], of a function
x : [a,+∞) −→ R, is defined as

Dα,ψ
a+ x(ρ) =

[
I

(1−α)ψ
0+ D

(
I

(1−α)(1−ψ)
a+ x

)]
(ρ).

Remark 6. (i) If ψ = 0, 0 < α < 1 and a = 0, then
the Hilfer fractional derivative corresponds to the classical
Riemann-Liouville fractional derivative:

Dα,0
a+ x(ρ) =

d

dρ
I

(1−α)
a+ x(ρ) = LDα

a+x(ρ).

(ii) If ψ = 1, 0 < α < 1 and a = 0, then the Hilfer
fractional derivative corresponds to the classical Caputo
fractional derivative:

Dα,1
a+ x(ρ) = I

(1−α)
a+

d

dρ
x(ρ) = CDα

a+x(ρ).

The motivation to consider our problem can be found in
[11]. Here, we generalize the results in [11]. Let X ⊂ Y
be bounded. The Hausdorff measure of non-compactness is
considered as

Q(X) = inf
{
θ > 0 : X ⊂

m⋃
j=1

Bθ(xj), xj ∈ Y, m ∈ N
}
,

while the Kurtawoski measure of noncompactness F on a
bounded set B ⊂ Y is given by

F (X) = inf
{
ε > 0 : X ⊂

m⋃
j=1

Mj , and diam(Mj) ≤ ε
}
,

with the following properties:
1. X1 ⊂ X2 =⇒ Q(X1) ≤ Q(LX2), where X1, X2 ⊂ Y
and bounded;
2. Q(X) = 0 if and only if X is relatively compact in Y ;
3. Q({z} ∪X) = Q(X) for all z ∈ Y X ⊆ Y ;
4. Q(X1 ∪X2) ≤ max{Q(X1), Q(X2)};
5. Q(X1 +X2) ≤ Q(X1) +Q(X2);
6. Q(rX) ≤ |r|Q(X) for r ∈ R.

Let M ⊂ C(J, Y ) and M(r) = {$(r) ∈ Y : $ ∈ M}.
One defines∫ ρ

0

M(r)dr :=
{∫ ρ

0

$(r)dr : $ ∈M
}
, ρ ∈ J.

Proposition 7. [16] If M ⊂ C(J, Y ) is equicontinuous
and bounded, then ρ −→ Q(M(ρ)) is continuous on J .
Furthermore,

Q(M) = max
{
Q(M(ρ)), Q

(∫ ρ

0

$(r)dr
)}

≤
∫ ρ

0

Q($(r))dr.

Proposition 8. [2] Let {$n : J −→ Y, n ∈ N} be
Bochner integrable functions. This implies that ‖$n‖ ≤
m(ρ) a.e. for n ∈ N and m ∈ L1(J,R+). Then, ζ(ρ) =
Q({$n(ρ)}∞n=1) ∈ L1(J,R+) and satisfies

Q({
∫ ρ

0

$n(r)dr : n ∈ N}) ≤ 2

∫ ρ

0

ζ(r)dr.

Proposition 9. [2] Let M be a bounded set. Then, for any
q > 0, there exists a sequence {$n}∞n=1 ⊂M such that

Q(M) ≤ 2Q{$n}∞n=1 + q.

Almost Sectorial Operators
Let 0 < β < π and −1 < β < 0. We define S0

β := {$ ∈
C \ {0} : |arg $| < β} and its closure by Sβ , such that
Sβ = {$ ∈ C \ {0} : |arg $| ≤ β} ∪ {0}.

Definition 10. [4] For −1 < β < 0 and 0 < w < π
2 , we

define {Qβw} as the family of all closed and linear operators
A : D(A) ⊂ Y −→ Y such that
1. σ(A) is contained in Sw;
2. for all β ∈ (w, π) there exists Mβ such that

‖R(z,A)‖L(Y ) ≤Mβ |z|β ,

where R(z,A) = (zI − A)−1 is the resolvent operator and
A ∈ Qβw is said to be an almost sectorial operator on Y .

Proposition 11. [4] Let A ∈ Qβw for −1 < β < 0 and
0 < w < π

2 . Then the following properties hold:
1. Q(ρ) is analytic and dn

dρnQ(ρ) = (−AnQ(ρ)(ρ ∈ S0
π
2

);

2. Q(ρ+ s) = Q(ρ)Q(s), ∀ρ, s ∈0
π
2

;

3. ‖Q(ρ)‖L(Y ) ≤ C0ρ
−β−1(ρ > 0), where C0 = C0(β) >

0 is a constant;
4. if

∑
Q = {x ∈ Y : limρ−→0+ Q(ρ)x = x}, then

D(Aq) ⊂
∑
Q if q > 1 + β;

5. R(r,−A) =
∫∞

0
e−rsQ(s)ds, r ∈ C with Re(r) > 0.
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We use the following Wright-type function [8]:

Mα(q) =
∑
n∈N

(−q)n−1

Γ(1− αn)(n− 1)!
, q ∈ C.

For − 1 < σ <∞, r > 0, the following properties hold:
(A1) Mα(q) ≥ 0, ρ > 0;

(A2)
∫∞

0
qσMαdq = Γ(1+σ)

Γ(1+ασ) ;

(A3)
∫∞

0
α

q1+α e
−rqMα( 1

qα )dq = e−r
α

.

The characteristic operators {Sα(ρ)}ρ∈S0
π
2

−w

and {Tα(ρ)}|ρ∈S0
π
2

−w
are defined by

Sα(ρ) :=

∫ ∞
0

Mα(q)Q(ραq)dq

and
Tα(ρ) :=

∫ ∞
0

αqMα(q)Q(ραq)dq.

Theorem 12. For each fixed ρ ∈ S0
π
2−w

, Sα(ρ) and Tα(ρ)
are bounded linear operators on Y . Moreover,

‖Sα(ρ)‖ ≤ C1ρ
−α(1+β), ‖Tα(ρ)‖ ≤ C2ρ

−α(1+β), ρ > 0,

where C1 and C2 are constants dependent on α and β.

Theorem 13. The operators Sα(ρ) and Tα(ρ) are continu-
ous in the uniform operator topology for ρ > 0. For s > 0,
the continuity is uniform on [s,∞).

Define Wr(J) := {$ ∈ C(J, Y ) : ‖$‖ ≤ r}. Our main
results are proved in relation to the following hypotheses:
(H1). For ρ ∈ J, g(ρ, ., ., .) : J × Y × Y × Y −→ Y and
f(ρ, .) : Y −→ Y are continuous functions and, for each
$ ∈ C(J, Y ), g(., $,B$,Z$) : J −→ Y and f(., $) :
J −→ Y are strongly measurable.
(H2). There exist functions k1, k2 ∈ L1(J,R+) satisfying

‖g(ρ, ., ., .)‖ ≤ k1(ρ) + k2(ρ)e−δρ, ∀$ ∈Wr(J)

and almost all ρ on J and

I−αβ0+

[
k1(ρ) + k2(ρ)e−δρ

]
∈ C(J,R),

lim
ρ−→0+

ρ(1+αβ)(1−ψ)I
(−αβ)
0+

[
k1(ρ) + k2(ρ)e−δρ

]
= 0.

(H3). Function h : C(J, Y ) −→ Y is completely continuous
and there exists a positive constant k such that

‖h($)‖ ≤ k.

(H4). We assume that

sup
[0,T ]

ρ(1+αβ)(1−ψ)‖Sα,ψ(ρ)[$0 + k]k + ρ(1+αβ)(1−ψ)

×
∫ ρ

0

(ρ− r)−αβ−1[k1(r) + k2(r)e−δr]dr ≤ r,

for r > 0, $0 ∈ D(Aq), and q > 1 + β, where Sα,ψ(ρ) =

I
ψ(1−α)
0+ ρα−1Tα(ρ).

For the next two lemmas, we refer to [2].

Lemma 14. The fractional Cauchy problem (2)-(3) is equiv-
alent to the integral equation

$(ρ) =
[$0 − h($(ρ))]

Γ(ψ(1− α) + α)
ρ(1−α)(ψ−1)

+
1

Γ(α)

∫ ρ

0

(ρ− r)α−1[−A$(r)

+g(r,$(r), (B$)r, (Z$)r)]dr, ρ ∈ J. (4)

Lemma 15. If $ is a solution to the integral equation (4),
then it satisfies

$(ρ) = Sα,ψ(ρ)[$0 − h($(ρ))]

+

∫ ρ

0

Rα(ρ− r)g(r,$(r), (B$)r, (Z$)r)dr,

where Sα,ψ(ρ) = I
ψ(1−α)
0+ Rα(ρ) with Rα = ρα−1Tα(ρ).

Definition 16. [4] By a mild solution of the Cauchy problem
in Eqs. (2) and (3), we mean a function $ ∈ C(J, Y ) that
satisfies

$(ρ)

= Sα,ψ(ρ)[$0 − h($(ρ))]

+

∫ ρ

0

Rα(ρ− r)g(r,$(r), (B$)r, (Z$)r)dr, ρ ∈ J.

We define operator Ψ : Wr(J) −→Wr(J) as

(Ψ$)(ρ)

:= Sα,ψ(ρ)[$0 − h($(ρ))]

+

∫ ρ

0

(ρ− r)α−1Tα(ρ− r)g(r,$(r), (B$)r, (Z$)r)dr

Lemma 17. [4] The operators Rα(ρ) and Sα,ψ(ρ) are
bounded linear operators on Y for every fixed ρ ∈ S0

π
2−w

.
Also, for ρ > 0, we have

‖Rα(ρ)$‖ ≤ C2ρ
−1−αβ‖$‖, ‖Sα,ψ(ρ)$‖

≤ Γ(−αβ)

Γ(ψ(1− α)− αβ)
C2ρ

ψ(1−α)−αβ−1‖$‖.

Proposition 18. [4] The operators Rα(ρ) and Sα,ψ(ρ) are
strongly continuous for ρ > 0.

III. MAIN RESULTS

In this section, we state and prove our main results.

Theorem 19. Let A ∈ Qβw for −1 < β < 0 and
0 < w < π

2 . Assuming that (H1)-(H4) are satisfied, then the
operator {Ψ$ : $ ∈ Wr(J)} is equicontinuous, provided
$0 ∈ D(Aq) with q > 1 + β.

Proof: For $ ∈Wr(J) and ρ1 = 0 < ρ2 ≤ T, we have∥∥∥(Ψ$)(ρ2)− (Ψ$)(0)
∥∥∥

=
∥∥∥ρ(1+αβ)(1−ψ)

2

(
Sα,ψ(ρ2)[$0 − h($(ρ2))]

+

∫ ρ2

0

(ρ2 − r)α−1Tα(ρ2 − r)

× g(r,$(r), (B$)r, (Z$)r)dr
)∥∥∥

≤
∥∥∥ρ(1+αβ)(1−ψ)

2 Sα,ψ(ρ2)
∥∥∥($0 + k)

+
∥∥∥ρ(1+αβ)(1−ψ)

2

∫ ρ2

0

(ρ2 − r)α−1Tα(ρ2 − r)

× g(r,$(r), (B$)r, (Z$)r)dr
)∥∥∥

−→ 0 as ρ2 −→ 0.

Now, let 0 < ρ1 < ρ2 ≤ T . One has
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∥∥∥(Ψ$)(ρ2)− (Ψ$)(ρ1)
∥∥∥

≤
∥∥∥ρ(1+αβ)(1−ψ)

2 Sα,ψ(ρ2)[$0 − h($(ρ2))]

−ρ(1+αβ)(1−ψ)
1 Sα,ψ(ρ1)[$0 − h($(ρ1))]

∥∥∥
+
∥∥∥ρ(1+αβ)(1−ψ)

2

∫ ρ2

0

(ρ2 − r)α−1

×Tα(ρ2 − r)g(r,$(r), (B$)r, (Z$)r)dr

−ρ(1+αβ)(1−ψ)
1

∫ ρ1

0

(ρ1 − r)α−1

×Tα(ρ1 − r)g(r,$(r), (B$)r, (Z$)r)dr
∥∥∥

≤
∥∥∥ρ(1+αβ)(1−ψ)

2 Sα,ψ(ρ2)[$0 − h($(ρ2))]

−ρ(1+αβ)(1−ψ)
1 Sα,ψ(ρ1)[$0 − h($(ρ1))]

∥∥∥
+
∥∥∥ρ(1+αβ)(1−ψ)

2

∫ ρ2

ρ1

(ρ2 − r)α−1

×Tα(ρ2 − r)g(r,$(r), (B$)r, (Z$)r)dr
∥∥∥

+
∥∥∥ρ(1+αβ)(1−ψ)

2

∫ ρ1

0

(ρ2 − r)α−1

×Tα(ρ2 − r)g(r,$(r), (B$)r, (Z$)r)dr

−ρ(1+αβ)(1−ψ)
1

∫ ρ1

0

(ρ1 − r)α−1

×Tα(ρ2 − r)g(r,$(r), (B$)r, (Z$)r)dr
∥∥∥

+
∥∥∥ρ(1+αβ)(1−ψ)

1

∫ ρ1

0

(ρ1 − r)α−1

×Tα(ρ2 − r)g(r,$(r), (B$)r, (Z$)r)dr

−ρ(1+αβ)(1−ψ)
1

∫ ρ1

0

(ρ1 − r)α−1

×Tα(ρ1 − r)g(r,$(r), (B$)r, (Z$)r)dr
∥∥∥

= J1 + J2 + J3 + J4.

From the strong continuity of Sα,ψ(ρ), we have J1 −→ 0
as ρ2 −→ ρ1. Also,

J2 ≤ C2ρ
(1+αβ)(1−ψ)
2

∫ ρ2

ρ1

(ρ2 − r)−αβ−1

×[k1(r) + k2(r)e−δr]dr

≤ C2

∣∣∣ρ(1+αβ)(1−ψ)
2

∫ ρ2

0

(ρ2 − r)−αβ−1

×[k1(r) + k2(r)e−δr]dr

−ρ(1+αβ)(1−ψ)
2

∫ ρ1

0

(ρ1 − r)−αβ−1

×[k1(r) + k2(r)e−δr]dr
∣∣∣

≤ C2

∫ ρ1

0

∣∣∣ρ(1+αβ)(1−ψ)
1 (ρ1 − r)−αβ−1

−ρ(1+αβ)(1−ψ)
2 (ρ2 − r)−αβ−1

∣∣∣
×[k1(r) + k2(r)e−δr]dr.

Then, by using (H2) and the dominated convergence theorem,
J2 −→ 0 as ρ2 −→ ρ1.

Similarly, we can see that J3, J4 −→ 0 as ρ2 −→ ρ1.
Hence, ‖(Ψ$)(ρ2)− (Ψ$)(ρ1)‖ −→ 0, independently of

$ ∈ Wr(J) as ρ2 −→ ρ1. Therefore, {Ψ$ : $ ∈ Wr(J)}

is equicontinuous.

Theorem 20. Let −1 < β < 0, 0 < w < π
2 , and A ∈ Qβw.

Then, under hypotheses (H1)-(H4), the operator {Ψ$ : $ ∈
Wr(J)} is continuous and bounded, provided $0 ∈ D(Aq)
with q > 1 + β.

Proof: We verify that Ψ maps Wr(J) into itself. Taking
$ ∈Wr(J) and defining

v(ρ) := ρ(1+αβ)(1−ψ)$(ρ),

we have v ∈Wr(J). Let ρ ∈ [0, T ],∥∥∥Ψ$(ρ)
∥∥∥

≤
∥∥∥ρ(1+αβ)(1−ψ)Sα,ψ(ρ)[$0 − h($(ρ))]

∥∥∥
+ρ(1+αβ)(1−ψ)

∥∥∥∫ ρ

0

(ρ− r)α−1Tα(ρ− r)

×g(r,$(r), (B$)r, (Z$)r)dr
∥∥∥

≤ ρ(1+αβ)(1−ψ)
∥∥∥Sα,ψ(ρ)[$0 − h($(ρ))]

∥∥∥
+ρ(1+αβ)(1−ψ)

∫ ρ

0

(ρ− r)−αβ−1

×[k1(r) + k2(r)e−δr]dr

≤ sup
[0,T ]

(
ρ(1+αβ)(1−ψ)

∥∥∥Sα,ψ(ρ)‖[‖$0‖+ k]
∥∥∥

+ρ(1+αβ)(1−ψ)

∫ ρ

0

(ρ− r)−αβ−1

×[k1(r) + k2(r)e−δr]dr
)

≤ r.

Thus, ‖Ψ$‖ ≤ r for any $ ∈ Wr(J). Now, to verify Ψ
is continuous in Wr(J), let $n, $ ∈ Wr(J), n = 1, 2, ...
with limn−→∞$n = $; that is, limn−→∞$n(ρ) = $(ρ);
limn−→∞ ρ−(1+αβ)(1−ψ)$n(ρ) = ρ−(1+αβ)(1−ψ)$(ρ) on
J . Then, (H1) implies that

g(ρ,$n(ρ), (B$n)(ρ), (Z$n)(ρ))

= g(ρ, ρ−(1+αβ)(1−ψ)$n(ρ), ρ−(1+αβ)(1−ψ)(B$n)(ρ),

ρ−(1+αβ)(1−ψ)(Z$n)(ρ))

−→ g(ρ, ρ−(1+αβ)(1−ψ)$(ρ), ρ−(1+αβ)(1−ψ)(B$)(ρ),

ρ−(1+αβ)(1−ψ)(Z$)(ρ)),

as n −→∞. From (H2), we obtain the inequality

(ρ− r)−αβ−1|g(ρ,$n(ρ), B($n(ρ)), Z($n(ρ)))|
≤ 2(ρ− r)−(αβ)(1−ψ)[k1(r) + k2(r)e−δr],

that is,∫ ρ

0

(ρ− r)−αβ−1‖g(ρ,$n(ρ), B($n(ρ)), Z($n(ρ)))‖dr

−→ 0 as n −→∞.

Let ρ ∈ [0, T ]. Now,∥∥∥Ψ$n(ρ)−Ψ$(ρ)
∥∥∥

≤ ρ(1+αβ)(1−ψ)
∥∥∥∫ ρ

0

(ρ− r)α−1

×Tα(ρ− r)[g(ρ,$n(ρ), B($n(ρ)), Z($n(ρ)))

−g(ρ,$(ρ), B($(ρ)), Z($(ρ)))]dr
∥∥∥.
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Applying Theorem 12, we have

∥∥∥Ψ$n(ρ)−Ψ$(ρ)
∥∥∥ ≤ C2ρ

(1+αβ)(1−ψ)

∫ ρ

0

×(ρ− r)−αβ−1
∥∥∥g(ρ,$n(ρ), B($n(ρ)), Z($n(ρ)))

−g(ρ,$(ρ), B($(ρ)), Z($(ρ)))
∥∥∥dr,

which tends to 0 as n −→∞, i.e., Ψ$n −→ Ψ$ pointwise
on J . Moreover, Theorem 19 implies that Ψ$n −→ Ψ$
uniformly on J as n −→∞, that is, Ψ is continuous.

We prove the existence of a mild solution to the problem
in Eqs. (2)-(3). Here, we assume Q(ρ) to be compact.

Theorem 21. Let − 1 < β < 0, 0 < w < π
2 and A ∈ Qβw.

If Q(ρ)(ρ > 0) is compact and (H1)-(H4) hold, then there
exists a mild solution of the problem (2)-(3) in Wr(J) for
every $0 ∈ D(Aq) with q > 1 + β.

Proof: Because we assume Q(ρ) to be compact, then
the equicontinuity of Q(ρ)(ρ > 0) is ensured. Moreover,
by Theorems 19 and 20, Ψ : Wr(J) −→ Wr(J) is
continuous and bounded and ε : Wr(J) −→ Wr(J) is
bounded and continuous, and {ε$ : $ ∈ Wr(J)} is
equicontinuous. We can write ∆ : Wr(J) −→ Wr(J) by
(∆$)(ρ) = (∆1$)(ρ) + (∆2$)(ρ), where

(∆1$)(ρ)

= ρ(1+αβ)(1−ψ)Sα,ψ(ρ)[$0 − h($(ρ))]

=
ρ(1+αβ)(1−ψ)

Γ(ψ(1− α))

∫ ρ

0

(ρ− r)ψ(1−α)−1rα−1∫ ∞
0

αqMα(q)Q(rαq)($0 − h($))dqdr

=
αρ(1+αβ)(1−ψ)

Γ(ψ(1− α))

∫ ρ

0

∫ ∞
0

(ρ− r)ψ(1−α)−1rα−1

×qMα(q)Q(rαq)($0 − h($))dqdr,

and

(∆2$)(ρ) = ρ(1+αβ)(1−ψ)

∫ ρ

0

(ρ− r)α−1Tα(ρ− r)

×g(r,$(r), (B$)r, (Z$)r)dr.

For σ > 0 and q ∈ (0, ρ), we define an operator ∆1
q,σ

on Wr(J) by

(∆1
q,σ$)(ρ)

=
ρ(1+αβ)(1−ψ)

Γ(ψ(1− α))

∫ ρ

q

∫ ∞
σ

(ρ− r)(1−α)ψ−1rα−1

×qMα(q)Q(rαq)($0 − h($))dqdr

=
αρ(1+αβ)(1−ψ)

Γ(ψ(1− α))
Υ(∆ασ)

∫ ρ

q

∫ ∞
σ

(ρ− r)ψ(1−α)−1

×rα−1qMα(q)

×Q(rαq − qασ)($0 − h($))dqdr.

Since Υ(∆ασ) is compact, V 1
q,σ(ρ) = {(∆1

q,σ$)(ρ), $ ∈
Wr(J)} is precompact in $ for all q ∈ (0, ρ) and δ > 0.

Moreover, for any $ ∈Wr(J), one has

‖(∆1$)(ρ)− (∆1
q,σ$)(ρ)‖

≤ Λ(α,ψ)
∥∥∥ρ(1+αβ)(1−ψ)

∫ ρ

0

∫ σ

0

(ρ− r)(1−α)ψ−1

×rα−1qMα(q)Q(rαq)($0 − h($))dqdr
∥∥∥

+Λ(α,ψ)
∥∥∥ρ(1+αβ)(1−ψ)

∫ q

0

∫ ∞
σ

(ρ− r)(1−α)ψ−1

×rα−1qMα(q)Q(rαq)($0 − h($))dqdr
∥∥∥

≤ Λ(α,ψ)ρ(1+αβ)(1−ψ)

∫ ρ

0

∫ σ

0

(ρ− r)(1−α)ψ−1

×rα−1qMα(q)r−αψ−α‖$0 − h($)‖q−β−1dqdr

+Λ(α,ψ)ρ(1+αβ)(1−ψ)

∫ q

0

∫ ∞
σ

(ρ− r)(1−α)ψ−1

×rα−1qMα(q)r−αβ−α‖$0 − h($)‖q−β−1dqdr

= Λ(α,ψ)ρ(1+αβ)(1−ψ)

∫ ρ

0

(ρ− r)(1−α)ψ−1

×r−αβ−1‖$0 − h($)‖dr
∫ σ

0

q−βMα(q)dq

+Λ(α,ψ)ρ(1+αβ)(1−ψ)

∫ q

0

(ρ− r)(1−α)ψ−1

×r−αβ−1‖$0 − h($)‖dr
∫ ∞
σ

q−βMα(q)dq

≤ Λρ−αψ(1+β)‖$0 − h($)‖
∫ σ

0

q−βMα(q)dq

+Λρ−αψ(1+β)[‖$0‖+ k]

∫ q

0

(ρ− r)(1−α)ψ−1

×r−αβ−1dr

∫ ∞
σ

q−βMα(q)dq

−→ 0 as q −→ 0 and σ −→ 0,

where Λ(α,ψ) = α
Γ(ψ(1−α)) . Therefore, V 1

q,σ(ρ) =

{(∆1
q,σ$)(ρ), $ ∈Wr(J)} are arbitrarily close to V 1(ρ) =

{(∆1$)(ρ), $ ∈ Wr(J)} for ρ > 0. Hence, V 1(ρ), for
ρ > 0, is precompact in Y . For q ∈ (0, ρ) and σ > 0, we
can present an operator ∆2

q,σ on Wr(J) by

(∆2
q,σ$)(ρ)

= αρ(1+αβ)(1−ψ)

∫ ρ−q

0

∫ ∞
σ

qMα(q)(ρ− r)α−1

×Q((ρ− r)αq)g(r,$(r), (B$)r, (Z$)r)dqdr

= αρ(1+αβ)(1−ψ)Υ(qασ)

∫ ρ−q

0

∫ ∞
σ

×qMα(q)(ρ− r)α−1Q((ρ− r)αq − qασ)

×g(r,$(r), (B$)r, (Z$)r)dqdr.

Thus, due to the compactness of Q(qασ), V 2
q,σ(ρ) =

{∆2
q,σ(ρ), $ ∈Wr(J)} is precompact in Y for all q ∈ (0, ρ)

and σ > 0. For every $ ∈Wr(J), we get
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‖(∆2$)(ρ)− (∆2
q,σ$)(ρ)‖

≤
∥∥∥αρ(1+αβ)(1−ψ)

∫ ρ

0

∫ σ

0

qMα(q)(ρ− r)α−1

×Q((ρ− r)αq)g(r,$(r), (B$)r, (Z$)r)dqdr
∥∥∥

+
∥∥∥αρ(1+αβ)(1−ψ)

∫ ρ

ρ−q

∫ ∞
σ

qMα(q)(ρ− r)α−1

×Q((ρ− r)αq)g(r,$(r), (B$)r, (Z$)r)dqdr
∥∥∥

≤ αC0ρ
(1+αβ)(1−ψ)

∫ ρ

0

(ρ− r)−αβ−1

×[k1(r) + k2(r)e−δr]dr

∫ σ

0

q−βMα(q)dq

+αC0ρ
(1+αβ)(1−ψ)

∫ ρ

ρ−q
(ρ− r)−αβ−1

×[k1(r) + k2(r)e−δr]dr

∫ ∞
0

q−βMα(q)dq

−→ 0 as σ −→ 0.

Therefore, V 2
q,σ(ρ) = {∆2

q,σ(ρ), $ ∈Wr(J)} are arbitrarily
close to V 2(ρ) = {∆2(ρ), $ ∈ Wr(J)}, ρ > 0.
This implies the relative compactness of V 2(ρ), ρ > 0
in Y . Also, V (ρ) = {∆(ρ), $ ∈ Wr(J)} is relatively
compact in Y ∀ρ ∈ [0, T ]. It follows, from the Arzela-
Ascoli theorem, that {∆(ρ), $ ∈ Wr(J)} is relatively
compact for ∆, it is continuous, and {∆(ρ), $ ∈ Wr(J)}
is relatively compact. This implies, by the Schauder’s fixed
point theorem, the existence of a fixed point v∗ ∈Wr(J) of
∆. Let $∗(ρ) := ρ(1+αβ)(ψ−1)v∗(ρ). Then, $∗ is a mild
solution of the problem (2)-(3).
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