
 

  

Abstract—Coastal erosion is a natural phenomenon that 

occurs when sediment transport away from the coast is not 

countered by the formation of new material on the shoreline.  

This is indeed a problem that is driving the erosion of coastal 

areas. A sea wall and a groin were created to prevent coastal 

erosion and floods. The future topography of the beach is being 

investigated using shoreline evolution analysis. Erosion, 

accretion, and sea level changes are basic stages that have a 

significant impact on the coastal structure. A qualitative 

analysis of the model coastal behavior in relation to the 

controlling process is required to research beach erosion and 

beach deposition. When stated in terms of non-dimensional 

variables, all are mathematically equivalent. In general, the 

models do not have to be dimensionally different. Those might 

just be modifications of the same problems. One can solve a 

wide range of models with a single solution to the related non-

dimensional equation. In this research, we provide a governing 

equation when a groin is introduced to a one-dimensional 

shoreline growth model. A non-dimensional shoreline evolution 

model with a groin structure model is provided. The model 

now has the ability to manipulate physical parameters. When 

groin structural effects are present, the initial condition setting 

method and boundary condition approaches are also given. To 

approximate the incremental model in each year, the forward 

time-centered space technique and the unconditionally stable 

Saulyev finite difference methods are used. The Saulyev finite 

difference approach can handle numerical solutions in almost 

any scenario since the stability requirements are not restricted. 

The Saulyev finite difference technique can be very useful for 

computing a practical conceptual design of shoreline evolution 

since the number of grids has increased. The numerical models 

offered provide a viable simulation for evaluating long-term 

coastal development. The proposed modeling may be used to 

forecast the effectiveness of constructing a groin system on a 

local beach. 

 

Index Terms—shoreline evolution, groin structure, non-

dimension, mathematical model, finite difference method  
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INTRODUCTION 

 oastal erosion is a natural process that occurs when 

sediment movement away from the coast is not 

counterbalanced by fresh material growth along the 

shoreline. This is certainly a problem that is related to 

coastal erosion. A sea wall and groin were built to prevent 

coastal erosion and floods. The beach's future topography is 

analyzed using shoreline evolution research. Basic phrases 

that have a substantial influence on the coastal structure are 

erosion, accretion, and sea-level variations.  

     The partial differential equation represents several 

disciplines, including mass, heat, energy, velocity, and 

vorticity (see for example [1-2]). In [3-8] these papers, the 

diffusion equation has been used to solve a variety of 

engineering problems, including pollutant and salinity 

transport in rivers and streams, and groundwater and 

contaminant dispersion in shallow lakes. In [9-11], they 

presented a case study of water level forecasting, a water 

quality evaluation based on probabilistic echo state 

networks, and the fluid dynamics of nonaqueous phase 

pollutants in groundwater.     

Understanding the ideal shorelines' responses to the 

governing processes is important in the study of beach 

actions. A model for describing realistic situations involving 

general shoreline configuration settings and time-varying 

waves in more detail is proposed. As a result, numerical 

methods of shoreline evolution are preferred to analytical 

methods. In 1966, this paper [12] introduces modern logical 

design guidelines for groin structures. They are organized 

into three basic categories: Coastal processes, Functional 

design and Structural design. In [13] this paper expands on 

both the theoretical and practical concepts of mathematical 

models related to coastal behaviors: Theoretically, the 

influence of diffraction behind the groin is used to determine 

computer programming; Practically, the coastal constant in 

the theoretical model of the coast is expressed in terms of 

wave height and SVASEK's theoretical wave direction. In 

[14] this paper describes the development of the governing 

equations in general form and describes the assumptions and 

techniques used to obtain more than 25 analytical solutions. 

Solution for shoreline evolution with and without the 

influence of coastal structures. It covers situations involving 

beach filling of initial shape, sand mining, river discharge, 

groin and jetty and breakwater etc. The wind wave-driven 

longshore sediment transport rate and shoreline change are 

evaluated using a numerical model based on one-line theory 

in [15]. 
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The model transforms waves from deep water into the surf 

zone and calculates their breaking characteristics. The 

model [16] provides complete, time-dependent simulations 

of shoreline evolution for coastlines driven by structures and 

a variety of boundary conditions that are both practical and 

reliable. This research looks at two case studies: New 

Jersey's Sea Isle City Beach and Egypt's Nile Delta Coast. 

The purpose of [17] is to quantify the changes in the 

shoreline along with the sand reclamation for the Sultan 

Mahmud Airport runway in Kuala Terengganu. Littoral 

Processes and Coastline Kinetics (LITPACK) numerical 

model is the numerical device employed to solve the 

shoreline problem. This research [18] describes a numerical 

modelling framework called GENESIS that is used to 

simulate long-term shoreline change caused by spatial and 

temporal variations in longshore sand transport at coastal 

engineering projects. The modelling system is managed via 

an organized and user-friendly interface, which reduces the 

need for the operator to get concerned with computer code 

specifics. The modelling-system application method is 

described from the viewpoint of engineers and planners 

involved in the evaluation of shore-protection projects       

[19-21]. 

    Then, if a groin is added to a one-dimensional shoreline 

evolution model, we propose a governing equation for this 

research. It is provided with a non-dimensional shoreline 

evolution model with a groin construction model. The model 

can now be used to manipulate physical parameters. 
 

I. GOVERNING EQUATION  

A. Shoreline Evolution Model 

The beach profile is supposed to travel landward and 

seaward while maintaining the same form in the one-line 

model, meaning that all bottom contours are parallel. As a 

result, specifying the horizontal location of the profile with 

respect to the baseline is sufficient under this assumption, 

and one contour line may be used to represent changes in the 

beach plan shape and volume as the beach reduces and 

accretes. Sand is carried alongshore between two well-

defined limiting heights on the profile, according to the 

model's main assumption. If there is a variation in the 

alongshore sand transport rate at the lateral sides of the 

section and the related sand continuity, it contributes to the 

volume change.  

At all times, the laws of mass conservation must be 

applied to the system. The following differential equation 

for shoreline evolution is produced using the given 

definitions: 
 

1

B C

y Q

t D D x

  
= − 

 +  
 ,                                         (1) 

 

where x  is the alongshore coordinate (m), y  is the 

shoreline positions (m) and perpendicular to x-axis, t  is 

time (day), Q  is the long-shore sand transport rate (m3/day), 

BD  is the average berm height (m) and 
CD  is the average 

closure depth (m). 

In order to solve Eq.(1), an equation for the longshore 

sand transport rate Q  must be specified. This quantity is 

thought to be created by a wave that strikes the coastline 

obliquely. [22] provided a general expression for the long-

shore sand transport rate, 
 

   ( )0 sin 2 bQ Q =  ,                                                   (2) 

 

where 
0Q  is the amplitude of the long-shore sand transport 

rate. The empirical predictive formula for the amplitude of 

the long-shore sand transport rate is [23]: 
 

   ( )2

0
16 ( )(1 )

b gb

s

K
Q H c

n



 
=

− −
,                             (3) 

 

where the subscript b represent the value at the point 

breaking,   is the density of sea water (kg/m3), 
s  is the 

density of the sediment (kg/m3), n  is the porosity, K  is the 

dimensionless coefficient which is a function of particle 

size, H  is the wave height and 
gc is the wave group 

velocity. 
The quantity 

b  the impact angle between breaking wave 

crests angle with local shoreline, and may be written as, 
 

   
1

0 tanb

y

x
  −  

= −  
 

 ,                                             (4) 

 

where 
0  is the angle between breaking wave crests and the 

x-axis. For beaches with a slight slope, the breaking wave 

angle to the coastline is likely to be minimal. Assuming that,  
 

( )sin 2 2b b   , 

 

and  
 

1tan
y y

x x

−     
   

    
. 

 

Substituting Eq.(4) into Eq.(2), and assuming the beach 

with mild slope yields, 
 

   0 02 2
y

Q Q
x


 

= − 
 

 ,                                             (5) 

 

Substituting Eq.(5) into Eq.(1), and neglecting the sources 

or sinks along the coast gives, 
 

   
2

2

y
D

x

y

t






=


 ,                                                        (6) 

 

for all ( )    , 0, 0,x t L    , where 02

B C

D
Q

D D
=

+
. 

B. The Initial and Boundary Conditions of the One-

Dimensional Model 

a) The Initial Condition 

Groin system that is impermeable and straight. The 

shoreline of the initials is considered to be parallel to the x-

axis.  

Assume 
0  is the braking wave angle to the beach as 

show in Fig. 3. As a result, the rate of sand transport along 

the beach is homogeneous. As seen in Fig. 1, the groin is 
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inserted instantly at 0x = . As a result, the initial conditions 

become, 
 

   ( ),0 0y x =  ,                                                            (7) 

 

for all  0,x L .  

b) The Left Boundary Condition 

The left boundary condition is defined by the 

interpolation function of the measured evolutionary data. It 

is shoreline evolution with the left-hand side groin system. 

The boundary conditions are assumed to be as follows,  
 

   ( ) ( )0,y t g t=  ,                                                       (8) 

 

for all  0,t   , where ( )g t  is a given interpolation 

function of the measured evolutionary data at the left-hand 

side groin system. 

c) The Right Boundary Condition 

The right boundary condition is defined by the 

interpolation function of the measured evolutionary data.   

It is shoreline evolution with the right-hand side groin 

system. The boundary conditions are assumed to be as 

follows, 
 

   ( ) ( ),y L t h t=  ,                                                       (9) 

 

for all  0,t   , where ( )h t  is a given interpolation 

function of the measured evolutionary data at the right-hand 

side groin system. 
 

 
Fig. 1.  Initial shoreline with configuration straight impermeable groins. 

 

 
Fig. 2.  Shoreline evolution with a groin structure. 

 

C. Physical Parameters 

Physical parameters of the model can be illustrated as 

shown in Figs. 3-4. that are listed below. 

     
0  is the impact angle between breaking wave crests 

angle with the x-axis.  

     
0Q  is the amplitude of the long-shore sand transport rate 

(m3/day).  

     
BD  is the average berm height (m). 

     
CD  is the average closure depth (m). 

     L    is the length of alongshore (m).  

         is time of simulation (day). 
 

 
Fig. 3.  Breaking wave crests impact angle. 

 

 
Fig. 4.  Beach profile and shoreline physical parameters. 

 

II. A NON-DIMENSIONAL SHORELINE EVOLUTION 

MODEL 

A. A Non-Dimensional Shoreline Evolution Model 
 

Taking non-dimensional technique [24] into Eq.(6), we 

obtain the following, 
 

   
2

2

Y Y

T X

 
=

 
 ,                                                          (10) 

 

for all ( )    , 0,1 0,X T     , where L  is the length of 

alongshore, *Y  is the expected shoreline evolution, 

*

y
Y

Y
= , 

x
X

L
=  , and 

2

Dt
T

L
= .  

Equation (10) is similar to the one-dimensional heat 

equation which has a thermal conductivity coefficient of 1, 

so in order to solve a problem it is necessary to define the 

initial conditions and the boundary conditions. 

B. The Initial and Boundary Conditions of the Non-

Dimensional Model 

The initial and boundary conditions for a non-

dimensional model can be simply defined under the known 

initial and boundary conditions according to Eqs.(7)-(9) for 

a one-dimensional model, so we can define the necessary 

conditions as the follows. These means that the initial 

condition becomes, 
 

   ( ) ( ),0Y X F X=        for all  0,1X   ,              (11) 
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Boundary conditions are also defined by: 
 

   ( ) ( )0,Y T G T=          for all  0,T    ,              (12) 

 

and 
 

   ( ) ( )1,Y T H T=          for all  0,T    ,              (13) 

 

where ( ) 0F X = , ( )
( )

*

g t
G T

Y
=  and ( )

( )

*

h t
H T

Y
=  . 

 
 

III. NUMERICAL TECHNIQUES 

A. Grid Spacing 

We now discretize the domain of Eq.(10) by dividing the 

interval  0,1  into M  subintervals such that 1M X =  and 

the time interval  0,  into N  subintervals such that 

N T =  . We then approximate ( ),m nY X T  by 
n

mY  , at the 

point mX m X=   and 
nT n T=  , where 0 m M   and 

0 n N  in which M  and N  are positive integers. 

 

 
Fig. 5.  Grid spacing. 

 

B. The Traditional Forward Time Centered Space (FTCS) 

Techniques 

The forward time centered space (FTCS) Technique is 

employed. Consequently, the finite difference 

approximation [19],[25] becomes, 
 

   ( ), n

m n mY X T Y  ,                                                 (14) 

   

1n n

m mY YY

T T

+ −


 
 ,                                                  (15) 

   
1 1

2

n n

m mY YY

X X

+ −−


 
 ,                                               (16) 

   
( )

2
1 1

2 2

2n n n

m m mY Y YY

X X

+ −− +


 
 ,                                    (17) 

 

Substituting Eqs.(14)-(17) into Eq.(10), we obtain, 
 

   
( )

1

1 1

2

2n n n n n

m m m m mY Y Y Y Y

T X

+

+ −− − +


 
 ,                          (18) 

 

for 1 1m M  − and 0 1n N  − . Equation (18) can be 

written in an explicit form of finite difference as follows, 
 

  ( )1

1 11 2n n n n

m m m mY Y Y Y  +

+ − + − +  ,                   (19) 

 

for 1 1m M  −  and 0 1n N  − . where 
( )

2

T

X



=


. 

C. An Unconditionally Saulyev Finite Difference 

Techniques 

The Saulyev finite difference Technique will be also 

employed. We can obtain that the finite difference 

approximatetion [19],[25] becomes, 
 

   ( ), n

m n mY X T Y  ,                                                 (20) 

   

1n n

m mY YY

T T

+ −


 
 ,                                                 (21) 

   

1

1 1

2

n n

m mY YY

X X

+

+ −−


 
,                                                (22) 

   
( )

1 12

1 1

2 2

n n n n

m m m mY Y Y YY

X X

+ +

+ −− − +


 
 ,                         (23) 

 

Substituting Eqs.(20)-(23) into Eq.(10), we obtain,  
 

  
( )

1 1 1

1 1

2

n n n n n n

m m m m m mY Y Y Y Y Y

T X

+ + +

+ −− − − +


 
,                 (24) 

 

for 1 1m M  − and 0 1n N  − . Equation (24) can be 

written in an explicit form of finite difference as follows, 
 

  ( ) ( )( )
11 1

1 11 1n n n n

m m m mY Y Y Y   
−+ +

+ − +  + − +  ,    (25) 

 

for 1 1m M  −  and 0 1n N  − . where 
( )

2

T

X



=


. 

IV. ERROR MEASUREMENT 

A simple measure used to measure the difference between 

actual and approximate values is the absolute error method. 

The absolute error formula be as follows, 
 

   n n n

m m mE y y= −  ,                                                   (26) 

 

where  
n

my  is the analytical solution of shoreline evolution 

and 
n

my  is the approximate solution of shoreline evolution. 

V. NUMERICAL EXPERIMENT 

In order to investigate the shoreline evolution in the long-

term scale. Assuming that the length of considered shoreline 

L  is 5000 m, the amplitude of the long-shore transport rate 

0Q  is 7500 m3/day, the averaged berm height 
BD  is 2 m, 

the averaged closure depth 
CD  is 28 m, the breaking wave 

impact angle 
0 is 0.02, and the expected shoreline 
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evolution 
*Y  is 20 m. The simulation setting is illustrated in 

Fig. 6-7. 

We will employ the traditional forward time centered 

space (FTCS) techniques Eq.(19), and the Saulyev finite 

difference techniques Eq.(25), to approximate the model 

solution.  

The analytical solution of the simulation is [26]: 
 

( )
2

4
0

4
, tan

2 2

x

Dt
Dt x x

y x t e erfc
Dt Dt






−  
= −     

 ,   (27) 

 

 
Fig. 6.  Initial shoreline. 

 

 
Fig. 7.  The evolution from initial shoreline. 

 

 
Fig. 8.  Approximated shoreline evolution under the non-dimensional 

equations in 20 years when the FTCS technique is used. 
 

 

 

 
Fig. 9.  Approximated shoreline evolution under the non-dimensional 

equations in 20 years when the Saulyev technique is used. 
 

 
Fig. 10.  Analytical shoreline evolution in 20 years. 

 

 
Fig. 11.  Approximated shoreline evolution under the one-dimensional 

equations in 20 years when the FTCS technique is used. 
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Fig. 12.  Approximated shoreline evolution under the one-dimensional 

equations in 20 years when the Saulyev technique is used. 
 

 
Fig. 13.  Shoreline evolution in 1 year. 

 

 
Fig. 14.  Shoreline evolution in 5 years. 

 

 
Fig. 15.  Shoreline evolution in 10 years. 

 

 
Fig. 16.  Shoreline evolution in 15 years. 

 

 
Fig. 17.  Shoreline evolution in 20 years. 
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Fig. 18.  Comparison of the approximate shoreline evolution results in 1, 5, 

10, 15 and 20 years when the FTCS technique and the Saulyev technique 
are used. 

 

 
Fig. 19.  Comparison of absolute error in 20 years between the FTCS 

technique and the Saulyev technique. 
 

The analytical solution is illustrated in Table I and the 

approximate solutions of both the numerical techniques are 

illustrated in Tables II-III, respectively. 

 

 
 

 
 

 
 

 

In order to be able to analyze the computational 

efficiency, the absolute error and comparisons of stability 

are illustrated in Tables IV-V, respectively. 
 

 
 

TABLE IV 

ABSOLUTE ERROR OF SHORELINE EVOLUTION WHEN 

USING THE FTCS TECHNIQUES AND SAULYEV TECHNIQUES 

Time 

(Years) 
Distance (m.) 

Absolute Error 

FTCS Saulyev 

1 

1000 0.2941x10-1 0.24318 

2000 0.1385x10-2 0.1846x10-1 

3000 0.1283x10-5 0.3314x10-3 
4000 0.3588x10-14 0.3425x10-5 

5000 0.1233x10-31 0.1233x10-31 

5 

1000 0.7894x10-2 0.2778 
2000 0.1187x10-1 0.2560 

3000 0.6303x10-2 0.1072 
4000 0.1533x10-2 0.2482x10-1 

5000 0.1822x10-16 0.1822x10-16 

10 

1000 0.3204x10-2 0.2224 
2000 0.7287x10-2 0.2997 

3000 0.7667x10-2 0.2310 

4000 0.4505x10-2 0.1134 
5000 0.4163x10-15 0.4163x10-15 

15 

1000 0.1791x10-2 0.1888 

2000 0.4616x10-2 0.2878 
3000 0.5833x10-2 0.2644 

4000 0.4126x10-2 0.1592 
5000 0.1110x10-15 0.1110x10-15 

20 

1000 0.1063x10-2 0.1644 

2000 0.2933x10-2 0.2634 
3000 0.3948x10-2 0.2626 

4000 0.2950x10-2 0.1667 

5000 0.2443x10-14 0.2443x10-14 

77 

TABLE III 
APPROXIMATED SHORELINE EVOLUTION ALONG 20 YEARS 

USING AN UNCONDITIONALLY SAULYEV FINITE 

DIFFERENCE TECHNIQUE 

Time 

(Years) 

Distance (m.) 

0 1000 2000 3000 4000 5000 

0 0.000 0.000 0.000 0.000 0.000 0.000 

1 9.576 0.719 0.021 0.000 0.000 0.000 

5 21.412 7.374 1.863 0.344 0.047 0.001 

10 30.282 14.612 6.000 2.075 0.593 0.099 

15 37.087 20.655 10.317 4.582 1.773 0.521 
20 42.825 25.926 14.457 7.370 3.380 1.304 

 

TABLE II 
APPROXIMATED SHORELINE EVOLUTION ALONG 20 YEARS 

USING THE TRADITIONAL FORWARD TIME CENTERED 

SPACE (FTCS) TECHNIQUE 

Time 

(Years) 

Distance (m.) 

0 1000 2000 3000 4000 5000 

0 0.000 0.000 0.000 0.000 0.000 0.000 

1 9.576 0.446 0.001 0.000 0.000 0.000 
5 21.412 7.089 1.595 0.230 0.020 0.001 

10 30.282 14.387 5.692 1.836 0.475 0.099 

15 37.078 20.465 10.024 4.308 1.610 0.521 
20 42.825 25.761 14.191 7.103 3.210 1.304 

 

TABLE I 

ANALYTICAL SOLUTION OF SHORELINE EVOLUTION 

Time 

(Years) 

Distance (m.) 

0 1000 2000 3000 4000 5000 

0 0.000 0.000 0.000 0.000 0.000 0.000 

1 9.576 0.476 0.003 0.000 0.000 0.000 
5 21.412 7.096 1.607 0.237 0.022 0.001 

10 30.282 14.390 5.688 1.844 0.480 0.099 

15 37.087 20.467 10.029 4.314 1.614 0.521 
20 42.825 25.762 14.194 7.107 3.213 1.304 
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VI. DISCUSSION 

Using the traditional forward time centered space (FTCS) 

techniques and the Saulyev finite difference techniques, the 

annual evolution of the shoreline can be determined. 

In the calculations, when we compared the approximated 

shoreline evolution solutions under the non-dimensionless 

model which occurred between the traditional forward times 

centered space (FTCS) technique and the Saulyev finite 

difference technique, they were found to be close together as 

shown in Figs. 8-9. For this reason, the approximated 

shoreline evolution solutions obtained when converted back 

to the solutions under the one-dimensional model are also 

close as shown in Figs. 11-12. Therefore, we can see that the 

approximate solutions as shown in Figs. 11-12 are close to 

the analytical solution as shown in Fig. 10. 

As demonstrated in Tables II, III, and Fig. 13, the 

distance from the furthest shoreline evolution after 1 year is 

9.576 m. The smallest distance from the evolution of the 

shoreline is 0.000 m. 

As demonstrated in Tables II, III, and Fig. 14, the 

distance from the furthest shoreline evolution after 5 years is 

21.412 m. The smallest distance from the evolution of the 

shoreline is 0.001 m. 

As demonstrated in Tables II, III, and Fig. 15, the 

distance from the furthest shoreline evolution after 10 years 

is 30.282 m. The smallest distance from the evolution of the 

shoreline is 0.099 m. 

As demonstrated in Tables II, III, and Fig. 16, the 

distance from the furthest shoreline evolution after 15 years 

is 37.087 m. The smallest distance from the evolution of the 

shoreline is 0.521 m. 

As demonstrated in Tables II, III, and Fig. 17, the 

distance from the furthest shoreline evolution after 20 years 

is 42.825 m. The smallest distance from the evolution of the 

shoreline is 1.304 m. 

In Fig.18, it is clearly confirmed that both numerical 

techniques produce shoreline evolution solutions close to 

each other even after 1, 5, 10, 15, and 20 years. 

In terms of accuracy, the traditional forward time centered 

space (FTCS) technique is more accurate than the Saulyev 

finite difference techniques as shown in Table IV and Fig. 

19, but the solution cannot be handled in some cases when 

the time increment is increased for the traditional forward 

time centered space (FTCS) techniques. The Saulyev finite 

difference techniques, on the other hand, can still be used. 

The Saulyev finite difference technique, on the other hand, 

can handle numerical solutions in almost every scenario as 

shown in Table V, because the stability conditions are not 

constrained. As a result, the Saulyev finite difference 

technique can also be useful for computing a practical 

conceptual design of shoreline evolution when the number 

of grids is increased. 

VII. CONCLUSION 

The model includes a non-dimensional shoreline 

evolution model as well as a groin structure model. Physical 

parameters can now be manipulated by the model. The 

initial condition setting technique and boundary condition 

approaches are also presented where groin structural effects 

are involved. The traditional forward time centered space 

(FTCS) technique and the unconditionally stable Saulyev 

finite difference strategies are employed to approximate the 

incremental model every year. The numerical models 

available give a realistic simulation for predicting long-term 

coastal evolution. Because the stability requirements are not 

limited, the Saulyev finite difference Techniques can handle 

numerical solutions in practically any circumstance. Since 

the number of grids has increased, the Saulyev finite 

difference technique can be highly beneficial for computing 

a practical conceptual design of shoreline evolution. The 

simulation described here can be used to forecast the success 

of a groin system on a local beach. 
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