
 

 
Abstract—Grey wolf optimizer (GWO) is a biological- 

inspired optimization algorithm with the advantages of few 
parameters, robustness, and easy implementation. It is widely 
used to solve the function optimization problem. However, 
GWO can easily fall into local optimum and can suffer from 
premature convergence. In this study, an improved GWO with 
differential perturbation, called IGWO, is presented. First, a 
non-linear reduction strategy is used instead of the linear 
reduction strategy in GWO to update the convergence factor, 
which increases the global search capability of IGWO. In 
addition, a random differential perturbation strategy with 
strong exploitation capability is embedded in GWO to increase 
the diversity of the population and ensure the local exploitation 
capability of IGWO. Finally, IGWO is tested with 16 
benchmark functions. The simulation results show that IGWO 
outperforms PSO, GSA, GWO, ALO, MFO, mGWO, DE-GWO, 
wd-GWO, and HGWO in terms of convergence accuracy and 
convergence speed. 
 

Index Terms—grey wolf optimizer, function optimization, 
differential perturbation, non-linear reduction strategy 
 

I. INTRODUCTION 

HE practical problems in engineering and other fields are 
often modeled as problems of function optimization with 

constraints, and the optimal solutions that meet the functions 
and constraints can be obtained by global optimization 
algorithms. The traditional methods for solving global 
optimization problems are either direct calculation methods 
or gradient-based methods. For a simple global optimization 
problem, an analytical solution can be obtained by directly 
solving the equations of index functions and constraints. For 
complex global optimization problems where the analytic 
solution cannot be obtained, one typically uses the first or/and 
second order gradients of index functions and constraints to 
guide the search process and obtain the approximate solution. 
However, it is difficult for traditional optimization algorithms 
to obtain the optimal solution for a complex global 
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optimization problem, owing to their many local optimums, 
complex search spaces, and model uncertainty, especially for 
high-dimensional optimization problems. As a result, in 
recent years researchers have proposed meta-heuristic 
algorithms, such as particle swarm optimization (PSO) 
algorithm [1], ant colony optimization (ACO) algorithm [2], 
gravitational search algorithm (GSA) [3], moth-flame 
optimization (MFO) algorithm [4], ant lion optimizer [ALO] 
[5], a hybrid algorithm based on gravitational search and 
particle swarm optimization algorithm [6], an improved 
flower pollination algorithm [7], an improved krill herd 
algorithm [8], and complementary differential evolution 
based whale optimization algorithm [9], to solve global 
optimization problems and obtain better results. 

Grey wolf optimizer (GWO) is a novel meta-heuristic 
algorithm proposed by Mirjalili S. et al. in 2014 [10]. 
Because GWO is simple in principle, and features few 
parameters, robustness, and easy implementation, it is used to 
solve global optimal problems. Shakarami M. R. et al. used 
the GWO-based strategy to design the wide area power 
system stabilizer (WAPSS) and obtained better results than 
PSO, GA, and DE [11]. For training a q-Gaussian radial basis 
functional link-nets neural network, Muangkote et al. 
proposed an improved version of GWO [12]. Madadiina A. et 
al. used GWO to adjust the PID controller parameters in DC 
motors and obtained good results [13]. 

However, like other meta-heuristic algorithms, GWO also 
has the disadvantages of poor population diversity, easy 
stagnation, and difficulty in balancing its exploration and 
exploitation capabilities. To enhance the performance of 
GWO, researchers have proposed many improved algorithms. 
Mittal N. et al. studied the possibility of enhancing the GWO 
exploration process by reducing the value of convergence 
factor ‘a’ using the exponential decay function, and proposed 
a modified grey wolf optimizer (mGWO) [14]. Gupta S. et al. 
used random walk strategy to enhance the performance of 
GWO [14]. To boost the efficiency of GWO, the Lévy flight 
and greedy selection strategies are integrated with the 
modified hunting phases of GWO in [15]. Inspired by the 
principle of light refraction in physics, Long W. et al. 
introduced a refraction learning strategy to improve the 
searchability of GWO and help the population jump out of the 
local optima [16]. Kumar V. et al. presented a modified 

parameter ‘ C


’ strategy to provide a balance between 
exploration and exploitation of GWO as well as a new random 
opposition-based learning strategy to assist GWO to jump out 
of the local optima. The simulation results revealed that the 
proposed algorithm shows better or at least competitive 
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performance against other compared algorithms on not only 
global optimization but also engineering design optimization 
problems [17]. To force GWO to jump out of the stagnation, 
Wang J. S. et al. integrated differential evolution into GWO 
to update the previous best position of alpha, beta and delta 
wolves and presented a novel improved grey wolf optimizer 
(DE-GWO) [18]. Malik M. R. S. et al. used the weighted sum 
of best locations instead of just a simple average location in 
GWO to propose the weighted grey wolf optimizer (wd-GWO) 
[19]. 

To further balance the exploration and exploitation 
capabilities of GWO, this study proposes an improved grey 
wolf optimizer (IGWO) based on the nonlinear reduction 
strategy for convergence factor ‘a’ and differential 
perturbation strategy. First, we propose to use a sine function 
instead of the linear function used in GWO to update 
convergence factor ‘a’. Note that the value of the sine 
function is always greater than the value of the linear function. 
The new update strategy can help IGWO to increase the 
global search capability and prevent IGWO from falling into 
the local minimum. Then, we embed the differential 
perturbation operation into GWO to improve the diversity of 
the population. Finally, a series of simulations are run to 
illustrate the effectiveness of IGWO. 

The rest of the article is organized as follows. In Section II, 
the principle of GWO is introduced. The motivation and 
principle of IGWO are presented in Section III. In Section IV, 
the simulation experiments and results are described in detail. 
In Section VI, we present our conclusions. 

 

II. GREY WOLF OPTIMIZER 

A. Social hierarchy and hunting 

Most wolves live in packs, averaging 5 to 12 wolves per 
pack and with the strict social leadership hierarchy shown in 
Fig. 1. In the social leadership hierarchy, wolves can be 
divided into four groups: alpha, beta, delta, and omega. The 
alpha is the leader and is mostly responsible for the vital 
decisions about hunting and selecting a place to live. The 
second category in the social hierarchy is the beta wolf. The 
beta wolf assists the alpha in delivering messages or 
organizing other pack activities. The wolves at the bottom of 
the hierarchy are regarded as omega, and these wolves 
balance the internal relationship of the wolves and update 
their positions according to their leaders. The remaining 
wolves are delta. The delta submit to alpha and beta, but they 
dominate the omega. 

 

 

The mathematical model of the social hierarchy of grey 
wolves can be built as following: the best solution is 
considered the alpha ( ), the second and third best solutions 
are respectively assumed to be the beta (  ) and delta ( ), 

and the other solutions are considered omega ( ). 

B. Mathematical models of GWO 

By imitating the social hierarchy and hunting behavior of 
grey wolves, GWO solves the globe optimization problem. 
The hunting process of grey wolves involves searching for the 
prey, encircling the prey, and attacking the prey. 

 
Encircling the prey 

To establish the mathematical model of encircling behavior, 
the following formulas are used: 

 

( ) ( )pD C X t X t  
  

,        (1) 

( 1) ( )pX t X t A D   
  

,        (2) 

 

where t  indicates the current iteration number, A


 and C


 

are coefficient vectors, pX


 indicates the vector of prey 

position, and X


 is the position vector of the grey wolf. 

The coefficient vectors A


 and C


 can be expressed as 
 

12A a rand a  


,         (3) 

22C rand 


,         (4) 

 max2 1a t T   ,        (5) 

 
where 1rand  and 2rand  are random vectors in [0,1], and 

maxT  indicates the maximum number of iterations. A


 is a 

random vector in the interval [ , ]a a  , where a  is linearly 

decreased from 2 to 0 throughout the iterations. 

As shown in (2), the search agent will be placed at A D
 

 

away from the prey position at the next time. Because A


 is a 

random vector in the interval [ , ]a a   and D


 is the position 

deviation between the current search agent and the weighted 

prey by C


, the search agent may be located at any random 
position within the hypercube determined by (1) and (2), and 
around the prey. 

The search agents update their positions according to the 
prey. Since we are unable to determine the previous position 
of the prey and the leaders (alpha, beta, and delta) have a 
better understanding of the potential position of the prey, we 
can estimate the position of the prey according to the positions 
of the alpha, beta, and delta by (6)-(11): 

 

( ) ( )D C X t X t   
  

,       (6) 

( ) ( )D C X t X t   
  

,       (7) 

( ) ( )D C X t X t   
  

,       (8) 

1 1( ) ( )X t X t A D   
  

,             (9) 

    2 2( ) ( )X t X t A D   
  

,      (10) 

 
 
Fig. 1. Hierarchy of grey wolves (dominance decreases from top to bottom)  
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   3 3( ) ( )X t X t A D   
  

.       (11) 

 
The position of the search agent can be calculated by 

 

1 2 3( ) ( ) ( )
( 1)

3

X t X t X t
X t

 
 

  
.   (12) 

 
Attacking the prey 

To model the process of attacking the prey, the value of 
convergence factor a  decreases with iterations. When 1a  , 

that is, A


 with random values are in [ 1,1] , the next position 

of the search agent can be in any position between its current 
position and the position of the prey. In other words, the 
search agent will approach the prey at this time. 
 
Searching for the prey 

As attacking the prey, A


 is also related to searching for 

prey in WOA. When 1A 


, the grey wolf stays away from 

the prey to search for a better solution in the decision space. 

In other words, when 1A 


, GWO emphasizes 

exploitation and forces the grey wolves to attack towards the 

prey, and when 1A 


, GWO emphasizes exploration and 

allows the wolves to search globally. 

The vector C


 in GWO is a random vector in the range of 
[0, 2], which provides the random weight of the prey to 

randomly emphasize ( C


>1) or reduce ( C


<1) the effect of 
the alpha, beta, and delta. 

C. Limitations of GWO 

Obtaining better convergence speed and optimization 
accuracy requires balancing the global search (exploration) 
and local search (exploitation) capabilities of GWO. In the 
classical GWO, exploration and exploitation are guaranteed 

by convergence factor a  or A


. As shown in (5), the value of 
the convergence factor a  is linearly reduced from 2 to 0 
throughout the iterations. That is, in the first half of the 

iterations, A


 tends to meet 1A 


, so the GWO has strong 

global search ability, and in the second half of the iterations, 

A


 tends to meet 1A 


, so the GWO has strong local search 

ability. Meanwhile, it can be seen from (12) that the search 
agent only updates its position according to the alpha, beta, 
and delta individuals, so that the diversity of the population 
drops rapidly, and the possibility of falling into a local 
minimum increases, particularly for solving the multi-peak 
function optimization problem. 

 

III. IMPROVED GREY WOLF OPTIMIZER 

 To overcome the above shortcomings of GWO, this study 
proposes two strategies: a nonlinear reduction strategy for 
convergence factor a  and a differential perturbation strategy. 

A. Nonlinear reduction strategy for convergence factor a  
As described above, the value of convergence factor a  

determines the global search and local search capabilities of 
GWO. To improve the global search ability of GWO and 
prevent GWO from falling into the local minimum, this paper 
proposes a nonlinear reduction strategy for convergence 
factor a . The nonlinear reduction strategy can be written as 
(13) and is shown in Fig. 2. 

 

 
 

max max

max max max

2 1 0 2

sin 2

a t T t T

a t T T t T
    
   

    (13) 
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Fig. 2. Shape of convergence factor 
 

As seen in Fig. 2, we use a piecewise function to update the 
value of convergence factor a . In the first half of the 
iterations ( max0 / 2t T  ), we still use the same linear 

function as GWO to update convergence factor a . At this 
stage, a  is greater than 1 and IGWO shows strong global 
search ability. However, in the second half of the iterations 
( max max/ 2T t T  ), we use a sine function instead of the 

linear function applied in GWO. Note that the value of the 
sine function is always greater than the current value of the 
linear function. The new update strategy can help IGWO 
increase the global search capability and prevent IGWO from 
falling into the local minimum. 

B. Differential perturbation strategy 

In GWO, the grey wolves update their positions by the 
positions estimated by the alpha, beta, and delta according to 
(12), and the generated search agents go directly into the next 
generation, which affects the diversity of the grey wolf 
population to some extent. To improve the diversity of the 
grey wolf population and reduce the possibility of falling into 
the local optimum, we introduce a differential perturbation 
strategy to generate the disturbed search agent, and then 
choose the better one between the search agent generated by 
(12) and the disturbed search agent to enter the next 
generation. 

The differential perturbation can be described as 
 

'( 1) ( 1)X t X t    
  

,      (14) 

 

where (t 1)X 


 is the search agent generated according to 

(12),   is the differential perturbation vector, and '( 1)X t 

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is the disturbed search agent. After obtaining the disturbed 
search agent, we use the greedy algorithm to select the better 
search agent to enter the next generation. That is, 
 

( 1) if ( ( 1)) ( '( 1))
( 1)

'( 1) else

X t f X t f X t
X t

X t

      


  


 . (15) 

 
The perturbation vector   can be described as 
 

 
 

1

2 1 2

(1 ) ( ) ( )

( ) ( )

b

r r

rand X t X t

rand X t X t

 



  

 

 

  ,    (16) 

 2

max min1 t T    ,             (17) 

 

where bX


 is the position vector randomly selected from the 

positions of alpha, beta, or delta.   is the perturbation scope. 

1rand  and 2rand  are random vectors in [0,1]. 1rX


 and 2rX


 

are the position vectors of two different wolves randomly 
selected from population. maxT  indicates the maximum 

number of iterations, and min  is the minimum value of  . 

 

Algorithm Improved grey wolf optimizer 

Initialize the grey wolf population , ( 1, 2, , )iX i N


  

Initialize a  by (13) 

Initialize A


 and C


 by (3) and (4) 
Calculate the fitness of each search agent 

Set X


=the best search agent 

Set X 


=the second-best search agent 

Set X


=the third-best search agent 

while ( t <Maximum number of iterations) 
for each search agent 

Calculate the position of the generated search agent by (12) 
Calculate the perturbation vector   by (16) 

Calculate the position of disturbed search agent '( 1)X t 


 by 

(14) 
Update the position of current search agent by (15) 

end for 

Update parameters a , A


, and C


 
Calculate the fitness of all search agents 

Update X


, X 


, X


 

1t t   
end while 

return X


 

 
Fig. 3. Framework of IGWO 

 

Note that ( )bX t


 is a random position vector of alpha, beta, 

or delta, and (1 ) 1  . The first half of (16) moves the 

search agent closer to the better solution (alpha, beta, or delta), 
which helps IGWO improve the convergence speed. The 
second half of (16) brings the search agent closer to the 

difference vector 1 2( ) ( )r rX t X t
 

. Because 1( )rX t


 and 

2 ( )rX t


 are two different individuals randomly selected from 

the population, the difference vector 1 2( ) ( )r rX t X t
 

 has 

strong randomness, so this part is conducive to improving the 
diversity of search agents and preventing IGWO from falling 
into a local minimum. 

In addition, from the basic principle of the meta-heuristic 
algorithm, it should searche as large a decision space as 
possible to increase the probability of obtaining a better 
solution in early iterations, and searche for a nearly optimal 
solution to improve the convergence accuracy in later 
iterations. To meet the requirement, the perturbation scope   

should decrease as iterations increase. In this paper,   is a 

quadratic function, as shown in (17). 

C. Pseudocode of IGWO algorithm 

The pseudocode of IGWO is shown in Fig. 3. 
 

IV. SIMULATION RESULTS AND ANALYSIS 

A. Test functions 

In the simulation experiments, 16 standard functions were 
used to verify the performances of IGWO. The 16 benchmark 
functions are shown in Table I, which contains the search 
range (Range), dimension (D.) and minimum values of the 
benchmark functions (Fmin). The benchmark functions were 
divided into two groups: the unimodal and multimodal 
functions. Because they have only one global optimum, the 
unimodal functions ( 1f - 8f ) were used to examine the 

convergence rate of the meta-heuristic algorithms. The 
multimodal functions ( 9f - 16f ) with multiple local optimums 

were more suitable for evaluating exploration [20]. The 
experimental platform was MATLAB R2016a, running on a 
64-bit Windows 10 computer with an Intel Core i7-3820Qm 
with 2.5GHz and 8GB RAM. Each simulation experiment 
was run 30 times. 

B. Simulation results for other meta-heuristic algorithms 

To verify the performance of the improved algorithm, we 
compared the proposed IGWO with GWO [10], PSO [1], 
ACO [2], GSA [3], and MFO [4]. We set the same common 
parameters for all the algorithms for a fair comparison. The 
dimensions of each function were set to 30. Each simulation 
was run 30 times, and the maximum number of iterations was 
500. The other operating parameters of each algorithm are 
shown in Table II. The results of simulation are listed in 
Tables III and IV, and the function convergence curves are 
shown in Fig. 4. Tables III and IV list the optimum (Opt.), 
average value (Ave.), and standard deviation (Std.) for each 
experiment result. 

From Table III, we can see that IGWO shows excellent 
optimization performances for the unimodal functions. It is 
the best optimizer for functions F1, F2, F3, F4, F6, F7, and F8. 
Although the convergence accuracy of IGWO is slightly 
lower than those of GSA, PSO, and ALO on F5, it still obtains 
relatively ideal results. Meanwhile, as can be seen from Table 
IV, IGWO is also competitive in optimizing multimodal 
functions. Except for F1 and F13, the average of best fitness 
obtained by IGWO is better than that obtained by the other 
five meta-heuristic algorithms. Meanwhile, IGWO also 
obtains the theoretical optimum for F9, F11, and F15. 
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TABLE I 

STANDARD BENCHMARK FUNCTIONS 

Function D. Range Fmin 

  2
1 1

D

ii
f X x





  30 [-100,100] 0 

   2

2 1 1

D i

ji j
f X x

 
 


  30 [-100,100] 0 

   3 max ,1i i if X x x D  


  30 [-100,100] 0 

     
2 22

4 11
100 1

D

i i ii
f X x x x

      


  30 [-30,30] 0 

   2

5 0.5if X x 


  30 [-100,100] 0 

   4
6 1

0,1
D

ii
f X ix rand


 


  30 [-1.28,1.28] 0 

  4
7 1

D

ii
f X ix






 
 30 [-1.28,1.28] 0 

  2
8 1

D

ii
f X ix






 
 30 [-10,10] 0 

   2
9 1

10cos 2 10
D

i ii
f X x x


    



 
 30 [-5.12,5.12] 0 

 

 

2
10 1

1

1
20exp 0.2

1
exp cos 2 20

D

ii

D

ii

f X x
n

x e
n







 
     

 
    
 







 
 30 [-32,32] 0 

  2
11 1 1

1
cos 1

4000

DD i
ii i

x
f X x

i 

    
 

 


 
 30 [-600，600] 0 

   12 1
sin 0.1

D

i i ii
f X x x x


 



 
 30 [-10,10] 0 

     
   

2
2

13 11

2 2
1

1 1 sin 3

sin 3 1 1 sin 3

D

i ii

D D

f X x x

x x x



 


     

    




 30 [-10,10] 0 

   2 2
14 1 1

1 cos 2 0.1
D D

i ii i
f X x x

 
   



  
 30 [-100,100] 0 

    2
15 1 1

0.1 0.1 cos 5
D D

i ii i
f X D x x

 
   



 
 30 [-1,1] 0 

 

2 2

1

16 2
2

1

sin 0.5
( ) 0.5

1 0.001

D

ii

D

ii

x
f X

x





   
  

 







 
 30 [-100,100] 0 

 

 
TABLE II 

 PARAMETER SETTINGS OF THE ALGORITHMS 

Name of parameter Parameter values 

Population size 30n   
Maximum number of iterations 

max 500T   

Learning factors 
1 2 2c c   

Inertia weight 0.9w   
Coefficient of gravity 

0 100G   

Scaling factor  0.5F   
Crossover probability 0.8CP   

Evolutionary factor =0.75  

Control parameter maximum 
max 0.9   

Control parameter minimum 
min 0.1   

 
 
The convergence curves of the GWO, PSO, GSA, ALO, 

MFO, and IGWO algorithms on 16 benchmark functions are 
shown in Fig. 4. IGWO shows different convergence 
characteristics in the exploration and exploitation phases. 

In the exploration phase, the convergence speed of the two 
GWO-based meta-heuristic algorithms (GWO and IGWO) 
are faster than that of PSO, GSA, ALO, MFO, particularly for 
functions F1, F5, F6, F7, F8, F9, F10, F11, F12, and F15. In 
the exploitation phase, the convergence accuracy of GWO 
and IGWO tends to increase as the iteration increases, except 
for functions F4, F5, F10, F13, F14, and F16.  

There are two possible reasons for this phenomenon. First, 
the social hierarchy strategy helps GWO and IWGO to save 
the best solutions over the course of iterations. Second, the 
adaptive value of parameter A  helps GWO and IWGO to 
convert between exploration and exploitation seamlessly. 

 
 

TABLE III 
SIMULATION RESULTS FOR FUNCTIONS F1-8 

Algorithms F1 F2 F3 F4 F5 F6 F7 F8 

 Ave. 1.3958e-04 72.7208 1.0473 95.7994 1.0411e-04 0.1786 2.3408e-05 0.0023 
PSO Std. 1.4448e-04 23.5901 0.1752 71.9624 1.1643e-04 0.0567 4.1792e-05 0.0049 
 Opt. 1.3547e-04 1.4643e+02 0.8525 82.9454 3.0056e-04 0.2807 1.6635e-06 8.3150e-05 
 Ave. 2.3483e-16 9.6132e+02 7.4497 56.5141 7.4402e-12 0.0827 5.4248e-32 5.3582e-04 
GSA Std. 1.1245e-16 4.0860e+02 2.1257 59.3262 3.7542e-6 0.0422 4.9356e-32 0.0022 
 Opt. 1.3100e-16 9.7564e+02 8.1473 26.7833 1.9861e-12 0.0591 1.5283e-31 2.0025e-15 
 Ave. 1.5921e-27 1.8178e-05 7.2412e-07 27.1900 0.0023 0.0020 3.8314e-50 2.1118e-28 
GWO Std. 3.6921e-27 2.7256e-05 8.5566e-07 0.7936 0.0013 0.0012 1.9903e-49 3.9759e-28 
 Opt. 1.0428e-27 9.4476e-07 3.1608e-07 27.1293 0.5076 0.0015 2.9970e-51 4.9947e-28 
 Ave. 0.0012 4.6588e+03 16.0751 4.4583e+02 1.6732e-04 0.2690 5.4057e-09 3.7387 
ALO Std. 9.4469e-04 1.6609e+03 4.4535 5.4008e+02 1.7523e-04 0.0772 1.3360e-08 3.4423 
 Opt. 0.0013 8.3690e+02 17.0836 1.4736e+03 5.4720e-04 0.2869 3.2215e-09 3.6727 
 Ave. 3.0039e+03 1.8149e+04 65.9201 1.6623e+04 6.8621e+02 2.5295 0.8951 5.7689e+02 
MFO   Std. 5.3482e+03 1.1468e+04 10.5364 3.3972e+04 2.5598e+03 5.1330 2.3731 6.4571e+02 
 Opt. 2.6982 2.5429e+04 77.2426 9.1517e+04 1.0102e+04 0.0683 1.7268e-04 7.0068e+02 
 Ave. 7.4656e-40 7.0045e-10 4.0672-11 26.6990 0.0015 0.0011 1.4858e-71 5.4909e-41 
IGWO Std. 1.5921-39 1.6393e-09 4.8888e-11 0.6412 0.0011 5.6735e-04 5.0364e-71 8.4216e-41 
 Opt. 2.0748e-42 3.0109e-11 6.9014e-12 26.1736 2.6678e-02 9.2180e-04 9.9275e-73 3.9570e-40 
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TABLE IV 

SIMULATION RESULTS FOR FUNCTIONS F9-16 

Algorithms F9 F10 F11 F12 F13 F14 F15 F16 

 Ave. 56.3088 0.3112 8.5503e-06 0.0584 0.0623 0.4399 0.4719 0.0758 
PSO Std. 14.3647 0.6181 0.0109 0.1379 0.1818 0.0674 0.2745 0.0092 
 Opt. 54.1370 0.0083 7.1805e-06 0.0306 3.9192e-16 0.4999 0.4443 0.0782 
 Ave. 26.7975 5.1341e-07 3.0706e-08 4.5135e-04 0.0442 4.1125 1.0838e-14 0.5376 
GSA Std. 7.6666 2.7485e-06 7.2028 0.0022 0.0893 2.7421 1.4998e-14 0.0412 
 Opt. 34.8235 6.7165e-09 1.1496e-08 8.1037e-09 0.1102 2.5027 2.2204e-15 0.0482 
 Ave. 1.9963 1.0107e-13 0.0031 2.4221e-16 0.3869 0.2032 1.4803e-17 0.0231 
GWO Std. 2.3889 1.3976e-14 0.0066 2.2494e-16 0.8069 0.0450 5.1035e-17 0.0640 
 Opt. 5.5914 1.0036e-13 0.0122 6.6019e-17 0.2384 0.3999 0 0.0782 
 Ave. 78.4055 5.0644 0.0577 17.8095 0.0579 2.6632 1.7434 0.0293 
ALO Std. 19.3345 3.4041 0.0339 6.4582 0.0589 0.8336 0.4701 0.0402 
 Opt. 82.5818 2.8145 0.06186 21.2666 0.0058 0.9999 1.4778 0.4942 
   Ave. 1.60374e+02 15.4657 9.9192 55.4070 11.7751 4.9099 0.7344 0.6271 
MFO Std. 46.8957 6.3272 27.5003 16.2548 5.1453 3.3010 0.6102 0.0233 
 Opt. 30.8437 19.9549 1.0419 53.5266 0.1876 3.9999 0.5917 0.4825 
 Ave. 0.1083 8.1120e-15 0.0047 2.1899e-24 1.0914 0.1199 0 0.0152 
IGWO Std. 0.5934 6.4863e-16 0.0018 2.2331e-24 0.7234 0.0305 0 0.0112 
 Opt. 0 7.9936e-15 0 7.1114e-25 0.0713 0.0999 0 0.0032 
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IAENG International Journal of Applied Mathematics, 52:2, IJAM_52_2_27

Volume 52, Issue 2: June 2022

 
______________________________________________________________________________________ 



 

 
 

0 100 200 300 400 500
Iteration

10-20

10-10

100

IGWO
GWO
PSO
GSA
ALO
MFO
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(f) F6 
 
 
 

0 100 200 300 400 500

Iteration

10-80

10-60

10-40

10-20

100

1020

A
ve

ra
ge

 B
es

t 
F

it
n

es
s 

IGWO
GWO
PSO
GSA
ALO
MFO

 
 

(g) F7 
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(h) F8 
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(j) F10 
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(k) F11 
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(m) F13 
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Fig. 4. Convergence curves of functions F1–F16 
 
 
 

IAENG International Journal of Applied Mathematics, 52:2, IJAM_52_2_27

Volume 52, Issue 2: June 2022

 
______________________________________________________________________________________ 



 

 
 

TABLE V 
SIMULATION RESULTS FOR FUNCTIONS F1-8 

Algorithms F1 F2 F3 F4 F5 F6 F7 F8 

 Ave. 5.9349e-34 1.6555e-09 1.2833e-07 27.9672 0.0012 0.0014 1.0113e-51 1.4983e-28 
mGWO Std. 3.1468e-34 4.8511e-07 1.6184e-08 0.8623 5.8991e-04 6.5336e-04 4.9154e-51 8.2044e-28 
 Opt. 7.3930e-35 6.8313e-10 4.1043e-8 27.1543 0.0026 0.0012 3.3569e-59 2.1743e-33 
 Ave. 2.0635e-14 0.2969 0.0214 27.4035 0.0053 0.0007 1.6197e-27 2.9768e-15 
DE-GWO Std. 8.4086e-14 1.0253 0.0507 0.7327 0.0053 0.0039 3.9169e-27 9.9082e-15 
 Opt. 1.8219e-16 0.3231 7.6619e-04 27.9672 0.0082 0.0024 7.1920e-28 3.1387e-16 
 Ave. 2.6691e-03 4.1108e-04 0.8370 27.3924 0.0287 1.3481 0.9738 2.7801e-12 
wd-GWO Std. 8.8200e-02 9.2331e-03 0.8477 20.4476 0.0287 0.8414 0.7808 1.0275e-02 
 Opt. 4.2022e-03 3.8150e-04 0.63905 29.5832 0.0196 0.9690 0.2478 2.3843e-02 
 Ave. 5.4087e-31 1.3703e-06 0.0011 27.3792 0.0540 0.0317 9.5423e-55 9.5962e-31 
HGWO Std. 2.6097e-30 6.8558e-06 0.0023 10.8831 0.2209 0.0311 5.1552e-54 3.7939e-31 
 Opt. 2.7624e-31 6.6975e-09 0.0091 27.0415 8.8006e-06 0.0012 2.8246e-63 9.5955e-34 
 Ave. 7.4656e-40 7.0045e-10 4.0672-11 26.6990 0.0015 0.0011 1.4858e-71 5.4909e-41 
IGWO Std. 1.5921-39 1.6393e-09 4.8888e-11 0.6412 0.0011 5.6735e-04 5.0364e-71 8.4216e-41 
 Opt. 2.0748e-42 3.0109e-11 6.9014e-12 26.1736 0.02.66 9.2180e-04 9.9275e-73 3.9570e-40 

 
 

TABLE VI 
SIMULATION RESULTS FOR FUNCTIONS F9-16 

Algorithms F9 F10 F11 F12 F13 F14 F15 F16 

 Ave. 0.4867 2.3033e-14 3.2169e-04 3.0950e-22 2.8137 0.1365 2.4532e-18 0.0190 
mGWO Std. 1.6200 4.3445e-15 0.5018 6.4190e-22 1.1220 0.0490 2.7854e-18 0.0131 
 Opt. 0 1.8652e-14 0 1.3422e-21 3.8325 0.4999 0 0.0097 
 Ave. 2.3334 2.7110 0.0423 1.6986e-08 10.0323 0.1799 1.9244e-16 0.0244 
DE-GWO Std. 7.0097 7.0300 0.0155 8.6363e-08 1.7855 0.0551 5.6755e-16 0.0140 
 Opt. 1.2869e-10 1.5423e-08 2.4869e-14 2.3739e-11 8.5120 0.2999 0 0.0372 
 Ave. 2.5765e+02 1.9966 0.2632 4.6027e-02 31.8524 7.5449 1.7733 0.1778 
wd-GWO Std. 39.4685 0.0039 0.9472 1.8697e-02 12.7235 1.4435 0.4910 0.0441 
 Opt. 3.0944e+02 19.9640 0.2183 3.2339e-02 20.7585 8.8924 2.0048 0.1785 
 Ave. 8.3213 2.5994e-14 0.5324 0.0663 0.3108 0.0356 1.6543e-20 0.0094 
HGWO Std. 13.3464 1.5186e-14 0.4325 0.3634 1.1978 0.0598 7.9876e-21 0.0479 
 Opt. 0 3.9968e-14 0 6.3625e-24 1.8480e-05 4.1436e-12 0 0.0980 
 Ave. 0.1083 8.1120e-15 0.0047 2.1899e-24 1.0914 0.1199 0 0.0152 
IGWO Std. 0.5934 6.4863e-16 0.0018 2.2331e-24 0.7234 0.0305 0 0.0112 
 Opt. 0 7.9936e-15 0 7.1114e-25 0.0713 0.0999 0 0.0032 

 

 
Furthermore, from Fig. 4, we can also see that the 

convergence characteristics (convergence speed and 
convergence accuracy) of IGWO are better than those of 
GWO, except for function F13. This is mainly because the 
random differential perturbation strategy with strong 
randomness increases the diversity of population and 
improves the local exploitation capability of IGWO. In 
addition, the non-linear reduction strategy of parameter a  
also helps IGWO to increase the global search capability. 

C. Simulation results for the other improved grey wolf 
optimizer 

To further show the effectiveness of the IGWO proposed in 
this paper, we run the simulation using mGWO [14], 
DE-GWO [18], wd-GWO [19], and HGWO [21] based on the 
above 16 benchmark functions. For fairness, we set the same 
common control parameters for all algorithms. The 
population size N  was set to 30, and the maximum number 
of iterations was set to 500. The dimensions of each function 
were set to 30. Each algorithm was run 30 times 
independently. Tables V and VI show the simulation results, 
where the Ave. and Std. represent the average and standard 
deviation of the best fitness obtained so far, respectively, and 
Opt. represents the optimum of the best fitness. 

It can be seen from Tables V and VI that IGWO is also 
competitive when compared with mGWO, DE-GWO, 
wd-GWO, and HGWO. The average best fitness obtained by 
IGWO is also better than the other four algorithms for 
functions F1, F2, F3, F4, F7, F8, F9, F10, F14, and F15. 
IGWO has similar results for functions F5, F6, and F16 on the 
average and the best fitness. 

 

V. CONCLUSION 

As a novel meta-heuristic algorithm, GWO has 
increasingly attracted the attention of researchers. However, it 
has two shortcomings: slow convergence and easily falling 
into local optimum. So, this study introduces an improved 
nonlinear reduction strategy for convergence factor a  to help 
GWO balance exploitation and exploration. Then, a 
differential perturbation strategy is introduced to enhance the 
exploitation of GWO. Finally, the proposed GWO is tested 
with 16 benchmark functions. The simulation results show 
that the proposed GWO is better in terms of convergence 
speed and accuracy than other meta-heuristic algorithms, such 
as GWO, PSO, GSA, ALO, MFO, mGWO, DE-GWO, 
wd-GWO, and HGWO. 
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