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Abstract—The unsteady problems of anisotropic quadrati-
cally graded materials are discussed in this paper. Numerical
solutions to a diffusion-convection equation of quadratically
varying coefficients are sought by using a combined Laplace
transform and boundary element method. First, the variable
coefficients equation is transformed to a constant coefficients
equation. The constant coefficients equation is then Laplace-
transformed so that the time variable vanishes. The Laplace-
transformed equation can consequently be written in a pure
boundary integral equation which involves a time-free fun-
damental solution. The boundary integral equation is there-
fore employed to find numerical solutions using a standard
boundary element method. Finally the results obtained are
inversely transformed numerically using the Stehfest formula to
get solutions in the time variable. Some examples are considered
to verify the analysis and also to show the accuracy, efficiency
and consistency of the numerical procedure. The combined
Laplace transform and boundary element method is easy to
implement for solving unsteady diffusion-convection problems
of anisotropic quadratically graded media.

Index Terms—diffusion convection equation, functionally
graded materials, Laplace transform, boundary element
method, unsteady, anisotropic

I. INTRODUCTION

The unsteady anisotropic diffusion convection equation of
incompressible flow with variable coefficient of the form
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will be considered. In equation (1) summation convention
applies for the repeated indices so that equation (1) can be
written explicitly
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Equation (1) is used to model unsteady diffusion convec-
tion process in anisotropic and inhomogeneous (functionally
graded) materials. Among the physical phenomena of appli-
cations include pollutant transport and heat transfer where
the coefficients dij (x) , vi (x) , α (x) represents respectively
the diffusivity or conductivity, the velocity of flow existing in
the system and the change rate of the unknown concentration
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c (x, t). As the flow is assumed to be incompressible, the
velocity vi (x) must satisfy ∂vi (x) /∂xi = 0.

Nowadays functionally graded materials (FGMs) have be-
come an important issue, and numerous studies on this issue
for a variety of applications have been reported. Authors
commonly define an FGM as an inhomogeneous material
having a specific property such as thermal conductivity,
hardness, toughness, ductility, corrosion resistance, etc. that
changes spatially in a continuous fashion. Therefore equation
(1) is relevant for FGMs.

In the last decade investigations on the diffusion-
convection equation had been done for finding its numerical
solutions. The investigations can be classified according to
the anisotropy and inhomogeneity of the media under con-
sideration. For example, Wu et al. [1], Hernandez-Martinez
et al. [2], Wang et al. [3] and Fendoğlu et al. [4] had been
working on problems of isotropic diffusion and homogeneous
media, Yoshida and Nagaoka [5], Meenal and Eldho [6],
Azis [7] (for Helmholtz type governing equation) studied
problems of anisotropic diffusion but homogeneous media.
Rap et al. [8], Ravnik and Škerget [9], [10], Li et al.
[11] and Pettres and Lacerda [12] considered the case of
isotropic diffusion and variable coefficients (inhomogeneous
media). Zoppou and Knight [13] had been working on finding
the analytical solution to the unsteady orthotropic diffusion-
convection equation with spatially variable coefficients. The
equation considered by Zoppou and Knight [13] is almost
similar to equation (1) but with limitation d11 ̸= d22, d12 = 0
and the components of the velocity vector vi (x) is a linear
with one independent variable function and the diffusivity
matrix dij (x) is a quadratic with one independent variable
function. Recently author (Azis) and co-workers had been
working on steady state problems of several other classes
of anisotropic inhomogeneous media for several types of
governing equations, for examples [14], [15] for the modified
Helmholtz equation, [16], [17] for the diffusion convection
reaction equation, [18]–[20] for the Laplace type equation,
[21], [22] for the Helmholtz equation, [23], [24] for the
diffusion convection equation and [25] for elasticity prob-
lems. Azis et al. had also been working on unsteady state
problems of anisotropic inhomogeneous media for some
types of governing equations (see [26]–[30]).

This paper is intended to extend the recently published
works [23], [24] from the steady state to unsteady state
equation (1).

II. THE INITIAL BOUNDARY VALUE PROBLEM

Given the coefficients dij (x) , vi (x) , α (x) solutions
c (x, t) and its derivatives to (1) are sought which are valid
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for time interval t ≥ 0 and in a region Ω in R2 with boundary
∂Ω which consists of a finite number of piecewise smooth
curves. On ∂Ω1 the dependent variable c (x, t) is specified,
and

P (x, t) = dij (x)
∂c (x, t)

∂xi
nj (2)

is specified on ∂Ω2 where ∂Ω = ∂Ω1∪∂Ω2 and n =(n1, n2)
denotes the outward pointing normal to ∂Ω. The initial
condition is taken to be

c (x, 0) = 0 (3)

The analysis is specially relevant to an anisotropic medium
but it equally applies to isotropic media. For isotropy, the
coefficients in (1) take the form d11 = d22 and d12 = 0 and
use of these equations in the following analysis immediately
yields the corresponding results for an isotropic medium. The
analysis also applies for homogeneous media that is the case
when the coefficients dij , vi and α are constant.

III. THE BOUNDARY INTEGRAL EQUATION

We restrict the coefficients dij , vi, α to be of the form

dij (x) = d̂ij g(x) (4)
vi (x) = v̂i g(x) (5)
α (x) = α̂ g(x) (6)

where g(x) is a differentiable function and d̂ij , v̂i, α̂ are
constants. Further we assume that the coefficients dij (x),
vi (x) and α (x) are quadratically graded by taking g(x) as
a quadratic function

g(x) = (β0 + βixi)
2 (7)

where β0 and βi are constants. Therefore (7) satisfies

d̂ij
∂2g1/2

∂xi∂xj
= 0 (8)

Substitution of (4)-(6) into (1) gives
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Assume
c (x, t) = g−1/2 (x)ψ (x, t) (10)

therefore substitution of (4) and (10) into (2) gives

P (x, t) = −Pg (x)ψ (x, t) + g1/2 (x)Pψ (x, t) (11)
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And equation (9) can be written as
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Rearranging and neglecting the zero terms yield
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For incompressible flow

∂vi (x)

∂xi
= 2g1/2(x)v̂i

∂g1/2(x)

∂xi
= 0

that is

v̂i
∂g1/2(x)

∂xi
= 0

Thus (12) becomes
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Equation (8) then implies

d̂ij
∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xi
= α̂

∂ψ

∂t
(13)

Taking a Laplace transform of (10), (11), (13) and applying
the initial condition (3) we obtain

ψ∗ (x, s) = g1/2 (x) c∗ (x, s) (14)

Pψ∗ (x, s) = [P ∗ (x, s) + Pg (x)ψ
∗ (x, s)] g−1/2 (x) (15)

d̂ij
∂2ψ∗

∂xi∂xj
− v̂i

∂ψ∗

∂xi
− sα̂ψ∗ = 0 (16)

where s is the variable of the Laplace-transformed domain.
By using Gauss divergence theorem, equation (16) can be

transformed into a boundary integral equation

η (ξ) ψ∗ (ξ, s) =

∫
∂Ω

{Pψ∗ (x, s) Φ (x, ξ)

− [Pv (x) Φ (x, ξ) + Γ (x, ξ)]ψ∗ (x, s)} dS (x) (17)

where
Pv (x) = v̂i ni (x)

For 2-D problems the fundamental solutions Φ(x, ξ) and
Γ(x, ξ) for are given as

Φ (x, ξ) =
ρi

2πD
exp

(
− v̇. Ṙ

2D

)
K0

(
µ̇Ṙ
)

Γ (x, ξ) = d̂ij
∂Φ (x, ξ)

∂xj
ni
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where

µ̇ =

√
(v̇/2D)

2
+ (sα̂/D)

D =
[
d̂11 + 2d̂12ρr + d̂22

(
ρ2r + ρ2i

)]
/2

Ṙ = ẋ− ξ̇

ẋ = (x1 + ρrx2, ρix2)

ξ̇ = (ξ1 + ρrξ2, ρiξ2)

v̇ = (v̂1 + ρrv̂2, ρiv̂2)

Ṙ =

√
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2
+ (ρix2 − ρiξ2)

2

v̇ =

√
(v̂1 + ρrv̂2)

2
+ (ρiv̂2)

2

where ρr and ρi are respectively the real and the positive
imaginary parts of the complex root ρ of the quadratic
equation

d̂11 + 2d̂12ρ+ d̂22ρ
2 = 0

and K0 is the modified Bessel function. Use of (14) and (15)
in (17) yields

ηg1/2c∗ =

∫
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{(
g−1/2Φ

)
P ∗

+
[(
Pg − Pvg

1/2
)
Φ− g1/2Γ

]
c∗
}
dS (18)

Equation (18) provides a boundary integral equation for
determining the numerical solutions of c∗ and its derivatives
∂c∗/∂x1 and ∂c∗/∂x2 at all points of Ω.

After having the solutions c∗ (x, s) and its derivatives
∂c∗/∂x1 and ∂c∗/∂x2 from (18), the Stehfest formula is
then utilized to find the values of c (x, t) and its derivatives
∂c/∂x1 and ∂c/∂x2. The Stehfest formula is

c (x, t) ≃ ln 2

t

N∑
m=1

Vmc
∗ (x, sm)

∂c (x, t)

∂x1
≃ ln 2

t
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∂x1
(19)
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≃ ln 2

t

N∑
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∂x2

where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m ×

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!

TABLE I
VALUES OF Vm OF THE STEHFEST FORMULA

Vm N = 6 N = 8 N = 10 N = 12

V1 1 −1/3 1/12 −1/60
V2 −49 145/3 −385/12 961/60
V3 366 −906 1279 −1247
V4 −858 16394/3 −46871/3 82663/3
V5 810 −43130/3 505465/6 −1579685/6
V6 −270 18730 −236957.5 1324138.7
V7 −35840/3 1127735/3 −58375583/15
V8 8960/3 −1020215/3 21159859/3
V9 164062.5 −8005336.5
V10 −32812.5 5552830.5
V11 −2155507.2
V12 359251.2

IV. NUMERICAL RESULTS

In order to verify the analysis derived in the previous sec-
tions, we will consider several problems either of analytical
solutions or without simple analytical solutions. From the test
problems we will also show the convergence and the time
efficiency. The convergence will be evaluated by examining
the errors and the time efficiency will be investigated by
studying the CPU time elapsed for obtaining the numerical
solutions of corresponding error or accuracy.

We assume each problem belongs to a system which
is valid in given spatial and time domains and governed
by equation (1) and satisfying the initial condition (3) and
some boundary conditions as mentioned in Section II. The
characteristics of the system which are represented by the
coefficients dij (x) , vi (x) , α (x) in equation (1) are assumed
to be of the form (4), (5) and (6) in which g(x) is a quadratic
function of the form (7).

Standard BEM with constant elements is employed to
obtain numerical results. For a simplicity, a unit square will
be taken as the geometrical domain for all problems. A
number of 320 elements of equal length, namely 80 elements
on each side of the unit square, are used. A FORTRAN
code is developed to compute the numerical solutions. The
code contains some commands to calculate the elapsed CPU
time for the computation of the numerical solutions. A
simple script is also embedded to calculate the values of
the coefficients Vm,m = 1, 2, . . . , N for any even number
N . Table I shows the values of Vm for several values of N .

A. Problems with analytical solutions

Other aspects that will be verified are the accuracy and
consistency (between the scattering and flow) of the numer-
ical solutions. The analytical solutions are assumed to take
a separable variables form

c (x, t) = g−1/2 (x)h (x) f (t)

where

h (x) = exp [− (1 + 0.15x1 + 0.35x2)]

The function g1/2 (x) is

g1/2 (x) = (1− 0.15x1 + 0.25x2)
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A(0, 0) B(1, 0)

C(1, 1)D(0, 1)

c (x, 0) = 0

P given

P given

P given

c given

Fig. 1. The boundary conditions for the problems in Section IV-A

We will consider several forms of time variation functions
f (t) of time domain t = [0 : 10]. For the problems we take
a mutual coefficient d̂ij

d̂ij =

[
1 0.45

0.45 0.75

]
velocity v̂i and rate of change α̂

v̂i = (0.5, 0.3) , α̂ = 0.341625/s

and a set of boundary conditions (see Figure 1)

P is given on side AB, BC, CD
c is given on side AD

For each problem, numerical solutions for c and the
derivatives ∂c/∂x1 and ∂c/∂x2 at 19× 19 points inside the
space domain which are

(x1, x2) = {.05, .1, .15, . . . , .9, .95} ×
{.05, .1, .15, . . . , .9, .95}

and 11 time-steps which are

t = 0.1, 1.0, 2.0, . . . , 8.0, 9.0, 9.9

are sought.
For each time-step t the elapsed CPU time τt (in seconds),

the relative error Et and the CPU time efficiency number εt
for obtaining the numerical solutions at 19×19 interior points
are calculated using the formula

Et =

[∑19×19
i=1 (µn,i − µa,i)

2∑19×19
i=1 µ2

a,i

] 1
2

εt = τtEt

where µn and µa are respectively the numerical and analyt-
ical solutions c or the derivatives ∂c/∂x1 and ∂c/∂x2. The
aggregate values of relative error E and efficiency number
ε, namely

E =

[∑
t

∑19×19
i=1 (µn,i − µa,i)

2∑
t

∑19×19
i=1 µ2

a,i

] 1
2

ε = τE

are also computed for each N where τ is the total elapsed
CPU time.

Fig. 2. The average error Et and the CPU time efficiency εt of the
numerical solution c for Problem 1.

Therefore the CPU time efficiency εt or ε is calculated
using the time τt or τ elapsed for obtaining the numerical
solutions of error Et or E. Accordingly, the smaller time
τt or τ with smaller error Et or E, the more efficient
the procedure (smaller εt or ε). Based on the values of
the parameters τ, E, ε it will be decided the optimized
N that gives solutions of the best CPU-time efficiency of
corresponding accuracy.

Problem 1:: We suppose that the time variation function
is

f (t) = 1− exp (−0.85t)

The convergence and the efficiency may be seen from
Figures 2 – 5, Tables II, III. In general the numerical
solutions c and ∂c/∂x2 converge to the analytical solutions,
and their time efficiency also become better (smaller) as N
increases from N = 6 to N = 12 (see Figures 2, 4, 5 or Table
II). As shown in Figures 3 and 5 or Table II, the numerical
solution ∂c/∂x1 on the other hand, converges slowly when
N = 6 to N = 10 but it gets divergent when N = 12.
The decrease of its error when N changes form N = 6 to
N = 10 is not significant, whereas the elapsed CPU time
gets bigger significantly. This gives inefficiency as N moves
from N = 6 to N = 12. The optimized value of N for
obtaining the numerical solutions c, ∂c/∂x1, ∂c/∂x2 of best
error E and efficiency number ε can be seen in Table III. In
addition, Table IV shows solutions c, ∂c/∂x1 and ∂c/∂x2
at (x1, x2) = (0.5, 0.5).
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Fig. 3. The average error Et and the CPU time efficiency εt of the
numerical solution ∂c/∂x1 for Problem 1.

Fig. 4. The average error Et and the CPU time efficiency εt of the
numerical solution ∂c/∂x2 for Problem 1.

TABLE II
THE TOTAL ELAPSED CPU TIME τ , THE GLOBAL AVERAGE ERROR E ,

THE EFFICIENCY NUMBER ε = τE FOR PROBLEM 1

N 6 8 10 12
τ 577.500 791.516 997.641 1197.172

c
E 0.00399585 0.00122654 0.00052155 0.00029665
ε 0.22014620 0.09024660 0.04785226 0.03118099

∂c
∂x1

E 0.01102688 0.00974164 0.00962781 0.01134571
ε 0.60751216 0.71677178 0.88335146 1.19254064

∂c
∂x2

E 0.00418966 0.00125583 0.00043486 0.00031991
ε 0.23082399 0.09240191 0.03989865 0.03362539

TABLE III
THE OPTIMIZED VALUE OF N FOR OBTAINING THE NUMERICAL

SOLUTIONS c, ∂c/∂x1, ∂c/∂x2 OF BEST ERROR E AND EFFICIENCY
NUMBER ε FOR PROBLEM 1

c ∂c
∂x1

∂c
∂x2

E N = 12 N = 10 N = 12
ε N = 12 N = 6 N = 12

TABLE IV
THE SOLUTIONS c, ∂c/∂x1 AND ∂c/∂x2 AT (x1, x2) = (0.5, 0.5) FOR

PROBLEM 1.

Solution c
N = 6 N = 8 N = 12 Analytical

t = 0.1 0.022183 0.022239 0.022240 0.022235
t = 1 0.157699 0.156461 0.156275 0.156237
t = 2 0.222929 0.222948 0.223058 0.223014
t = 3 0.249984 0.251094 0.251588 0.251556
t = 4 0.261986 0.263315 0.263802 0.263755
t = 5 0.267656 0.268779 0.269050 0.268970
t = 6 0.270467 0.271270 0.271304 0.271198
t = 7 0.271906 0.272406 0.272262 0.272151
t = 8 0.272653 0.272910 0.272658 0.272558
t = 9 0.273040 0.273115 0.272822 0.272732
t = 9.9 0.273219 0.273176 0.272884 0.272801

Solution ∂c/∂x1

N = 6 N = 8 N = 12 Analytical
t = 0.1 -0.000158 -0.000159 -0.000159 -0.000159
t = 1 -0.001125 -0.001116 -0.001114 -0.001116
t = 2 -0.001590 -0.001590 -0.001592 -0.001593
t = 3 -0.001783 -0.001791 -0.001795 -0.001797
t = 4 -0.001869 -0.001878 -0.001881 -0.001884
t = 5 -0.001909 -0.001917 -0.001918 -0.001921
t = 6 -0.001929 -0.001935 -0.001933 -0.001937
t = 7 -0.001940 -0.001943 -0.001945 -0.001944
t = 8 -0.001945 -0.001947 -0.001949 -0.001947
t = 9 -0.001948 -0.001948 -0.001946 -0.001948
t = 9.9 -0.001949 -0.001949 -0.001937 -0.001949

Solution ∂c/∂x2

N = 6 N = 8 N = 12 Analytical
t = 0.1 -0.013041 -0.013074 -0.013075 -0.013076
t = 1 -0.092708 -0.091980 -0.091873 -0.091882
t = 2 -0.131056 -0.131067 -0.131131 -0.131154
t = 3 -0.146961 -0.147613 -0.147902 -0.147939
t = 4 -0.154017 -0.154798 -0.155083 -0.155113
t = 5 -0.157350 -0.158010 -0.158173 -0.158180
t = 6 -0.159003 -0.159474 -0.159496 -0.159490
t = 7 -0.159848 -0.160143 -0.160056 -0.160051
t = 8 -0.160288 -0.160439 -0.160292 -0.160290
t = 9 -0.160515 -0.160559 -0.160384 -0.160392
t = 9.9 -0.160620 -0.160595 -0.160424 -0.160433
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Fig. 5. The global average error E and efficiency number ε = τE for
Problem 1.

TABLE V
THE TOTAL ELAPSED CPU TIME τ , THE GLOBAL AVERAGE ERROR E ,

THE EFFICIENCY NUMBER ε = τE FOR PROBLEM 2

N 6 8 10 12
τ 607.500 807.172 1005.766 1197.688

c
E 0.00192582 0.00037054 0.00025343 0.00022137
ε 0.10664241 0.02733299 0.02323679 0.02293305

∂c
∂x1

E 0.01055651 0.00960582 0.00964427 0.01032717
ε 0.58456684 0.70857930 0.88425937 1.06982981

∂c
∂x2

E 0.00235693 0.00023174 0.00028444 0.00030845
ε 0.13051517 0.01709471 0.02607957 0.03195328

Problem 2:: Next, we suppose that the time variation
function is

f (t) = 0.1t

The convergence and the efficiency may be seen from
Figures 6 – 9 and Table V. In general the numerical solutions
c and ∂c/∂x2 converge steadily to the analytical solutions,
and their time efficiency also slightly become better (smaller)
as N increases from N = 6 to N = 12 (see Figures 6, 8,
9 or Table V). As shown in Figures 7 and 9 (or Table V),
the numerical solution ∂c/∂x1 on the other hand, converges
slowly when N = 6 to N = 10 but it gets divergent when
N = 12. The decrease of its error when N changes form
N = 6 to N = 10 is not significant, whereas the elapsed
CPU time gets bigger significantly. This gives inefficiency as
N moves from N = 6 to N = 12. The optimized value of
N for obtaining the numerical solutions c, ∂c/∂x1, ∂c/∂x2
of best error E and efficiency number ε can be seen in Table
VI. Table VII shows solutions c, ∂c/∂x1 and ∂c/∂x2 at
(x1, x2) = (0.5, 0.5).

Fig. 6. The average error Et and the CPU time efficiency εt of the
numerical solution c for Problem 2.

Fig. 7. The average error Et and the CPU time efficiency εt of the
numerical solution ∂c/∂x1 for Problem 2.
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Fig. 8. The average error Et and the CPU time efficiency εt of the
numerical solution ∂c/∂x2 for Problem 2.

Fig. 9. The global average error E and efficiency number ε = τE for
Problem 2.

TABLE VI
THE OPTIMIZED VALUE OF N FOR OBTAINING THE NUMERICAL

SOLUTIONS c, ∂c/∂x1, ∂c/∂x2 OF BEST ERROR E AND EFFICIENCY
NUMBER ε FOR PROBLEM 2

c ∂c
∂x1

∂c
∂x2

E N = 12 N = 8 N = 8
ε N = 12 N = 6 N = 8

TABLE VII
THE SOLUTIONS c, ∂c/∂x1 AND ∂c/∂x2 AT (x1, x2) = (0.5, 0.5) FOR

PROBLEM 2.

Solution c
N = 6 N = 8 N = 12 Analytical

t = 0.1 0.002723 0.002730 0.002729 0.002729
t = 1 0.027234 0.027297 0.027293 0.027286
t = 2 0.054468 0.054593 0.054585 0.054572
t = 3 0.081702 0.081890 0.081877 0.081859
t = 4 0.108937 0.109187 0.109172 0.109145
t = 5 0.136171 0.136483 0.136462 0.136431
t = 6 0.163405 0.163780 0.163753 0.163717
t = 7 0.190639 0.191077 0.191048 0.191003
t = 8 0.217873 0.218373 0.218339 0.218289
t = 9 0.245107 0.245670 0.245635 0.245576
t = 9.9 0.269618 0.270237 0.270193 0.270133

Solution ∂c/∂x1

N = 6 N = 8 N = 12 Analytical
t = 0.1 -0.000019 -0.000019 -0.000019 -0.000019
t = 1 -0.000194 -0.000195 -0.000194 -0.000195
t = 2 -0.000389 -0.000389 -0.000389 -0.000390
t = 3 -0.000583 -0.000584 -0.000584 -0.000585
t = 4 -0.000777 -0.000779 -0.000777 -0.000780
t = 5 -0.000971 -0.000974 -0.000973 -0.000975
t = 6 -0.001166 -0.001168 -0.001169 -0.001169
t = 7 -0.001360 -0.001363 -0.001363 -0.001364
t = 8 -0.001554 -0.001558 -0.001559 -0.001559
t = 9 -0.001749 -0.001753 -0.001750 -0.001754
t = 9.9 -0.001923 -0.001928 -0.001929 -0.001930

Solution ∂c/∂x2

N = 6 N = 8 N = 12 Analytical
t = 0.1 -0.001601 -0.001605 -0.001604 -0.001605
t = 1 -0.016010 -0.016047 -0.016045 -0.016047
t = 2 -0.032021 -0.032094 -0.032090 -0.032094
t = 3 -0.048031 -0.048142 -0.048134 -0.048141
t = 4 -0.064042 -0.064189 -0.064180 -0.064187
t = 5 -0.080052 -0.080236 -0.080225 -0.080234
t = 6 -0.096063 -0.096283 -0.096268 -0.096281
t = 7 -0.112073 -0.112330 -0.112311 -0.112328
t = 8 -0.128084 -0.128378 -0.128357 -0.128375
t = 9 -0.144094 -0.144425 -0.144404 -0.144422
t = 9.9 -0.158503 -0.158867 -0.158842 -0.158864

Problem 3:: Now, we suppose that the time variation
function is

f (t) = t (10− t) /25

The convergence and the efficiency may be seen from
Figures 10 – 13 and Table VIII. In general the numerical
solutions c, ∂c/∂x1 and ∂c/∂x2 converge quickly to the
analytical solutions, and their time efficiency also become
better (smaller) as N changes from N = 6 to N = 8. From
N = 8 to N = 12, the accuracy and the efficiency steadily
get better. See Figures 10, 11, 12, 13 (or Table VIII). The
optimized value of N for obtaining the numerical solutions
c, ∂c/∂x1, ∂c/∂x2 of best error E and efficiency number ε
can be seen in Table IX. Table X shows solutions c, ∂c/∂x1
and ∂c/∂x2 at (x1, x2) = (0.5, 0.5).
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Fig. 10. The average error Et and the CPU time efficiency εt of the
numerical solution c for Problem 3.

Fig. 11. The average error Et and the CPU time efficiency εt of the
numerical solution ∂c/∂x1 for Problem 3.

Fig. 12. The average error Et and the CPU time efficiency εt of the
numerical solution ∂c/∂x2 for Problem 3.

Fig. 13. The global average error E and efficiency number ε = τE for
Problem 3.

IAENG International Journal of Applied Mathematics, 52:3, IJAM_52_3_01

Volume 52, Issue 3: September 2022

 
______________________________________________________________________________________ 



TABLE VIII
THE TOTAL ELAPSED CPU TIME τ , THE GLOBAL AVERAGE ERROR E ,

THE EFFICIENCY NUMBER ε = τE FOR PROBLEM 3

N 6 8 10 12
τ 607.359 809.094 995.578 1204.875

c
E 0.16720984 0.01075569 0.00043951 0.00031011
ε 9.26185734 0.79003892 0.03650706 0.03249397

∂c
∂x1

E 0.16881112 0.01575362 0.00960039 0.01076889
ε 9.35055361 1.15715279 0.79743235 1.12837806

∂c
∂x2

E 0.16737521 0.01098110 0.00030840 0.00030683
ε 9.27101754 0.80659613 0.02561687 0.03214955

TABLE IX
THE OPTIMIZED VALUE OF N FOR OBTAINING THE NUMERICAL

SOLUTIONS c, ∂c/∂x1, ∂c/∂x2 OF BEST ERROR E AND EFFICIENCY
NUMBER ε FOR PROBLEM 3

c ∂c
∂x1

∂c
∂x2

E N = 12 N = 10 N = 12
ε N = 12 N = 10 N = 10

TABLE X
THE SOLUTIONS c, ∂c/∂x1 AND ∂c/∂x2 AT (x1, x2) = (0.5, 0.5) FOR

PROBLEM 3.

Solution c
N = 6 N = 8 N = 12 Analytical

t = 0.1 0.010778 0.010809 0.010808 0.010805
t = 1 0.097380 0.098224 0.098253 0.098230
t = 2 0.171646 0.174524 0.174673 0.174631
t = 3 0.222799 0.228898 0.229262 0.229204
t = 4 0.250838 0.261348 0.262019 0.261947
t = 5 0.255763 0.271874 0.272942 0.272862
t = 6 0.237575 0.260474 0.262019 0.261947
t = 7 0.196273 0.227150 0.229283 0.229204
t = 8 0.131858 0.171901 0.174703 0.174631
t = 9 0.044329 0.094727 0.098296 0.098230
t = 9.9 -0.054209 0.006525 0.010858 0.010805

Solution ∂c/∂x1

N = 6 N = 8 N = 12 Analytical
t = 0.1 -0.000077 -0.000077 -0.000077 -0.000077
t = 1 -0.000695 -0.000701 -0.000701 -0.000702
t = 2 -0.001224 -0.001245 -0.001247 -0.001247
t = 3 -0.001589 -0.001633 -0.001635 -0.001637
t = 4 -0.001789 -0.001864 -0.001867 -0.001871
t = 5 -0.001825 -0.001939 -0.001943 -0.001949
t = 6 -0.001695 -0.001858 -0.001875 -0.001871
t = 7 -0.001400 -0.001620 -0.001634 -0.001637
t = 8 -0.000941 -0.001226 -0.001248 -0.001247
t = 9 -0.000316 -0.000676 -0.000698 -0.000702
t = 9.9 0.000387 -0.000047 -0.000075 -0.000077

Solution ∂c/∂x2

N = 6 N = 8 N = 12 Analytical
t = 0.1 -0.006336 -0.006354 -0.006354 -0.006355
t = 1 -0.057248 -0.057744 -0.057761 -0.057769
t = 2 -0.100907 -0.102599 -0.102687 -0.102700
t = 3 -0.130979 -0.134565 -0.134779 -0.134794
t = 4 -0.147463 -0.153642 -0.154036 -0.154050
t = 5 -0.150358 -0.159829 -0.160457 -0.160469
t = 6 -0.139666 -0.153128 -0.154036 -0.154050
t = 7 -0.115385 -0.133537 -0.134790 -0.134794
t = 8 -0.077517 -0.101057 -0.102705 -0.102700
t = 9 -0.026060 -0.055688 -0.057787 -0.057769
t = 9.9 0.031868 -0.003836 -0.006386 -0.006355

Fig. 14. The average error Et and the CPU time efficiency εt of the
numerical solution c for Problem 4.

TABLE XI
THE TOTAL ELAPSED CPU TIME τ , THE GLOBAL AVERAGE ERROR E ,

THE EFFICIENCY NUMBER ε = τE FOR PROBLEM 4

N 6 8 10 12
τ 608.656 803.063 989.922 1170.953

c
E 0.00076897 0.00017493 0.00079946 0.01190908
ε 0.04241371 0.01223397 0.06411907 1.10605568

∂c
∂x1

E 0.00991336 0.00969678 0.00975808 0.01621108
ε 0.54678372 0.67816821 0.78262875 1.50560434

∂c
∂x2

E 0.00109352 0.00042362 0.00093485 0.01194531
ε 0.06031440 0.02962697 0.07497827 1.10942109

Problem 4:: Now, we suppose that the time variation
function is

f (t) = t/ (t+ 1)

In general the numerical solutions c and ∂c/∂x2 converge
to the analytical solutions, and their time efficiency also
become better (smaller) as N increases from N = 6 to
N = 8 (see Figures 14, 16, 17 or Table XI). On the
other hand, as shown in Figures 15 and 17 or Table XI the
numerical solution ∂c/∂x1 converges slowly when N = 6
to N = 8 but it gets divergent when N = 10, 12. The
decrease of its error when N changes form N = 6 to
N = 8 is not significant, whereas the elapsed CPU time
gets bigger significantly. This gives inefficiency as N moves
from N = 6 to N = 12. The optimized value of N for
obtaining the numerical solutions c, ∂c/∂x1, ∂c/∂x2 of best
error E and efficiency number ε can be seen in Table XII. In
addition, Figure 18 shows solutions c, ∂c/∂x1 and ∂c/∂x2
at (x1, x2) = (0.5, 0.5).
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Fig. 15. The average error Et and the CPU time efficiency εt of the
numerical solution ∂c/∂x1 for Problem 4.

Fig. 16. The average error Et and the CPU time efficiency εt of the
numerical solution ∂c/∂x2 for Problem 4.

Fig. 17. The global average error E and efficiency number ε = τE for
Problem 4.

TABLE XII
THE OPTIMIZED VALUE OF N FOR OBTAINING THE NUMERICAL

SOLUTIONS c, ∂c/∂x1, ∂c/∂x2 OF BEST ERROR E AND EFFICIENCY
NUMBER ε FOR PROBLEM 4

c ∂c
∂x1

∂c
∂x2

E N = 8 N = 8 N = 8
ε N = 8 N = 6 N = 8

B. Problems without analytical solutions

Problem 5:: Furthermore, we will show the impact of
the anisotropy and the inhomogeneity of the material under
consideration on the solution c. Based on the results for the
test problems in Section IV-A where the errors are small
enough when N = 10 is used, then for this problem we will
use N = 10.

Again, we choose the velocity v̂i and rate of change α̂

v̂i = (0.5, 0.3) , α̂ = 0.341625/s

For this problem the medium is supposed to be inhomo-
geneous or homogeneous with function of gradation g(x)
respectively

g1/2(x) = (1− 0.15x1 + 0.25x2)

g1/2(x) = 1

and anisotropic or isotropic with constant coefficients

d̂ij =

[
1 0.45

0.45 0.75

]
Anisotropic

d̂ij =

[
1 0
0 1

]
Isotropic

The boundary conditions are that (see Figure 19)
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Fig. 18. The solutions c, c1 = ∂c/∂x1 and c2 = ∂c/∂x2 at (x1, x2) =
(0.5, 0.5) for Problem 4.

P = 0 on side AB
c = 0 on side BC
P = 0 on side CD
P = P (t) on side AD

where P (t) takes several forms, namely

Form 1: P (t) = 1
Form 2: P (t) = 1− exp (−0.85t)
Form 3: P (t) = 0.1t
Form 4: P (t) = t (10− t) /25
Form 5: P (t) = t/ (t+ 1)

There is no simple analytical solution for the problem. In fact
the set of boundary conditions is geometrically symmetric
about the axis x2 = 0.5.

Figure 20 shows that the solution c varies with time t
following the variation of function P (t) as the boundary
condition on the side AD. This verifies the consistency of the
solution. Figure 20 also shows that for forms 1, 2 and 5 of

-

6

x1

x2

A(0, 0) B(1, 0)

C(1, 1)D(0, 1)

c (x, 0) = 0

P = 0

c = 0

P = 0

P = P (t)

Fig. 19. The boundary conditions for the problems in Section IV-B
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Fig. 20. The solutions c at (x1, x2) = (0.5, 0.25) for all forms of P (t)
of Problem 5.

P (t) the solution c will approach a same steady value as the
time t goes to infinity. This is expected as the corresponding
P (t) will tend to 1 as the time t goes to infinity. Figure
21 indicates that as expected the values c coincide at points
(x1, x2) = (0.5, 0.25) , (0.5, 0.75) (symmetric about the line
x2 = 0.5) when the material is isotropic homogeneous.
Otherwise the values c differ which means that the anisotropy
and inhomogeneity of the material contribute impact on the
values of c.

V. CONCLUSION

Several problems for an unsteady anisotropic diffusion-
convection equation of incompressible flow with a class of
quadratically variable coefficients have been solved using a
combined BEM and Laplace transform. From the results of
the considered problems in Section IV, we may conclude that
the analysis of reduction to constant coefficients equation (in
Section III) for deriving the boundary-only integral equation
(18) is valid, and the BEM and Stehfest formula is appro-
priate for solving such problems as defined in Section II.
Moreover, the results of the test problem in Section IV-A
show the accuracy of the method, whereas the results of
the problem in Section IV-B exhibit the consistency of the
numerical solutions. The effect of the inhomogeneity and
anisotropy of materials as well as the obtained steady-state
solutions are as expected.
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Fig. 21. The solutions c at (x1, x2) = (0.5, 0.25) , (0.5, 0.75) when
the material is anisotropic inhomogeneous (Anin), isotropic homogeneous
(Isho), isotropic inhomogeneous (Isin) for every form of P (t) of Problem
5.
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