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Abstract—Machine learning (ML) on cloud and edge systems
is widely used to analyze big data and address complex
problems. On the other hand, many privacy issues have arisen
due to inadequate data security controls. Therefore, studies
on secure machine learning on cloud and edge systems have
attracted much attention. One of such studies is Federated
Learning (FL), in which data is distributed on multiple servers
to achieve machine learning through distributed processing.
We have proposed a method to realize learning by distributed
processing on multiple servers by dividing the learning data and
parameters into multiple pieces in advance and distributing
these pieces to each server. In previous papers, we have
proposed a learning method using local search based on the
Steepest Descent Method (SDM) such as Back Propagation (BP)
and Neural Gas (NG). In this paper, we propose a learning
method that combines a global and local search for solutions
for secure distributed processing computation. In particular,
we propose a secret distributed processing method for Hybrid
Particle Swarm Optimization (HPSO) which is one of the global
and local search methods. Its effectiveness is demonstrated by
numerical simulations.

Index Terms—Cloud and Edge Systems, Machine Learning,
Particle Swarm Optimization, Secure Distributed Computation,
Divided Data and Parameters, Back Propagation, Neural Gas.

I. INTRODUCTION

W ITH advances in artificial intelligence (AI), many
studies have been conducted using machine learning

(ML). In particular, ML on cloud and edge systems has
been widely used to analyze big data and deal with complex
problems. The widespread use of cloud and edge systems has
also enabled the use of big data analysis and other applica-
tions for analyzing huge amounts of information accumulated
by users [1], [2]. On the other hand, users of cloud and
edge systems cannot escape the fear that their information
may be misused or leaked. How can secure computation
be constructed to avoid such risks? Data encryption is one
typical approach [3], [6]. While it is an effective means, when
processing in the cloud and edge systems, the encrypted data
must be decrypted to obtain the plaintext. As an alternative,
secure distributed processing computation using subsets or
divided data has attracted much attention and has been the
subject of many studies [4], [5], [8]. One such method is
secure distributed computation with divided learning data
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(SDCD). BP and NG methods have been proposed as ML
methods that preserve data confidentiality using this method
[7], [8]. On the other hand, although these methods are
fast, the accuracy of the solution is not promising because
they only use local search. Hence, it is desirable to develop
a distributed processing computation method that preserves
the confidentiality of methods that combine global and local
searches for solutions. Hybrid Particle Swarm Optimization
(HPSO) is known as an effective solution search method that
combines PSO, a global search method, and BP or NG, a
local search method.

In this paper, we propose a secure distributed learning
method for HPSO with divided data. Its effectiveness is
demonstrated by numerical simulations of function approxi-
mation and pattern classification.

II. PRELIMINARIES

A. Secure computation and configuration for cloud and edge
systems

We present the concept of distributed processing. In Fig. 1,
we show an example of the system. The system is composed
of L terminals and Q+ 1 servers. Let x and f be a (scalar)
data and a function, respectively. Each data x is divided into
multiple pieces and each piece is sent to a server. In the case
of Fig. 1, each data is divided in the addition form.

First, each data x from each terminal is divided into Q
pieces randomly as x =

∑Q
q=1 x

q . The q-th piece xq is
sent to Server q. The function fq(x

q) is calculated in Server
q and the result is sent to Server 0, where fq(·) means
a function in Server q. In Server 0, fq(x

q) is aggregated
and f(x) = ⊙Q

q=1fq(x
q) is calculated, where ⊙ means an

integrated calculation. If the calculation result cannot be
obtained in one process, multiple processes are repeated.

The problem is how to determine function fq in each
server.

B. Data division for the proposed method

In Fig. 2, we show the representation of divided data,
which is used in the proposed method [8]. In Fig. 2, let
a and b be two positive integers and the number of servers
is 3. We first divide integers a and b into three pieces of real
numbers randomly, respectively. For any positive integer i,
let Zi = {1, 2, · · ·, i} and Z∗

i = {0, 1, · · ·, i}.
Let a =

∑Q
q=1 a

(q) and b =
∑Q

q=1 b
(q) as the addition

form and a = ΠQ
q=1A

(q) and b = ΠQ
q=1B

(q) as the multipli-
cation form, where a(q), b(q), A(q) and B(q) for q∈ZQ are
the random numbers.
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Fig. 1. An example of the proposed system : The data given from each
terminal is divided into Q pieces and each piece is sent to a server. At Server
q, fq(xq) is calculated and sent to Server 0. On Server 0, the function f(x)
is calculated by using fq(xq) for q∈{1, · · ·, Q}.
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Fig. 2. The representation of secure divided data.

By using them, we can calculate four arithmetic operations
of addition, subtraction, multiplication, and division without
decrypting a and b as follows [7].
1)a+ b = (

∑Q
q=1 a

(q)) + (
∑Q

q=1 b
(q)) =

∑Q
q=1(a

(q) + b(q))

2)a− b = (
∑Q

q=1 a
(q))− (

∑Q
q=1 b

(q)) =
∑Q

q=1(a
(q) − b(q))

3)ab = (ΠQ
q=1A

(q))(ΠQ
q=1B

(q)) = ΠQ
q=1(A

(q)B(q))

4)a/b = (ΠQ
q=1A

(q))/(ΠQ
q=1B

(q)) = ΠQ
q=1(A

(q)/B(q))
In this case, any server cannot know a and b themselves.

[Example]
Let Q = 3, a = 6 and b = 8. We divide a and b as

6 = 4 + (−1) + 3 = (−1)×2×(−3) and 8 = 3 + 2 + 3 =
2×(−4)×(−1). In this case, we have a(1) = 4, a(2) = −1,
a(3) = 3, A(1) = −1, A(2) = 2, A(3) = −3, b(1) = 3,
b(2) = 2, b(3) = 3, B(1) = 2, B(2) = −4 and B(3) = −1,
respectively. We calculate a+ b as follows (See Table I).

a+ b = (a(1) + b(1)) + (a(2) + b(2)) + (a(3) + b(3))

= (4 + 3) + ((−1) + 2) + (3 + 3) = 14

Further, we calculate a×b as follows (See Table II).

a×b = (A(1)×B(1))(A(2)×B(2))(A(3)×B(3))

TABLE I
AN EXAMPLE OF DATA DIVISION FOR THE PROPOSED METHOD

(ADDITION FORM)

data a data b addition
Server 1 a(1) =4 b(1) =3 7
Server 2 a(2) =-1 b(2) =2 1
Server 3 a(3) =3 b(3) =3 6
addition 6 8 14

TABLE II
AN EXAMPLE OF DATA DIVISION FOR THE PROPOSED METHOD

(MULTIPLICATION FORM)

data a data b multiplication
Server 1 A(1) =-1 B(1) =2 -2
Server 2 A(2) =2 B(2) =-4 -8
Server 3 A(3) =-3 B(3) =-1 3

multiplication 6 8 48

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

Fig. 3. An example of three layered Neural Network

= ((−1)×2)(2×(−4))((−3)×(−1)) = 482

C. Neural Network and BP method

In this section, we explain the conventional three-
layered Neural Network (NN) as shown in Fig.3 and BP
method [12]. We determine the function h : Jn

in→JR
out

for each input x∈Jn
in as follows. We have h(x) =

(h1(x), · · ·, hR(x)), where Jin = [0, 1] or [−1, 1], Jout =
{0, 1}. In this case, we use the set of learning data, X =
{(xl,d(xl))|xl∈Jn

in,d(x
l)∈JR

out, l∈ZL}, to determine the
weights of NN, where d(xl) =

(
d1(x

l), . . ., dR(x
l)
)

is the
desired output for the input data xl.

We denote W = {wij |i∈ZP , j∈Z∗
n} and V =

{vsi|s∈ZR, i∈Z∗
P } as the sets of weights. In this case, we

can also calculate an output of NN as follows.

yi(x) =
1

1 + exp
(
−
(∑n

j=0 wijxj

))
)

(1)

hs(x) =
1

1 + exp
(
−
(∑P

i=0 vsiyi(x)
)) (2)

where x0 = 1 and y0 = 1.
To determine the weights, we use the Mean Square Error

(MSE) for the learning data as the evaluation function for the
BP method. In this case, we define the evaluation function
as follow.

E(X,W, V ) =
1

2L

L∑
l=1

R∑
s=1

(
ds(x

l)− hs(x
l)
)2

(3)

where X , W , and V are the sets of learning data and weights,
respectively.

The purpose of the BP method is to minimize the eval-
uation function of Eq.(3). By using the BP method, we
determine each weight of W and V as follows [12]. In the
following, X , T , θ, and α mean the set of leaning data, the
maximum number of learning time, threshold, and learning
rate, respectively.

IAENG International Journal of Applied Mathematics, 52:3, IJAM_52_3_03

Volume 52, Issue 3: September 2022

 
______________________________________________________________________________________ 



[BP method] BP(X , W , V , T ) [12]
Input : The set X = {(xl,d(xl))|l∈ZL} of learning data
Output : The sets W = {wij |i∈ZP , j∈Z∗

n} and V =
{vsi|s∈ZR, i∈Z∗

P } of weights
[Step 1]

Initialize W , V , and t←0.
[Step 2]

Select a learning data (xl,d(xl))∈X randomly. By using
Eqs.(1) and (2), we calculate yi(x

l) and hs(x
l).

[Step 3]
By using the following equations, we update wij∈W and

vsi∈V .

wij ← wij + α
S∑

s=1

(ds(x
l)− hs(x

l))(1− hs(x
l))vsi

×yi(xl)(1− yi(x
l))xl

j (4)

vsi ← vsi + α(ds(x
l)− hs(x

l))hs(x
l)

×(1− hs(x
l))yi(x

l) (5)

[Step 4]
By using Eq.(3), we calculate the evaluation value

E(X,W, V ).
[Step 5]

If E < θ or t > T , the algorithm terminates else go to
Step 2 with t←t+ 1.

2

D. NG and k-means methods

In this section, we explain the NG method, which is an
unsupervised learning method based on the SDM [13].

Vector quantization techniques encode a data space, e.g., a
subspace X⊆Rd, utilizing only a finite set W = {wi|i∈Zr}
of reference vectors, where |X| = L, d and r are positive
integers.

We denote ei(x) ∈ Z∗
r−1 as the neighborhood rank of

wi in W with respect to closeness to x. That is, wi is the
(ei(x) + 1)-th nearest vector to x in W . Each parameter
wi ∈W is updated by the following ∆wi.

∆wi = ε· exp(−ei(x)/λ)·(x−wi), (6)

where ε∈[0, 1] and λ is a positive real number. Eq.(6) means
that the closer an element of W is to the input x, the closer
it is to x.

For NG, the approximation by W of X is achieved by
solving the minimization problem of the evaluation function
E as follows.

E =
1

Lr

∑
x(l)∈X

r∑
i=1

exp(−ei(x)/λ)∑r
i′=1 exp(−ei′(x)/λ)

||x(l) −wi||2 (7)

If λ→0, the method becomes the k-means method, which
means that only the elements of W closest to the input x
are brought close to x.

The NG method is shown as follows, where T denotes the
maximum number of learning times.
[NG method] NG(X , W , T ) [13]
Input : The set X = {xl∈Rn|l∈ZL} of learning data
Output : The set W = {wi|i∈Zr} of reference vectors
[Step 1]

Initialize W . Set t←0.
[Step 2]

Select a learning data xl(l∈ZL) randomly. We calculate
the distance between xl and wi (i∈Zr), and calculate the
neighborhood rank ei(x

l) for wi∈W .
[Step 3]

Update wi∈W using Eq.(6).
[Step 4]

If t > T , the algorithm terminates else go to Step 2 with
t←t+ 1. 2

The NG method includes the k-means method as a special
case.

E. PSO and HPSO

Particle Swarm Optimization (PSO) is a method to solve
the optimization problem using a global search method of
solutions. First, we explain PSO [9]. We find the value of
the determinant x that maximizes the nonlinear objective
function g(x) using PSO. To solve this problem, we prepare
m individuals P = {Pk|k∈Zm} and perform a multipoint
search that each solution is found in each individual. Let m
be the number of individuals. We assign a decision variable
xk (solution candidate) to each individual Pk. In the solution
search processes, we update the solution candidates by using
the self-best solution pk found by each individual Pk in the
past search and the past best solution a found in the whole.
By approaching the solution xk in each individual closer to
two excellent solutions a and pk, we can expect to get an
excellent solution with a large objective function value.

The following is the algorithm of PSO for learning of NN.
The purpose of the algorithm is to determine the sets W and
V of weights so that the MSE E for the learning data X
is minimized. In the following, the maximum number T of
learning times, threshold θ, and constant values c0, c1, and c2
are set in advance, respectively. For k∈Zm, a set {W k, V k}
corresponds to xk in the above explanation of PSO. The set,
{W k∗, V k∗} corresponds to self-best solution pk. The set
{WK , V K} corresponds to the best solution a (See Table
III). We determine the function E(X,W k, V k) as the MSE
for learning data X when the weights W k and V k were used.
[Algorithm PSO] [9], [10]
Input : The set X of learning data
Output : The sets W and V of weights
[Step 1]

Let {W k, V k} be the initial sets of W and
V . We set t←0, W k∗←W k, V k∗←V k and
K←arg mink∗{E(X,W k∗

, V k∗
)} of the initial values.

[Step 2]
We select the numbers r1 and r2 randomly.
[Step 3]
For k∈Zm, we update wk

ij∈W k and vki ∈V k as follows.

△wk
ij ← c0△wk

ij + c1r1(w
k∗

ij − wk
ij) + c2r2(w

K
ij − wk

ij)

wk
ij ← wk

ij +△wk
ij (8)

△vksi ← c0△vksi + c1r1(v
k∗

si − vksi) + c2r2(v
K
si − vksi)

vksi ← vksi +△vksi (9)

[Step 4]
For k∈Zm, if E(X,W k, V k) < E(X,W k∗

, V k∗
), then we

set W k∗←W k and V k∗←V k.
[Step 5]
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We calculate K←arg mink∗{E(X,W k∗
, V k∗

)},
W ∗←WK∗

and V ∗←V K∗
.

[Step 6]
If E(X,W ∗, V ∗) < θ or t > T , then the algorithm

terminates. Otherwise, go to Step 2 with t←t+ 1.
2

In Step 3, we update each weight of {W k, V k} using the
current weights wk

ij and vksi, the self-best weights wk∗
ij and

vk∗si and the past best weights wK
ij and vKsi in the whole. In

Step 4, we update the self-best weight {W k∗
, V k∗} in the

past search for the solution {W k, V k}. In Step 5, we update
the past best (optimal) solution {WK , V K} in the whole.

On the other hand, it is known that PSO needs much time
compared to the Steepest Descent method (SDM) like the
BP and NG methods. To improve it, Hybrid Particle Swarm
Optimization (HPSO) is proposed [10]. As HPSO uses both
PSO and SDM, the optimal solution is calculated efficiently
and needs a short time compared to the usual PSO.

First, we obtain HPSO for BP by replacing Step 3 of
Algorithm PSO with the following Step 3’.
[Step 3’]
For k∈Zm,

We update W k, V k, W k∗ and V k∗ by using Eqs.(8) and
(9).

We perform BP ∗(X,W k, V k, TBP ) and
BP ∗(X,W k∗, V k∗, TBP ).

In Step 3’, we mean BP ∗(X,W k, V k, TBP ) and
BP ∗(X,W k∗, V k∗, TBP ) as the method BP (X,W, V, T )
with W = W k, V = V k and T = TBP , and W = W k∗,
V = V k∗ and T = TBP , respectively.

Further, for the case of NG, we can use the following Step
3” instead of Step 3.
[Step 3”]
For k∈Zm,

We update W k and W k∗ by using Eqs.(8).
We perform NG∗(X,W k, TNG) and

NG∗(X,W k∗, TNG).

In Step 3”, we mean NG∗(X,W k, TNG) and
NG∗(X,W k∗, TNG) as the method NG(X,W, T ) with
W = W k and T = TNG, and W = W k∗ and T = TNG,
respectively.

III. SECURELY DISTRIBUTED SYSTEM WITH DIVIDED
DATA FOR HPSO

A. Data structure for the proposed method

In this section, we divide any learning data (xl,d(xl))∈X
with Q pieces as Eqs.(10) and (11) and they are stored in
each server.

xl
j = ΠQ

q=1x
l(q)
j (10)

ds(x
l) =

Q∑
q=1

d(q)s (xl) (11)

Likewise, we divide each weight of the sets W and V with
Q pieces as Eqs.(12) and (13) and they are stored in each

server.

wij = ΠQ
q=1w

(q)
ij (12)

vsi = ΠQ
q=1v

(q)
si (13)

We denote W (q) = {w(q)
ij |i∈ZP , j∈Z∗

n} and V (q) =

{v(q)si |s∈ZS , i∈Z∗
P }. Let ΠQ

q=1x
(q)
0 = 1.

First, we introduce the data structure to BP method. We
calculate an output of the NN for the divided data and
weights instead of Eqs.(1) and (2).

yi(x) =
1

1 + exp
(
−
(∑n

j=0 Π
Q
q=1w

(q)
ij x

(q)
j

))
)

(14)

Further, we divide the output yi of the second layer to
yi = ΠQ

q=1y
(q)
i (i∈Z∗

P ) and each y
(q)
i is sent to Server q. Let

ΠQ
q=1y

(q)
0 = 1. We calculate an output hs(x) of NN in Server

0, where s∈ZR.

hs(x) =
1

1 + exp
(
−
(∑P

i=0 Π
Q
q=1v

(q)
si y

(q)
i

)) (15)

We divide the output hs(x) to hs(x) =
∑Q

q=1 h
(q)
s (x) and

each h
(q)
s (x) is sent to Server q.

In this case, we calculate Mean Square Error (MSE) for
the set X of learning data as follows.

E(X) =
1

2L

L∑
l=1

R∑
s=1

(
Q∑

q=1

(d(q)s (xl)− h(q)
s (xl))

)2

(16)

We update each of weights w
(q)
ij (i∈ZP , j∈Z∗

P ) and
v
(q)
si (s∈ZS , i∈Z∗

P ) based on BP instead of Eqs.(4) and (5)
as follows [7], [8].

w
(q)
ij = w

(q)
ij + α

R∑
s=1

Q∑
q=1

(d(q)s (xl)− h(q)
s (xl))(1− h(q)

s (xl))

× ΠQ
q=1v

(q)
si h(q)

s (xl)(1− hs(x
l))

×(ΠQ
q=1w

(q)
ij x

l(q)
j )/w

(q)
ij (17)

v
(q)
si = v

(q)
si + α

Q∑
q=1

(d(q)s (xl)− h(q)
s (xl))hs(x

l)

×(1− hs(x
l))(ΠQ

q=1y
(q)
i v

(q)
si )/v

(q)
si ) (18)

Tables III and IV show the relation among weights of
HPSO and multiple servers. In Tables III and IV, we show
how to divide weights for each NN solution, self-best so-
lution, and overall best solution of PSO and store them
in the server. For example, the Table IV shows that any
element wk of W k for a solution candidate xk is divided
as wk =

∑Q
q=1 w

k(q) and each element wk(q) is stored in
Server q.

In Table V, we show the conventional algorithm of BP [8].
In Table V, we first store each component of divided data
and weights in a server. In Step 3, we calculate the product
of the l-th data and the weight for the first layer and send
them to Server 0. In Steps 4 , 5, and 6, the product of the
input and the weight in the second layer is calculated and
the result is divided into Q pieces and sent to each server. In
Steps 7 and 8, we calculate the difference between the target
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TABLE III
RELATION AMONG WEIGHTS FOR PSO

Individual Solution Self-best Best in
candidate xk pk whole a

P1 {W 1, V 1} {W 1∗, V 1∗}
...

Pk {Wk, V k} {Wk∗, V k∗} {WK , V K}
...

Pm {Wm, V m} {Wm∗, V m∗}

and the output of NN in each server and they are integrated
at Server 0 to calculate the updated amount of the weight.
Further, the results are sent to each server. In Step 9, we
update the weight of each server using the update amount.
In Steps 11 and 12, the algorithm termination condition is
checked.

Next, we introduce the data structure to NG method. To
realize NG, we need 1) to determine the neighborhood rank
of each element wi of the set W with respect to the input
data xl, and 2) to update all elements wi of the set W . We
realize the two steps of updating wi using the distributed
processing method. The initial condition is that each element
of the divided data of input xl and reference vector wi

is stored in each server, where xl = (xl
1, · · ·, xl

j , · · ·, xl
n),

xl
j =

∑Q
q=1 x

l(q)
j , and wi = (wi1, · · ·, wij , · · ·, win), wij =∑Q

q=1 w
(q)
ij .

[The outline of the NG for SDCD] [8]
Input : The set X = {xl∈Rn|l∈ZL} of learning data
Output : The set W = {wi∈Rn|i∈Zr} of reference vectors
[Step 1]

Calculate the neighborhood rank ei(x) for the input data
xl and the reference vector wi ∈ W . To achieve this, we
calculate the distance D between input data and reference
vector in each server and integrate them in Server 0 as
follows.

D
(l)
ijq =

(
x
l(q)
j − w

(q)
ij

)
(19)

(j = 1, · · ·, n, q = 1, · · ·, Q).

In Server 0, we calculate the distance between xl and wi

as follows.

||x(l) −wi||2 =
n∑

j=1

(
Q∑

q=1

D
(l)
ijq

)2

(20)

[Step 2]
We update each element wi of W for xl using the

following formula. In this case, because we use both wl

and wi of an additive form in the data division, and have
the relation of ∂wij

∂w
(q)
ij

= 1, and ∂

∂w
(q)
ij

∑Q
q=1 w

(q)
ij = 1.

Therefore, we have

∆w
(q)
ij =

∂E

∂w
(q)
ij

=
∂E

∂wij

∂wij

∂w
(q)
ij

= ε· exp(−ei(xl)/λ)·(xl
j − wij) (21)

[Step 3]
Repeat Steps 1) and 2) if learning completion conditions

is not satisfied. 2

Table VI shows the detailed algorithm of the NG for
SDCD [8]. The maximum number Tmax of learning times
is given in advance. The data and reference vectors were
divided and stored in each server. In Step 1, the set l of a
natural number is selected randomly. In Step 2, we calculate
D

l(q)
ij in each server and send it to Server 0. In Step 3, we

calculate the update amount ∆w
(q)
ij of reference vector w(q)

ij

by integrating D
l(q)
ij in Server 0 and send it to each server.

In Step 4, the reference vectors are updated. In Step 5, if the
learning time t arrives at T , the algorithm terminates.

B. The proposed HPSO methods for BP and NG

First, we explain the proposed HPSO for BP. In the case
of PSO, we update each piece of wk(q)

ij and v
k(q)
si of divided

weights by using Eqs.(22) and (23) instead of Eqs.(8) and
(9).

△w
k(q)
ij = c0△w

k(q)
ij + c1r1(w

k∗(q)
ij − w

k(q)
ij )

+c2r2(w
K(q)
ij − w

k(q)
ij )

w
k(q)
ij = w

k(q)
ij +△w

k(q)
ij (j∈Z∗

n, i∈ZP ) (22)

△v
k(q)
si = c0△v

k(q)
si + c1r1(v

k∗(q)
si − v

k(q)
si )

+c2r2(v
K(q)
si − v

k(q)
si )

v
k(q)
si = v

k(q)
si +△v

k(q)
si (s∈ZR, i∈Z∗

P ) (23)

We denote W k(q) = {wk(q)
ij |i∈ZP , j∈Z∗

n} and V k(q) =

{vk(q)si |s∈ZS , i∈Z∗
P } for the sets {W k, V k}.

The general flow of HPSO for BP is shown as follows.
[The general flow of the proposed HPSO for BP]
Input : The set X = {xl(q)

j , d
(q)
s (xl)|l∈ZL, j∈Zn, q∈ZQ}

Output : The set of best in whole {WK(q), V K(q)|q∈ZQ}
T : Maximum number of learning epochs for PSO
TBP : Maximum number of learning epochs for BP
1 : Initialize the sets {W k(q), V k(q)|k∈Zm, q∈ZQ}.
2 : t←0
3 : while t < T do

3.1 : Calculate the self-best {W k∗(q), V k∗(q)} for
{W k(q), V k(q)} and global-best {WK∗(q), V K∗(q)}.

3.2 : Update {W k(q), V k(q)} by using Eqs.(22) and (23)
3.3 : For k∈Zm,

3.3.1 : tBP←0,
3.3.2 : while tBP < TBP do

3.3.2.1 : Update {W k(q), V k(q)}
by using Eqs.(17) and (18)

3.3.2.2 : tBP←tBP + 1
End

End
3.3.3 : t←t+ 1

End
2

We show the proposed HPSO for BP in Table VII. In Table
VII, E(X, {W k(q), V k(q)}) means the calculation result of
Eq.(16) when {W k(q), V k(q)} is used for {W (q), V (q)}.

Server q has the set of q-th pieces of W k and V k in
advance. In Steps 1 and 2, we set the self-best solution
candidates and the overall best solution. In Steps 3 and 4,
we update w

k(q)
ij and v

k(q)
si based on the update formula of

PSO. In Step 5, we update each weight for m NNs based on
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TABLE IV
RELATION AMONG WEIGHTS FOR DIVIDED SOLUTION CANDIDATE WITH EACH SERVER : THE TABLE SHOWS WHICH SOLUTIONS OF PSO CONSIST OF

WHICH WEIGHT PIECES OF SERVERS. FOR EXAMPLE, A SOLUTION CALCULATE xk IS CONSISTED OF THE SET {Wk(q), V k(q)} FOR q∈ZQ .

Server The set of partitions of Solution Self-best Best in
divided solution candidate candidate xk pk whole a

{Wk(1), V k(1)|k∈Zm} ⃝
����

����

Server 1 {Wk∗(1), V k∗(1)|k∈Zm}
���� ⃝

����

{WK(1), V K(1)}
����

���� ⃝

...

{Wk(q), V k(q)|k∈Zm} ⃝
����

����

Server q {Wk∗(q), V k∗(q)|k∈Zm}
���� ⃝

����

{WK(q), V K(q)}
����

���� ⃝

...

{Wk(Q), V k(Q)|k∈Zm} ⃝
����

����

Server Q {Wk∗(Q), V k∗(Q)|k∈Zm}
���� ⃝

����

{WK(Q), V K(Q)}
����

���� ⃝

the BP method in Table V. In Steps 6 and 7, we update self-
best {W k∗(q), V k∗(q)}. In Step 8, we update the overall best
{WK(q), V K(q)}. In Step 9, the final condition is checked.

Next, we explain the proposed HPSO for NG. In Table
VIII, we show the proposed HPSO for NG. In Table VIII,
we define E(X, {W k(q)}) as the calculation result of Eq.(7)
when {W k(q)} is used for {W (q)}.

Server q has the set of q-th pieces of W k in advance. In
Steps 1 and 2, we set the self-best solution candidates and
the overall best solution. In Steps 3 and 4, we update w

k(q)
ij

based on the update formula of PSO. In Step 5, we update
each weight for m sets of reference vectors based on the NG
method in Table VI. In Steps 6 and 7, we update self-best
{W k∗(q)}. In Step 8, we update the overall best {WK(q)}.
In Step 9, the final condition is checked.

IV. NUMERICAL SIMULATIONS FOR THE PROPOSED
METHODS

In this section, we perform numerical simulations for
function approximation and pattern classification. The BP
(or NG), HPSO, and BP (or NG) for SDCD mean the con-
ventional BP (or NG), HPSO methods, and the conventional
BP (or NG) for SDCD, respectively. The Proposed means
the proposed HPSO for BP or NG.

A. Function Approximation

This simulation uses four systems specified by the follow-
ing functions determined for x1, x2∈[0, 1] and y∈[0, 1].

y = sin(πx3
1)x2 (24)

y =
sin(2πx3

1) cos(πx2) + 1

2
(25)

y =
1.9(1.35 + exp(x1) sin(13(x1 − 0.6)2)

7
× exp(−x2) sin(7x2)) (26)

y =
sin(10(x1 − 0.5)2 + 10(x2 − 0.5)2) + 1

2
(27)

The numbers of learning and test data are 100, respec-
tively. Each learning data is selected randomly. The simu-
lation conditions are P = 10 for NN, T = 100000 for BP,
T = 10, Tl = 10000 and m = 10 for HPSO and the proposed
method, Q = 3 for the proposed method, respectively. The
threshold is θ = 0.0 for all methods.

In Table IX, we show the comparison of accuracy for
each method. In each box of Table IX, we denote Learn and
Test as MSE for learning and test data, respectively. Each
result of the simulations is the average value from twenty
trials. In Table IX, the proposed method shows high accuracy
compared to BP methods and almost the same accuracy
compared to the conventional HPSO.

B. Pattern classification for the proposed BP

We perform numerical simulation for pattern classification
using benchmark problems of Iris, Wine, Sonar, and BCW
in the UCI database[14]. We show the details in Table X.
In Table X, #data, #input, and #class mean the numbers
of data, input, and class for each data, respectively. In the
simulation, we use 5-fold cross-validation as the evaluation
method. The simulation conditions are P = 10 for NN, T =
10000 for BP and BP for SDCD as shown in Table V, T =
10, Tl = 10000 and m = 10 for HPSO and the proposed
method, Q = 3 for the proposed method, respectively. The
threshold is θ = 0.03 for Iris and Wine and θ = 0.04 for
Sonar and BCW.

In Table XI, we show the result of the comparison between
the conventional and the proposed methods. In each box of
Table XI, Learn and Test mean the rate (%) of misclassified
data for learning and test data, respectively. Each value is
average from twenty trials. In Table XI, the proposed method
shows almost the same accuracy compared to others.

C. Pattern clustering for the proposed NG

In this section, we perform pattern clustering using NG
(and k-means as special case) method which is one of
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TABLE V
BP METHOD FOR SDCD : BP (X,W (q), V (q), T )

Server 0 Server q (q∈ZQ)

Initialize Store {xl(q)
j |l∈ZL, j∈Zn} and {d(q)s (xl)|l∈ZL, s∈ZR}.

Initialize {w(q)
ij |i∈ZP , j∈Z∗

n} and {v(q)si |s∈ZR, i∈Z∗
P }.

Step 1 t←0
Step 2 Select a number l∈ZL randomly and

send it to each server.
Step 3 Calculate w

(q)
ij x

l(q)
j (i∈ZP , j∈Z∗

n)and send it to Server 0.
Step 4 Calculate yi(x

l) by using Eq.(14).
Divide yi = ΠQ

q=1y
(q)
i . Send y

(q)
i (q∈ZQ)

to Server q.
Step 5 Calculate v

(q)
si y

(q)
i (s∈ZR, i∈Z∗

P ) and send it to Server 0.
Step 6 Calculate hs(xl)(s∈ZS ) by using Eq.(15).

Divide hs(xl) =
∑Q

q=1
h
(q)
s (xl).

Send h
(q)
s (xl)(q∈ZQ) to Server q.

Step 7 Calculate d
(q)
s (xl)− h

(q)
s (xl)(s∈ZR) and send it to

Server 0.
Step 8 Calculate p1(ij) =

∑R

s=1

∑Q

q=1
(d

(q)
s (xl)

−h(q)
s (xl))(1− h

(q)
s (xl))vsiyi(x

l)(1− yi(x
l))

×(ΠQ
q=1w

(q)
ij x

l(q)
j ) and p2(si) =

∑Q

q=1
(d

(q)
s (xl)

−h(q)
s (xl))hs(xl)(1− hs(xl))(ΠQ

q=1y
(q)
i v

(q)
si )

and send them to each server.
Step 9 Update {w(q)

ij |i∈ZP , j∈Z∗
j } and {v(q)si |s∈ZR, i∈Z∗

P } :

w
(q)
ij ←w

(q)
ij + αp1(ij)/w

(q)
ij

v
(q)
si ←v

(q)
si + αp2(i)/v

(q)
si

Step 10 Calculate E(X,W, V ) by using Eq.(16).
Step 11 If E < θ or t < T , algorithm terminates.

Otherwise go to Step 2 with t←t+ 1.

TABLE VI
ALGORITHM OF THE PROPOSED NG METHOD.

Server 0 Server q

Initialize Determine the values εint, εfin. Set t = 1. Store {x(l)
jq |l∈ZL, j ∈ Zn}. Initialize {w(q)

ij |i∈Zr, j ∈ Zn}.
Step 1 Select a natural number l∈ZL randomly and

send to each server.
Step 2 Calculate D

l(q)
ij = (x

l(q)
j − w

(q)
ij ) (i∈Zr, j∈Zn)

and send to Server 0.
Step 3 Based on Eq.(20), calculate exp(−ei(xl)/λ) and

∆wij = εint

( εfin

εint

) t
T exp(−ei(xl)/λ)

∑Q

q=1
D

l(q)
ij

and send to each server.
Step 4 Update {w(q)

ij |i∈Zr, j∈Zn} as follows.

w
(q)
ij ←w

(q)
ij +∆wij

Step 5 If t = Tmax, the algorithm terminates. Otherwise, Set
t←t+ 1 and go to Step 2.

unsupervised learning. The NG (k-means), HPSO, and NG
(k-means) for SDCD mean the conventional NG (k-means),
HPSO, and the conventional NG (k-means) for SDCD,
respectively. The Proposed means the proposed HPSO for
NG (k-means). We perform clustering the four benchmark
datasets, Iris, Wine, Sonar and BCW [14].

The conditions of clustering simulation for NG and k-
means are as follows. The number r of reference vectors is
3 in the case of Iris and Wine and 2 in the case of Sonar and
BCW. In the proposed method, let Q = 3. The maximum
numbers of learning are shown in Table XII.

After learning, we compare the conventional and proposed
NG (or k-means) methods in terms of the global purity (GP)
of Eq.(28) and the evaluation function of Eq.(7), where ni,j

is the number of data belonging to the i-th cluster and the

j-th actual class.

GP =
1

L

∑
i∈Zr

max
j∈Zr

(ni,j)× 100(%) (28)

The GP and the evaluation function values (accuracy) for
the NG method are shown in Table XIII. Likewise, the GP
and the evaluation function values (accuracy) for the k-means
method are shown in Table XIV. The results in the Tables
XIII and XIV are the average of 20 trials each.

In Tables XIII and XIV, the proposed methods show
almost the same accuracy compared to the conventional
HPSO.

V. CONCLUSION

In this paper, we proposed a secure divided learning
method of HPSO for BP and NG which are supervised and
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TABLE VII
PROPOSED HPSO FOR SDCD (BP)

Server 0 Serverq (1≤q≤Q)

Initialize Initialize {Wk(q), V k(q)|k∈Zm}
Step 1 Wk∗(q)←Wk(q), V k∗(q)←V k(q)(k∈Zm)
Step 2 Calculate K←arg mink∗{E(X, {Wk∗(q), V k∗(q))}} and

send it to each server. t←0.
Step 3 Select two numbers r1 and r2 randomly and send them to each server.
Step 4 By using Eqs.(22) and (23), each of {wk(q)

ij |i∈ZP , j∈Z∗
j }

and {vk(q)i |i∈Z∗
P } is updated(k∈Zm).

Step 5 BP (X,Wk(q), V k(q), TBP ) and BP (X,Wk∗(q), V k∗(q), TBP ) for k∈Zm : Update {Wk(q), V k(q)} and {Wk∗(q), V k∗(q)}
for k∈Zm by using BP of Table V.

Step 6 By using Eq.(16), E(X, {Wk(q), V k(q)}) and E(X, {Wk∗(q), V k∗(q))}
are calculated. If E(X, {Wk(q), V k(q)}) < E(X, {Wk∗(q), V k∗(q)}),
then go to Step 7. Otherwise go to Step 8.

Step 7 Set Wk∗(q)←Wk(q), V k∗(q)←V k(q)(k∈Zm).
Step 8 Calculate K←arg mink∗{E(X,Wk∗

, V k∗
)} and

send it to each server.
Step 9 If E(X,WK(q), V K(q)) < θ or t > T , then the

algorithm terminates. Otherwise, go to Step 3 with t←t+ 1.

TABLE VIII
PROPOSED HPSO FOR SDCD (NG)

Server 0 Serverq (1≤q≤Q)

Initialize Initialize {Wk(q)|k∈Zm}
Step 1 Wk∗(q)←Wk(q) (k∈Zm)
Step 2 Calculate K←arg mink∗{E(X, {Wk∗(q))}} and

send it to each server. t←0.
Step 3 Select two numbers r1 and r2 randomly and send them to each server.
Step 4 By using Eqs.(22), each of {wk(q)

ij |i∈Zr}
and is updated(k∈Zm).

Step 5 NG(X,Wk(q), TNG) and NG(X,Wk∗(q), TNG) for k∈Zm : Update {Wk(q)} and {Wk∗(q)}
for k∈Zm by using NG of Table VI.

Step 6 By using Eq.(7), E(X, {Wk(q)}) and E(X, {Wk∗(q))}
are calculated. If E(X, {Wk(q)}) < E(X, {Wk∗(q)}),
then go to Step 7. Otherwise go to Step 8.

Step 7 Set Wk∗(q)←Wk(q) (k∈Zm).
Step 8 Calculate K←arg mink∗{E(X,Wk∗

)} and
send it to each server.

Step 9 If or t > T , then the
algorithm terminates. Otherwise, go to Step 3 with t←t+ 1.

TABLE IX
RESULT FOR FUNCTION APPROXIMATION (×10−4)

Eq.(24) Eq.(25) Eq.(26) Eq.(27)
BP Learn 1.40 4.22 10.82 39.55

Test 2.33 13.33 23.05 88.75
HPSO Learn 0.99 2.93 4.07 9.10

Test 2.88 10.79 13.31 40.79
BP for Learn 3.39 9.59 21.26 64.32
SDCD Test 10.57 16.92 48.24 186.00

Proposed Learn 0.64 2.84 4.34 9.72
for HPSO Test 6.57 11.32 12.79 75.96

TABLE X
THE DATASET FOR PATTERN CLASSIFICATION

Iris Wine Sonar BCW
# data 150 178 208 683
# input 4 13 60 9
# class 3 3 2 2

unsupervised methods. Then, HPSO is a hybrid PSO that
combines PSO, which is a global search, and BP or NG,
which is a local search method. The feature of the proposed
method is a learning method using global and local search
to find the optimal solution, and it does not use learning data
and parameters themselves but uses a distributed processing
with divided data and parameters. Numerical simulation re-

TABLE XI
RESULT FOR PATTERN CLASSIFICATION (%)

Iris Wine Sonar BCW
BP Learn 3.58 1.91 1.22 2.33

Test 3.83 5.06 16.88 2.91
HPSO Learn 3.44 0.71 0.23 1.60

Test 3.60 4.08 15.93 3.58
BP for Learn 3.59 3.39 1.97 2.26
SDCD Test 3.87 5.61 18.62 2.95

Proposed Learn 2.62 0.37 0.31 0.96
for HPSO Test 4.47 4.89 19.17 4.01

TABLE XII
THE SIMULATION CONDITIONS FOR NG AND K-MEANS METHODS

Iris Wine Sonar BCW
NG T 15000 18000 21000 70000

HPSO T 10 10 10 10
TI 1500 1800 2100 7000

NG for T 15000 18000 21000 70000
SDCD

Proposed T 10 10 10 10
for HPSO TI 1500 1800 2100 7000

sults show that the proposed method is almost as accurate as
the conventional HPSO in both supervised and unsupervised
learning. In the future, we plan to propose other learning
methods that perform a global search with secure distributed
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TABLE XIII
SIMULATION RESULTS FOR CONVENTIONAL AND PROPOSED NG

METHODS.

Iris Wine Sonar BCW
NG GP(%) 4.1 7.0 45.0 3.7

MSE 0.006449 0.047623 0.691680 0.145834
HPSO GP(%) 4.1 6.9 45.2 3.7

MSE 0.006421 0.047698 0.692082 0.146119
NG for GP(%) 4.0 7.0 45.1 3.6
SDCD MSE 0.006432 0.047729 0.693154 0.146063

Proposed GP(%) 4.0 6.7 45.3 3.8
for HPSO MSE 0.006344 0.047155 0.682860 0.143236

TABLE XIV
SIMULATION RESULTS FOR CONVENTIONAL AND PROPOSED K-MEANS

METHODS.

Iris Wine Sonar BCW
k-means GP(%) 4.9 7.4 45.6 4.0

MSE 0.019855 0.146691 1.415555 0.296711
HPSO GP(%) 4.4 7.4 44.3 4.0

MSE 0.019800 0.146310 1.431822 0.297036
k-means for GP(%) 4.6 7.6 45.6 4.2

SDCD MSE 0.019779 0.146762 1.418258 0.296943
Proposed GP(%) 4.0 6.9 45.3 3.9
for HPSO MSE 0.019121 0.143253 1.383543 0.288883

processing using decomposed data.
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