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Abstract—Based on the existing conclusions of left bi-rings
and left Clifford bi-semirings, we give the spined product
structure of left Clifford bi-semirings. Then we discuss a special
case of left Clifford bi-semirings, that is, strong distributive
lattices of left bi-rings. We also study a special class of left
Clifford bi-semirings.

Index Terms—distributive lattice congruence, band bi-
semiring, left bi-ring, left Clifford bi-semiring.

I. INTRODUCTION AND PRELIMINARIES

A bi-semiring (S,+, ·, ∗) is an algebraic system contain-
ing three binary operations ”+”, ”·” and ”∗”. As a

more general concept than semirings and distributive lattice
ordered semigroups, the study of bi-semirings can unify the
respective research methods of semirings and lattice ordered
semigroups. Like the study of semiring theory, the study of
bi-semirings is also a very important content. References
[10], [11], [12] and [13] conduct related studies on the
Clifford hierarchy of semigroups and semirings. In this paper,
we investigate the properties and structures of left Clifford
bi-semirings and left normal Clifford bi-semirings based on
the research methods of semigroup and semiring Clifford
hierarchy.

Definition 1.1[1] (X,≤) is a distributive lattice ⇔ The
algebraic system (X,∨,∧) satisfies:

(1) Commutative laws: a ∨ b = b ∨ a, a ∧ b = b ∧ a;
(2) Associative laws: (a∨b)∨c = a∨(b∨c), (a∧b)∧c =

a ∧ (b ∧ c);
(3) Idempotent laws: a ∨ a = a, a ∧ a = a;
(4) Absorption laws: a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a;
(5) Distributive laws: (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c),

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
Definition 1.2[2] A bi-semiring (S,+, ·, ∗) is called an

idempotent bi-semiring if ∀s ∈ S, s+ s = s · s = s ∗ s = s.
Definition 1.3[3] Let ρ be an equivalence relation on the

bi-semiring S. Then ρ is called a congruence relation on the
bi-semiring S if it is a congruence relation on (S,+), (S, ·)
and (S, ∗), respectively.

Theorem 1.1[4] For an idempotent semiring (S,+, ·), the
following are equivalent:

(1) S satisfies ∀s, t ∈ S, s+ st+ s = s, s+ ts+ s = s;
(2) S satisfies ∀s, t ∈ S, s+ st+ s = s, st+ ts+ st = st;

(3)
+

D is the least (distributive) lattice congruence on S.
Definition 1.4[2] A bi-semiring (S,+, ·, ∗) is called a bi-

ring if the additive reduct (S,+) of S is an Abel group.
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Definition 1.5[5] Let R, S be bi-semirings. A map γ :
R→ S is called a homomorphism of bi-semirings if

(1) ∀r, s ∈ R, γ(r + s) = γ(r) + γ(s);
(2) ∀r, s ∈ R, γ(r · s) = γ(r) · γ(s);
(3) ∀r, s ∈ R, γ(r ∗ s) = γ(r) ∗ γ(s).
If γ is also injective (surjective, bijective), then γ is called

a (an) monomorphism (epimorphism, isomorphism).
Theorem 1.2[6] Let S be a left Clifford semigroup. Then

the following conditions are equivalent:
(1) S is a left Clifford semigroup;
(2) S is regular, and L = D is a semilattice congruence

for the Green relations L and D;
(3) S is a semilattice of left groups (a left group is a

left simple semigroup and a right cancellative semigroup
simultaneously).

Definition 1.6[7] A nonempty subset A of a semigroup S is
left (respectively, right) unitary if for any s, t ∈ S, s, st ∈ A
(respectively, s, ts ∈ A ) implies that t ∈ A. If A is both a
left unitary subset and a right unitary subset, then A is called
a unitary subset.

II. CHARACTERIZATIONS AND STRUCTURE

Definition 2.1[8] Let (S,+, ·, ∗) be a bi-semiring. If there
is a distributive lattice D and a family of pairwise dis-
joint bi-semirings {Sα|α ∈ D} such that S =

⋃
α∈D

Sα

and (S,+) = ((D,+), (Sα,+)), (S, ·) = ((D, ·), (Sα, ·)),
(S, ∗) = ((D, ·), (Sα, ∗)), then S is called a distributive
lattice of bi-semirings {Sα|α ∈ D}. Denote this system by
S = 〈D;Sα〉.

Definition 2.2[8] Let ρ be a congruence on the bi-semiring
(S,+, ·, ∗). If (S/ρ,+, ·) is a distributive lattice and S =
〈(S/ρ,+, ·); ρ-class〉, then ρ is called a distributive lattice
congruence on S.

Definition 2.3[8] Let (S,+, ·, ∗) be an idempotent bi-
semiring. Then (S,+, ·, ∗) is called a band bi-semiring if
∀s, t ∈ S,

(1) s+ st+ s = s, s+ ts+ s = s;
(2) s+ s ∗ t+ s = s, s+ t ∗ s+ s = s;

(3) st
+

D s ∗ t.
Lemma 2.1 An idempotent bi-semiring (S,+, ·, ∗) is a

band bi-semiring if and only if
+

D is the least distributive
lattice congruence on S.

Proof: Let (S,+, ·, ∗) be a band bi-semiring, then
(S,+, ·) and (S,+, ∗) are obviously band semirings. So from

Theorem 1.1 we know that
+

D is the least distributive lattice
congruence on (S,+, ·) and (S,+, ∗). Thus (S/

+

D,+, ·) is a

distributive lattice, each
+

D-class is a bi-semiring and

(S,+) = ((S/
+

D,+), (
+

D -class,+)),
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(S, ·) = ((S/
+

D, ·), (
+

D -class, ·)).

Since
+

D is a distributive lattice congruence on (S,+, ∗), we
have

(S, ∗) = ((S/
+

D, ∗), (
+

D -class, ∗)).

From Definition 2.3, we know that ∀s, t ∈ S, st
+

D s∗t, that is,

∀s, t ∈ S, s
+

D t
+

D = s
+

D ∗t
+

D. Then (S/
+

D, ·) = (S/
+

D, ∗),
and so

(S, ∗) = ((S/
+

D, ·), (
+

D -class, ∗)).

Thus
+

D is a distributive lattice congruence on the bi-semiring
S. Let δ be any distributive lattice congruence on the bi-
semiring S, then δ is a semilattice congruence on (S,+).

And because
+

D is the least semilattice congruence on (S,+),
+

D ⊆ δ. Thus
+

D is the least distributive lattice congruence on
S.

Conversely, suppose that
+

D is the least distributive lattice

congruence on S. Then (S/
+

D,+, ·) is a distributive lattice
and

(S, ∗) = ((S/
+

D, ·), (
+

D -class, ∗)).

It is easy to prove that
+

D is the least distributive lattice
congruence on (S,+, ·), and hence ∀s, t ∈ S, s+st+s = s,

s + ts + s = s. Since ∀s, t ∈ S, s ∗ t ∈ s
+

D t
+

D =

(st)
+

D, we have ∀s, t ∈ S, st
+

D s ∗ t, that is, ∀s, t ∈ S,

s
+

D t
+

D = s
+

D ∗t
+

D. It follows that (S/
+

D, ·) = (S/
+

D, ∗) and

so (S/
+

D,+, ∗) is also a distributive lattice. It is also easy

to prove that
+

D is the least distributive lattice congruence on
(S,+, ∗), and so ∀s, t ∈ S, s+s∗t+s = s, s+t∗s+s = s.
Thus S is a band bi-semiring.

Definition 2.4[8] A band bi-semiring (S,+, ·, ∗) is called a
T band bi-semiring if the additive reduct (S,+) of S is a T
band, where T band means ”left (right) zero”, ”left regular”
and ”left normal” bands, etc.

Definition 2.5[8] A bi-semiring (S,+, ·, ∗) is called a left
bi-ring if S can be decomposed as a direct product of a left
zero band bi-semiring L and a bi-ring R.

Theorem 2.1[8] A bi-semiring (S,+, ·, ∗) is a left bi-ring
if and only if:

(1) The additive reduct (S,+) of S is a left commutative-
group, that is, it is a direct product of a left zero band and
a commutative group, and

(2) E+(S) ⊆ E·(S), E+(S) ⊆ E∗(S), where E+(S)
(E·(S), E∗(S)) is the set of idempotents of (S,+) ((S, ·),
(S, ∗)).

Definition 2.6[8] A bi-semiring (S,+, ·, ∗) is called a left
Clifford bi-semiring if S is a distributive lattice of left bi-
rings.

Theorem 2.2[8] A bi-semiring (S,+, ·, ∗) is a left Clifford
bi-semiring if and only if the additive reduct (S,+) of S
is a left Clifford semigroup (left regular orthogroup[7]) in
which each maximal subgroup is abelian, E+(S) ⊆ E·(S),
E+(S) ⊆ E∗(S) and S satisfies the following conditions:

(1) ∀s ∈ S, V +(s) + s ⊇ s(V +(s) + s);
(2) ∀s, t ∈ S, V +(st) + st ⊇ (V +(t) + t)s;
(3) ∀s, t ∈ S, V +(s) + s ⊇ V +(st) + (V +(s) + s) + st;

(4) ∀s, t ∈ S, st
+

L s ∗ t.

Corollary 2.1[8] A bi-semiring (S,+, ·, ∗) is a left Clifford

bi-semiring if and only if
+

L is a distributive lattice congru-

ence on S and each
+

L-class is a left bi-ring.
Let S be a left Clifford bi-semiring. ∀s ∈ S, we denote the

group inverse of s by −s, that is, {−s} = V +(s)∩
+

Hs. It can
be known from Theorem 2.2 that the additive reduct (S,+)
of S is a left regular orthogroup. By using the distributive
laws, the following lemma is obvious:

Lemma 2.2 Let (S,+, ·, ∗) be a left Clifford bi-semiring.

Let ∀s, t ∈ S, e, f ∈ E+(S) and e
+

H s, f
+

H t. Then
(1) s(−t) = −st = (−s)t, s ∗ (−t) = −s ∗ t = (−s) ∗ t;
(2) sf = et = ef ∈ E+(S)∩

+

Hst, s ∗ f = e ∗ t = e ∗ f ∈
E+(S) ∩

+

Hs∗t.
Theorem 2.3 Let (S,+, ·, ∗) be a left Clifford bi-semiring.

Then
+

H is a congruence on S.

Proof: It is clear that
+

H is a congruence on (S, ·) and

(S, ∗). Since (S,+) is a left Clifford semigroup,
+

H =
+

R is

a left congruence on (S,+). So just need to prove that
+

H
is a right congruence on (S,+). Let s, t ∈ S, e ∈ E+(S)

and e
+

H s. We now prove that (e+ t)
+

H(s+ t). Let f1, f2 ∈
E+(S) such that f1

+

H(e + t), f2
+

H(s + t). Because
+

H is a
left congruence on (S,+), we have

(e+ f1)
+

H(e+ t), (e+ f2)
+

H(s+ t),

(−s+ f2)
+

H(e+ t), (s+ f1)
+

H(s+ t).

Also since e+f1, e+f2 ∈ E+(S), e+f1 = f1, e+f2 = f2.
Applying Lemma 2.2, we have

f1 ∗ f2 = (e+ f1) ∗ f2 = e ∗ f2 + f1 ∗ f2
= s ∗ f2 + f1 ∗ f2 = (s+ f1) ∗ f2
= f2 ∗ f2 = f2,

f1 ∗ f2 = f1 ∗ (e+ f2) = f1 ∗ e+ f1 ∗ f2
= f1 ∗ (−s) + f1 ∗ f2 = f1 ∗ (−s+ f2)

= f1 ∗ f1 = f1,

and so (e+t)
+

H f1 = f2
+

H(s+t). It follows that ∀w
+

H v, t ∈
S, (w+t)

+

H(v+t), that is,
+

H is a right congruence on (S,+).

Definition 2.7 A bi-semiring (S,+, ·, ∗) is called a Clif-
ford bi-semiring if S is a distributive lattice of bi-rings.

Lemma 2.3 A bi-semiring (S,+, ·, ∗) is a left regular band
bi-semiring if and only if S is a distributive lattice of left
zero band bi-semirings.

Proof: Let (S,+, ·, ∗) is a left regular band bi-semiring.

Then
+

D =
+

J is the least semilattice congruence on (S,+)

and (S,+) is a semilattice S/
+

D of left zero bands
+

D-class.

For any
+

D-class
+

Da,
+

Da is clearly a band bi-semiring. Thus

each
+

D-class is a left zero band bi-semiring. By Lemma 2.1,
+

D is a distributive lattice congruence on S, and so the left

regular band bi-semiring S is a distributive lattice S/
+

D of

left zero band bi-semirings
+

D-class.
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Conversely, let the bi-semiring S is a distributive lattice
D of left zero band bi-semirings Lα(α ∈ D). Obviously, S
is an idempotent bi-semiring and (S,+) = ∪

α∈D
(Lα,+) is a

left regular band. We now prove that S is a band bi-semiring,

that is,
+

D is the least distributive lattice congruence on S.

Since (S,+) is a completely regular semigroup,
+

D =
+

J
is the least semilattice congruence on (S,+). It is easy to

show that
+

D is a congruence on (S, ·) and (S, ∗) and that

S/
+

D ∼= D. Thus
+

D is a distributive lattice congruence on
S. Let η be any distributive lattice congruence on S, then η

is a semilattice congruence on (S,+). Also since
+

D is the

least semilattice congruence,
+

D ⊆ η. Thus
+

D is the least
distributive lattice congruence on S.

Theorem 2.4 The spined product L×DR of a left regular
band bi-semiring L = 〈D;Lα〉 and a Clifford bi-semiring
R = 〈D;Rα〉 with respect to the distributive lattice D is a
left Clifford bi-semiring. Conversely, each left Clifford bi-
semiring can be decomposed as a spined product of a left
regular band bi-semiring and a Clifford bi-semiring.

Proof: The spined product L×DR is clearly a distribu-
tive lattice D of left bi-rings Lα×Rα, thus L×DR is a left
Clifford bi-semiring.

Conversely, let S is a left Clifford bi-semiring. Then S
is a distributive lattice D of left bi-rings Lα × Rα, where
Lα(α ∈ D) is a left zero band bi-semiring, Rα(α ∈ D)

is a bi-ring. By Theorem 2.3, we have
+

H is a congruence
on (S,+). Thus, by a conclusion in [6], we can get that
(S,+) is a spined product of a left regular band (L,+) and
a Clifford semigroup (R,+), where (L,+) = ∪D+(Lα,+)
is an upper semilattice D+ of left zero bands (Lα,+),
(R,+) = ∪D+(Rα,+) is an upper semilattice D+ of
commutative groups (Rα,+). And if (i, r) ∈ Lα × Rα,
(j, s) ∈ Lβ ×Rβ , then

(i, r) + (j, s) = (i+ j, r + s) ∈ Lα+β ×Rα+β ,

where i+ j (r+ s) is the sum of i and j (r and s) in (L,+)
((R,+)). Next, we will discuss (i, r)(j, s) and (i, r) ∗ (j, s).
Let

(i, r)(j, s) = (k, t) ∈ Lαβ ×Rαβ ,

(i, r) ∗ (j, s) = (l, u) ∈ Lαβ ×Rαβ .

We first prove that k and l (t and u) only depend on i and j

(r and s). Note that
+

H is a congruence on (S, ·) and (S, ∗),
and

(i, r)
+

H(j, s)⇔ i = j, (∀(i, r), (j, s) ∈ S).

So it is easy to prove that k and l only depend on i and j.
For any (i′, r) ∈ Lα ×Rα, let (i′, r)(j, s) = (k′, t′). By the
distributive laws of S, we have

(k, t) = (i, r)(j, s)

= [(i, 0) + (i′, r)](j, s)

= (i, 0)(j, s) + (i′, r)(j, s)

= (k, 0) + (k′, t′)

= (k, t′),

then t = t′, and hence t is independent of i. Similarly, we can
prove that t is independent of j. Let (i′, r) ∗ (j, s) = (l′, u′).
By the distributive laws of S, we have

(l, u) = (i, r) ∗ (j, s)
= [(i, 0) + (i′, r)] ∗ (j, s)
= (i, 0) ∗ (j, s) + (i′, r) ∗ (j, s)
= (l, 0) + (l′, u′)

= (l, u′),

then u = u′, and hence u is independent of i. Similarly, we
can prove that u is independent of j. Now we define ”·” and
”∗” on L (R) as follows: ∀i ∈ Lα, j ∈ Lβ (∀r ∈ Rα, s ∈
Rβ),

ij = k ⇔ (i, 0)(j, 0) = (k, 0)

(rs = t⇔ (i, r)(j, s) = (ij, t)),

i ∗ j = l⇔ (i, 0) ∗ (j, 0) = (l, 0)

(r ∗ s = u⇔ (i, r) ∗ (j, s) = (i ∗ j, u)).

It is easy to prove that (L,+, ·, ∗) = 〈D;Lα〉 and
(R,+, ·, ∗) = 〈D;Rα〉, that is, (L,+, ·, ∗) is a left regular
band bi-semiring and (R,+, ·, ∗) is a Clifford bi-semiring.
Thus the left Clifford bi-semiring S ∼= L×DR can be decom-
posed as a spined product of the left regular band bi-semiring
L = ∪

α∈D
Lα and the Clifford bi-semiring R = ∪

α∈D
Rα with

respect to distributive lattice D.
Example 2.1 Let S = {s1, s2, s3}. Define ”+”, ”·” and

”∗” as below:

+ s1 s2 s3
s1 s1 s1 s1
s2 s2 s2 s2
s3 s3 s3 s3

· s1 s2 s3
s1 s1 s1 s1
s2 s1 s2 s2
s3 s1 s3 s3

∗ s1 s2 s3
s1 s1 s1 s1
s2 s2 s2 s2
s3 s3 s3 s3

In fact, (S,+) and (S, ∗) are left zero band, (S, ·) is the
semigroup ({s2, s3}, ·)0 with zero s1, where ({s2, s3}, ·) is
a left zero band. It is very easy to prove that the two side
distributive laws of ”·” over ”+”, ”·” over ”∗”, ”+” over
”∗” and ”∗” over ”+” hold. Therefore, (S,+, ·, ∗) is a bi-

semiring. And since ∀s, t ∈ S, s
+

Lt and

s+ st+ s = s, s+ ts+ s = s,

s+ s ∗ t+ s = s, s+ t ∗ s+ s = s,

we have (S,+, ·, ∗) is a band bi-semiring and obviously a
left regular band bi-semiring. Let T = {e} and define ”+”,
”·” and ”∗” as below:

e+ e = ee = e ∗ e = e.

Obviously, (T,+, ·, ∗) is a Clifford bi-semiring. Thus S ∼=
S × T is a left Clifford bi-semiring.
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III. SPECIAL CASE

Definition 3.1[9] Let D be a distributive lattice, {Sα|α ∈
D} be a family of pairwise disjoint bi-semirings. For any
α, β ∈ D with α ≤ β, if there is a map ϕα,β : Sα → Sβ ,
where ϕα,β is a monomorphism of bi-semirings and satisfies:
∀α, β, γ ∈ D,

(1) ϕα,α = 1Sα
;

(2) ϕα,βϕβ,γ = ϕα,γ , if α ≤ β ≤ γ;
(3) (Sαϕα,γ)(Sβϕβ,γ) ⊆ Sαβϕαβ,γ , if α+ β ≤ γ;
(4) (Sαϕα,γ) ∗ (Sβϕβ,γ) ⊆ Sαβϕαβ,γ , if α+ β ≤ γ.
On S = ∪

α∈D
Sα, ”+”, ”·” and ”∗” are defined as follows:

∀s ∈ Sα, t ∈ Sβ ,
(5) s+ t = sϕα,α+β + tϕβ,α+β ,
st = [(sϕα,α+β)(tϕβ,α+β)]ϕ

−1
αβ,α+β ,

s ∗ t = [(sϕα,α+β) ∗ (tϕβ,α+β)]ϕ−1αβ,α+β .
Denote the system by S = 〈D;Sα;ϕα,β〉, and call it a

strong distributive lattice of bi-semirings {Sα|α ∈ D}.
Theorem 3.1 A left Clifford bi-semiring (S,+, ·, ∗) is a

strong distributive lattice of left bi-rings if and only if E+(S)
is a left normal band bi-semiring and E+(S) is a right unitary
subset in (S,+).

Proof: Suppose that the left Clifford bi-semiring S =
〈D;Sα;ϕα,β〉 is a strong distributive lattice of left bi-rings
Sα = Lα × Rα, where Lα is a left zero band bi-semiring
and Rα is a bi-ring. According to the definition of ”+” of
S, E+(S) is obviously a left normal band bi-semiring. We
now prove that E+(S) is a right unitary subset in (S,+). If
(i, r) ∈ Sα, (j, 0) ∈ E+(Sβ) and (k, 0) ∈ E+(Sα+β) such
that (i, r) + (j, 0) = (k, 0), then

(i, r)ϕα,α+β + (j, 0)ϕβ,α+β = (k, 0).

Denote
(i, r)ϕα,α+β = (k′, r′) ∈ Sα+β ,
(j, 0)ϕβ,α+β = (k′′, 0) ∈ Sα+β .

Then

(k′, r′) = (k′, r′) + (k′′, 0) = (k, 0),

and so

(i, r)ϕα,α+β = (k, 0) ∈ E+(Sα+β).

Also since ϕα,α+β is injective and (i, 0)ϕα,α+β = (k, 0),
(i, r) = (i, 0) ∈ E+(Sα). Thus E+(S) is a right unitary
subset in (S,+).

Conversely, let S is a left Clifford bi-semiring. Then S is a
distributive lattice D of left bi-rings Sα = Lα×Rα(α ∈ D),
where Lα is a left zero band bi-semiring and Rα is a bi-ring.
∀α, β ∈ D with α ≤ β and a fixed (j, 0) ∈ E+(Sβ), define

ϕα,β : Sα → Sβ

(i, r) 7→ (i, r) + (j, 0) (∀(i, r) ∈ Sα).

For any (j′, 0) ∈ E+(Sβ), since E+(S) is a left normal
band bi-semiring and (E+(Sβ),+) is a left zero band, then
we have

(i, r) + (j, 0) = [(i, r) + (i, 0)] + [(j, 0) + (j′, 0)]

= (i, r) + [(i, 0) + (j, 0) + (j′, 0)]

= (i, r) + [(i, 0) + (j′, 0) + (j, 0)]

= [(i, r) + (i, 0)] + [(j′, 0) + (j, 0)]

= (i, r) + (j′, 0).

Thus the definition of ϕα,β is independent of the choice of
the element in E+(Sβ). ∀(i, r), (i′, r′) ∈ Sα,

[(i, r) + (i′, r′)]ϕα,β = (i, r) + (i′, r′) + (j, 0).

If (i′, r′) + (j, 0) = (j′, s) ∈ Sβ , then

[(i, r) + (i′, r′)]ϕα,β = (i, r) + [(j′, 0) + (j′, s)]

= [(i, r) + (j′, 0)] + [(i′, r′) + (j, 0)]

= (i, r)ϕα,β + (i′, r′)ϕα,β .

Also since (E+(S),+) is a left normal band and ∀s ∈ S,

sE+(S) ∪ E+(S)s ⊆ E+(S),

s ∗ E+(S) ∪ E+(S) ∗ s ⊆ E+(S),

we have
[(i, r)(i′, r′)]ϕα,β

=(i, r)(i′, r′) + (j, 0)

=(i, r)(i′, r′) + (j, 0)(i′, r′) + (i, r)(j, 0) + (j, 0)

=[(i, r) + (j, 0)][(i′, r′) + (j, 0)]

=(i, r)ϕα,β(i
′, r′)ϕα,β ,

[(i, r) ∗ (i′, r′)]ϕα,β
=(i, r) ∗ (i′, r′) + (j, 0)

=(i, r) ∗ (i′, r′) + (j, 0) ∗ (i′, r′) + (i, r) ∗ (j, 0) + (j, 0)

=[(i, r) + (j, 0)] ∗ [(i′, r′) + (j, 0)]

=(i, r)ϕα,β ∗ (i′, r′)ϕα,β ,
this is because (j, 0)(i′, r′) + (i, r)(j, 0) + (j, 0), (j, 0) ∗
(i′, r′) + (i, r) ∗ (j, 0) + (j, 0) ∈ E+(Sβ). Thus ϕα,β is a
homomorphism of bi-semirings. If (i, r), (i′, r′) ∈ Sα such
that

(i, r)ϕα,β = (i′, r′)ϕα,β ,

then
(i, r) + (j, 0) = (i′, r′) + (j, 0)

⇒(i, 0) + (i, r) + (j, 0) = (i, 0) + (i′, r′) + (j, 0)

((i, 0) ∈ E+(Sα))

⇒(i, r) + (j, 0) = (i, r′) + (j, 0)

⇒(i,−r′) + (i, r) + (j, 0) = (i,−r′) + (i, r′) + (j, 0)

((i,−r′) ∈ Sα)
⇒(i, r − r′) + (j, 0) = (i, 0) + (j, 0) ∈ E+(Sβ).

Since E+(S) is a right unitary subset in (S,+), (i, r−r′) ∈
E+(Sα), and hence r = r′. Then we can see

(i, r) + (j, 0) = (i′, r) + (j, 0)

⇒[(i, r) + (j, 0)] + [(i,−r) + (j, 0)] = [(i′, r) + (j, 0)]+

[(i,−r) + (j, 0)]

⇒(i, r)ϕα,β + (i,−r)ϕα,β = (i′, r)ϕα,β + (i,−r)ϕα,β
⇒[(i, r) + (i,−r)]ϕα,β = [(i′, r) + (i,−r)]ϕα,β
⇒(i, 0) + (j, 0) = (i′, 0) + (j, 0)

⇒[(i, 0) + (j, 0)](i′, 0) = [(i′, 0) + (j, 0)](i′, 0)

⇒(i, 0)(i′, 0) + (j, 0)(i′, 0) = (i′, 0) + (j, 0)(i′, 0).

Let (k, 0) = (j, 0)(i′, 0) ∈ E+(Sβα) = E+(Sα), then

(ii′, 0) + (k, 0) = (i′, 0) + (k, 0)

⇒(ii′, 0) = (i′, 0)

⇒i′ = ii′.
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Similarly, we can prove that i = ii′, and thus i = i′. And
we have (i, r) = (i′, r′), thus ϕα,β is a monomorphism of
bi-semirings. At the same time, it is easy to verify that ϕα,β
satisfies the conditions (1) ∼ (5) in Definition 3.1 by using
known conditions. Thus S = 〈D;Sα;ϕα,β〉.

A Clifford bi-semiring is clearly a left Clifford bi-semiring,
thus the following corollary is obvious:

Corollary 3.1 A Clifford bi-semiring (S,+, ·, ∗) is a
strong distributive lattice of bi-rings if and only if E+(S)
is unitary in (S,+) of S.

Definition 3.2 A bi-semiring (S,+, ·, ∗) is called a left
normal Clifford bi-semiring if S is a distributive lattice of
left bi-rings and (E+(S),+) is a left normal band.

Let S be a left normal Clifford bi-semiring, then S is a left
Clifford bi-semiring and the set of all additive idempotents
of S is a left normal band. By applying Theorem 2.2 and
Corollary 2.1, we can get Theorem 3.2 and Corollary 3.2:

Theorem 3.2 A bi-semiring (S,+, ·, ∗) is a left normal
Clifford bi-semiring if and only if the additive reduct (S,+)
of S is a left normal orthogroup in which each maximal
subgroup is abelian, E+(S) ⊆ E·(S), E+(S) ⊆ E∗(S) and
S satisfies the following conditions:

(1) ∀s ∈ S, V +(s) + s ⊇ s(V +(s) + s);
(2) ∀s, t ∈ S, V +(st) + st ⊇ (V +(t) + t)s;
(3) ∀s, t ∈ S, V +(s) + s ⊇ V +(st) + (V +(s) + s) + st;

(4) ∀s, t ∈ S, st
+

L s ∗ t.
Corollary 3.2 A bi-semiring (S,+, ·, ∗) is a left normal

Clifford bi-semiring if and only if
+

L is a distributive lat-

tice congruence on S, each
+

L-class is a left bi-ring and
(E+(S),+) is a left normal band.

A left normal band bi-semiring is clearly a strong distribu-
tive lattice of left zero band bi-semirings by Theorem 3.1.
Then we can verify the following theorem by the research
methods of Theorem 2.4:

Theorem 3.3 The spined product L×DR of left nor-
mal band bi-semiring L = 〈D;Lα;ϕα,β〉 and Clifford bi-
semiring R = 〈D;Rα〉 with respect to the distributive lattice
D is a left normal Clifford bi-semiring. Conversely, each left
normal Clifford bi-semiring can be decomposed as a spined
product of a left normal band bi-semiring and a Clifford bi-
semiring.

Theorem 3.4 A left normal Clifford bi-semiring S is a
strong distributive lattice of left bi-rings if and only if E+(S)
is a right unitary subset in (S,+).

Proof: Let the left normal Clifford bi-semiring S be a
strong distributive lattice of left bi-rings. And because a left
normal Clifford bi-semiring is a left Clifford bi-semiring, we
have E+(S) is a right unitary subset in (S,+).

Conversely, suppose that S is a left normal Clifford bi-
semiring, and let E+(S) is a right unitary subset in (S,+).
Then S is a distributive lattice D of left bi-rings Sα = Lα×
Rα, where Lα is a left zero band bi-semiring and Rα is a
bi-ring. Thus E+(S) =

⋃
α∈D

(E+(Lα) × E+(Rα)), where

E+(Lα) × E+(Rα) ∼= Lα is a left zero band bi-semiring.
Obviously, E+(S) is a bi-semiring and is a left normal band
bi-semiring. From Theorem 3.1, we know that S is a strong
distributive lattice of left bi-rings.
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