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Abstract—This paper presents a Gaussian mixture
implementation method of the standard cardinality-balanced
multi-target multi-Bernoulli (CBMeMBer) filter for addressing
the multi-target tracking (MTT) problems with non-Gaussian
model noises. With non-Gaussian model noises approximated
by the weighted sum of Gaussian distributions, the closed-form
recursions to the CBMeMBer filter are derived by using the
Gaussian mixture expressions. The advantage of the proposed
algorithm over the sequential Monte Carlo CBMeMBer
(SMC-CBMeMBer) filter is that it can track multiple targets
with similar tracking accuracies and significant reductions in
computing time. The effectiveness of the proposed algorithm
has been verified with the comparison results of numerical
simulations.

Index Terms—Gaussian mixture, filtering, multi-Bernoulli,
multi-target tracking, random finite set

I. INTRODUCTION

HE research content of multi-target tracking (MTT)
problem is to develop the approaches that can estimate

the satisfactory tracking results by using uncertain
measurements [1]. In MTT problems, the measurements
received from an imperfect sensor are usually affected by
clutter and noise [2]. Therefore, how to effectively track
multiple targets under complex situations is a challenging
research issue in both MTT theories and applications.

Most traditional MTT approaches [3]-[5] require the data
association technique to determine the associations between
sensor measurements and targets. However, the associations
between measurements and targets are computationally
intensive in most practical applications. The random finite set
(RFS) theory [6], which is presented in recent years, has been
successfully used to address different MTT problems. The
probability hypothesis density (PHD) filter [7] and the
cardinalized PHD (CPHD) [8] filter are two effective
Bayesian filter algorithms to MTT based on RFS, which can
effectively solve the combinatorial problems resulting from
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data association in traditional MTT approaches and have
gained the attention of a lot of researchers [9]-[16].
Unfortunately, due to the existence of multiple integrals in
their recursions, The PHD and CPHD filters are generally
intractable in computing. Consequently, two implementation
methods, which are the Gaussian mixture PHD (GM-PHD)
filter for linear Gaussian models and the sequential Monte
Carlo PHD (SMC-PHD) filter [17]-[19], respectively, have
been developed to solve such difficulties. In comparison with
the SMC-PHD filter, the GM-PHD filter is much more
efficient and reliable in estimating target states, but its
performance decreases dramatically for addressing the
problems related to nearby and crossing target tracking. To
overcome the drawback of missing targets that arises from
tracking nearby and crossing targets in the GM-PHD filter,
the competitive GM-PHD (CGM-PHD) filter, the penalized
GMPHD (PGM-PHD) filter, the collaborative penalized
GM-PHD (CPGM-PHD) tracker, the radiation intensity
GM-PHD (RIGM-PHD) filter, and the refined GM-PHD
(RGM-PHD) tracker have been developed in the research
papers published recently [20]-[24]. In addition, in the field
of MTT, the algorithms for tracking multiple extended targets
are another important research topic. For the purpose of
tracking multiple extended targets effectively in the RFS
theory framework, the extended target PHD (ET-PHD) filter
[25] and its implementation methods such as the extended
target Gaussian mixture PHD (ET-GM-PHD) filter [26], the
extended target particle PHD (ET-P-PHD) filter [27], the
extended target box-particle PHD (ET-Box-PHD) filter [28],
and the ellipse extended target box particle PHD
(EET-BP-PHD) filter [29] have been developed successively.
Besides the PHD filter and CPHD filter, another

well-known RFS-based MTT algorithm is the multi-target
multi-Bernoulli (MeMBer) filter proposed recently [1]. The
MeMBer filter makes use of the multi-Bernoulli RFS in its
Bayesian recursions and a multi-Bernoulli parameter set to
represent the multi-Bernoulli posterior densities at each time
step, this makes its target state extraction reliable and
convenient. However, a target number over-estimation
problem occurs along with it. To remedy such a disadvantage,
the cardinality-balanced MeMBer (CBMeMBer) filter which
offers a nice solution by modifying the formulas for
calculating the measurement-updated multi-target density
was developed in [30]. Subsequently, the labeled
multi-Bernoulli (LMB) filter has been developed as an
improved approximation of the MeMBer filter [31]. By
introducing the labeled RFS, the LMB filter overcomes the
limit of high signal to noise ratio that the MeMBer filter
requires. Moreover, a forward-backward MeMBer smoother
and its sequential Monte Carlo implementation were
developed for improving the tracking performances of the
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CBMeMBer filter [32]. The existing implementations of the
CBMeMBer filter mainly include sequential Monte Carlo
CBMeMBer (SMC-CBMeMBer) and Gaussian mixture
CBMeMBer (GM-CBMeMBer) filters [30]. The
SMC-CBMeMBer filter is a generic implementation method
with no limit on tracking model and noise, but it is potentially
computationally inefficient since that a large number of
target samples are used to approximate the posterior
multi-target densities for reaching favourable results and a
resampling scheme should be adopted to reduce the effect of
degeneracy. By taking the predicted state estimations and
measurement likelihoods into consideration, a high-speed
algorithm was proposed to improve the computing efficiency
of the SMC-CBMeMBer filter [33]. Improving the
computational efficiency of data processing algorithms is an
important research issue because it is of great significance to
do so in practical applications. So far, there have been many
published research papers regarding the issue [34]-[38]. The
GM-CBMeMBer filter is a computationally efficient
closed-form solution with applications constrained to linear
Gaussian models. With linearization and the unscented
transforms, the GM-CBMeMBer filter can be extended to
accommodate nonlinear Gaussian tracking models;
nevertheless, these extensions are still not adequate for
handling non-Gaussian MTT problems.

In many signal processing applications, Gaussian mixture
models have been widely used for approximating
non-Gaussian densities [39]-[42]. Inspired by the mechanism
that Gaussian mixtures can approximate any given density, a
new analytic implementation to the CBMeMBer filter for
addressing the non-Gaussian MTT problems is proposed in
this paper. While for the sake of clarity, only the linear
tracking models are considered. Under the premises that the
non-Gaussian tracking model noises are approximated by
Gaussian mixture distributions, the state transition density
and the measurement likelihood are defined firstly; then, the
closed-form recursions to the CBMeMBer filter, in which the
mean and variance can be updated by Kalman equations, are
derived by using the standard conclusions for Gaussian
distributions. The numerical simulation indicates that the
proposed algorithm is a satisfactory solution for solving the
MTT problems with non-Gaussian tracking models
compared with the SMC-CBMeMBer filter.

The rest parts of this paper are organized as follows.

Section Ⅱ defines the non-Gaussian tracking models and

provides brief reviews of the standard CBMeMBer filter.

SectionⅢ elaborates the proposed algorithm. In SectionⅣ,

the numerical simulation results used to compare the
performance of our algorithm with that of the
SMC-CBMeMBer filter are studied. Some meaningful

conclusions are drawn in the final SectionⅤ.

II. BACKGROUNDS

A. Tracking Model

In general, the linear tracking models which are used in the
CBMeMBer filter can be written as

111   kkkk qxFx , (1)

kkkk rxHz  , (2)

where k is the time index. kx and kz are the target state

vector and the measurement vector, respectively. 1kF

denotes the state transition matrix and kH denotes the

observation matrix. 1kq and kr denote the process noise and

the measurement noise, respectively.
Let )( 1kqp and )( krp denote the probability densities of

1kq and kr , respectively. As shown in [39], any density can

be described as a Gaussian mixture expression. Therefore, for
the linear non-Gaussian tracking models, the probability
densities of 1kq and kr can be described as the expressions

approximated by Gaussian functions. Suppose that )( 1kqp

and )( krp are comprised of Gaussian mixtures of the form
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Then, according to (1)-(4), the state transition density

)|( 11|  kkkk xxf and the measurement likelihood )|( kkk xzg

can be rewritten as
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As described above, by using Gaussian mixture
expressions to approximate the non-Gaussian model noises,
the non-Gaussian tracking models can be described as banks
of Gaussian noise models. This approach for approximating
non-Gaussian noise largely simplifies the application of the
non-Gaussian tracking models.

B. CBMeMBer Filter

The CBMeMBer filter is a recursive MTT algorithm, it
makes use of the prediction and update equations to calculate
the multi-target density at each time step. For clarity, the
recursion equations of the CBMeMBer filter are briefly
described below.

At time step 1k , suppose that the posterior multi-target

density 1k can be represented by a multi-Bernoulli

parameter set of the form

1
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denotes the state probability density function of the ith
hypothesized track, respectively. 1kM is the number of

hypothesized tracks.

At time step k , let kM
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 denote the parameter

set of the multi-Bernoulli RFS of birth targets. Then, the
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predicted multi-target density 1| kk is also a multi-Bernoulli

and given by
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where kSp , is the target survival probability and

)|( 11|  kkkk xxf denotes the single target transition density.

At time step k , if the predicted multi-target density 1| kk

is
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Then, the updated multi-target density k at time step k

can be approximated by a multi-Bernoulli as
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where kDp , is the detection probability, kZ is the

measurement set received at time step k , )|( xgk  denotes

the single-target measurement likelihood, and )( kk z is the

intensity of clutter.

III. THE PROPOSED ALGORITHM

In this section, a closed-form solution to the CBMeMBer
filter with non-Gaussian noises is elaborated. The analytic
implementation for the CBMeMBer filter with non-Gaussian
model noises is derived by using Gaussian mixtures in a
similar way to the GM-CBMeMBer filter, and the detailed
formulation of the analytic implementation method is
described as follows.

A. Prediction

At time step 1k , suppose that the posterior multi-target

density 1k is a multi-Bernoulli and its form is the same as
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Then, the form of the predicted multi-target density 1| kk

at time step k is the same as (8). Suppose that the probability

density of the ith birth track is
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B. Update

Suppose that at time step k , the form of the

multi-Bernoulli posterior density )(1| kkk x is the same as
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Then, the updated multi-target density )( kk x at time step

k is the same as (12). Substituting (6) and (25) into (13)-(18),

the equations to calculate the parameters in )( kk x are

derived as follows:
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Similar to the GM-CBMeMBer filtering process, As time
goes on, the number of the Gaussian functions representing
the multi-target densities is growing without bound, and this
phenomenon can cause high computational cost. Therefore,
the pruning and merging procedures aimed at reducing the
number of Gaussian functions also need to be implemented
after update computing in the proposed algorithm.
Furthermore, by means of standard approximation methods,
the derived recursions to the CBMeMBer filter for linear
non-Gaussian tracking models can be extended to
accommodate nonlinear non-Gaussian tracking models.

C. Tracking Result Extraction

At time step k , the updated multi-Bernoulli parameter set
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)()( )},{(  is used to extract the tracking results

which involves the estimated number of targets and
corresponding target state estimations.

The target state estimations are obtained by computing the
means of the Gaussian functions which represent the
multi-target posterior densities of the hypothesized tracks
with existence probabilities greater than 0.5. The number of
targets at each time step is estimated by summing up the

updated existence probabilities. At time step k , let kN̂

denote the estimated number of targets, then the equation for

computing kN̂ can be written as
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where  round represents the rounding operation.

IV. SIMULATION RESULTS

For comparison, a two-dimensional linear non-Gaussian
scene with different parameters is used to perform the
designed simulation experiments. The environment for
performing the simulation experiments was: AMD
A8-6600K APU with Radeon HD(tm) Graphics 3.9 GHz, 4
GB DDR3 1600 Memory, Windows 7, and MATLAB

R2012a. The sample interval is 1 s. At time step k , the

target state vector T
kykykxkxk vpvpx ],,,[ ,,,, is defined as

the positions and velocities of a moving target, while the
target generated measurement is the target position
information affected by noise. In the state transition density
given in (5) and the measurement likelihood given in (6), the
parameters are set as follows:
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and )(diag  denotes the diagonal matrix.

In the simulation, the probabilities of target survival and

detection are 99.0, kSp and 98.0, kDp , respectively. At

each time step in the SMC-CBMeMBer filter and proposed
algorithm, updated tracks are pruned with a pruning threshold

of 310rT and a maximum of 100max T tracks. For the

SMC-CBMeMBer filter, a maximum of 600max L and a

minimum of 200min L particles are imposed for each

hypothesized track, and multinomial resampling method is
adopted for the numerical simulations. In addition, after the
update computing in the proposed algorithm, the Gaussian
functions representing each updated track are pruned and

merged by using a weight threshold of 310wT , a merging

threshold of 4U , and a maximum of 100max J

components. The clutter is modeled as a Poisson RFS with
the rate 12r over the surveillance region.
In the simulation, the optimal subpattern assignment

(OSPA) distance [43] is used to evaluate the target

localization accuracy, At time step k , define ||
1}{ X

iixX  as

the target state estimation set and ||
1}{ Y

ii
yY   as the true

target state set, then the equation for computing the OSPA
distance between X and Y is defined by
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where ),()(
i

yxd i
c

 represents the Euler distance between

the true target state ix and estimated target state
i

y .

In additon, the mean number of targets estimation error
(NTE) [18], [21] is used to evaluate the target number
estimation accuracy, the equation for computing the NTE
between X and Y is defined by

|}||{|),NTE( XYEYX  (38)

In order to reach reliable results, 100 Monte Carlo (MC)
trials are performed for each algorithm on the same target
tracks but with independently generated clutter
measurements and measurement noise. The parameters of the
OSPA distance are set to 2p and 50c m in the

simulations.
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Fig. 1. True target tracks and measurements.

Fig. 1 plots the x and y positions of the true target tracks
and measurements versus time step in one MC trail, where
the true target tracks and the measurements are denoted by
the red solid lines and the black multiplication signs,
respectively.

Fig. 2. True target tracks and position estimations.

Fig. 3. NTEs for different algorithms.

Fig. 2 gives the results of the target position estimations for
both algorithms superimposed on the true target tracks over
50 time steps. As seen from Fig. 2, the position estimations
for both algorithms are close to the true target tracks during
the whole period. It indicates that the proposed algorithm is
able to track multiple targets well.

Fig. 4. Average OSPA distances for different algorithms.

Fig. 5. Average computing time for different algorithms versus time step.

The NTEs, the OSPA distances and the computing time are
used to analyze the tracking performances of different
algorithms, with the results presented in Figs. 3, 4 and 5,
respectively. As seen from Fig. 3, at each time step, the NTEs
for both algorithms are very small, this means that the target
number estimations computed by both algorithms are reliable
and close to the true number of targets. Fig. 4 indicates that
the proposed algorithm performs similarly to the
SMC-CBMeMBer filter, i.e., the target localization accuracy
of the proposed algorithm is almost the same as that of the
SMC-CBMeMBer filter. However, it is observed from Fig. 5
that the proposed algorithm performs at a much faster
computing speed than the SMC-CBMeMBer filter does
throughout the entire process. The reason is that the
SMC-CBMeMBer filter requires a significant amount of time
to obtain the target track parameters by update computing,
discard updated particles with low weights and reproduce
updated particles with high weights after update computing.
For further evaluating the effectiveness of the proposed

algorithm, 100 MC trials are performed for the proposed
algorithm and the SMC-CBMeMBer filter with different
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clutter rates and detection probabilities. First, the detection
probability pD,k ranges from 0.93 to 0.98, the clutter rate
remains unchanged at r=12 and other parameters which are
used in the MC trials are the same as that of the tracking
scenario given above. The time averaged NTEs, time
averaged OSPA distances and average computing time
versus detection probability are shown in Figs. 6, 7 and 8,
respectively. Second, the clutter rate r ranges from 1 to 30
under the condition of an unchanged detection probability
pD,k=0.98, and other parameters which are used in the MC
trials are the same as that of the tracking scenario given above.
The time averaged NTEs, time averaged OSPA distances and
average computing time versus clutter rate are shown in Figs.
9, 10 and 11, respectively.

Fig. 6. Time averaged NTEs for different algorithms versus detection
probability. The clutter rate r=12 is fixed.

Fig. 7. Time averaged OSPA distances for different algorithms versus
detection probability. The clutter rate r=12 is fixed.

In Figs. 6 and 7, it is obvious that all filtering algorithms
used in simulation experiments are significantly affected by
the value of detection probability. A low value of detection
probability can lead to a unreliable tacking result, i.e., in low
detection probability simulation experiments, both the time
averaged OSPA distances and the time averaged NTEs of
different algorithms are lower. However, the difference in the

time averaged OSPA distances tends to be significant with a
decrease in the detection probability. This indicates that the
tracking accuracies of the proposed algorithm are better than
those of the other two filtering algorithms in the case of low
detection probabilities.

Fig. 8. Average computing time for different algorithms versus detection
probability. The clutter rate r=12 is fixed.

Fig. 9. Time averaged NTEs for different algorithms versus clutter rate. The
detection probability pD,k=0.98 is fixed.

Fig. 10. Time averaged OSPA distances for different algorithms versus
clutter rate. The detection probability pD,k=0.98 is fixed.

From Figs. 6, 7 and 8, it can be also seen that the proposed
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algorithm can achieve satisfactory tracking results with a
much smaller computational cost compared with the
SMC-CBMeMBer filter in different detection probabilities.

Figs. 9 and 10 show the time averaged NTEs and time
averaged OSPA distances under different clutter rates. As
expected, the number of clutter measurements has an
influence on the tracking performance, and the tracking
accuracies of all filtering algorithms decrease with the
increase of the clutter rate. However, the time averaged NTEs
of the proposed algorithm tend to be lower than other filtering
algorithms with an increase in the clutter rate. As seen from
Fig. 11, the computing time of all filtering algorithms is
growing as the clutter rate increases, but the average time that
completing one MC trial requires of the proposed algorithm
is much smaller than that of the SMC-CBMeMBer filter.

Fig. 11. Average computing time for different algorithms versus clutter rate.
The detection probability pD,k=0.98 is fixed.

In addition, from Figs. 6, 7, 8, 9, 10 and 11, it can be
observed that the greater the number of particles is used in
SMC-CBMeMBer filter the better the tracking accuracy will
be achieved. However, the improved tracking accuracy is
obtained at the expense of additional computational load. In a
word, all these results presented in Figs. 6, 7, 8, 9, 10 and 11
confirm that the proposed algorithm can achieve a much
higher processing rate compared with the SMC-CBMeMBer
filter, and can also address the linear non-Gaussian tracking
problems with satisfactory results.

V. CONCLUSION

Under the assumptions of linear non-Gaussian models, a
Gaussian mixture implementation method of the CBMeMBer
filter, which can be seen as a generalized extension of the
GM-CBMeMBer filter, is derived in this paper. Based on the
Gaussian mixture models of non-Gaussian model noises and
the standard conclusions for Gaussian distributions, the
formulation of the proposed filter is presented in detail. The
proposed filter overcomes the drawbacks that are existed in
both the GM-CBMeMBer filter and the SMC-CBMeMBer
filter. The designed simulations demonstrate that the
proposed algorithm can track a time-varying and unknown
number of targets with much less computing time under
complex environments than SMC-CBMeMBer filter.
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