
 

 

Abstract—To achieve the optimal operation of power system, 

an improved multi-goal particle swarm optimization (IMPSO) 

algorithm is proposed in this paper. Based on the multi-goal 

optimal power flow (MOOPF) calculation, IMPSO algorithm 

can determine high-quality scheduling schemes which effectively 

reduce fuel cost, power loss and exhaust emission. Compared 

with the basic multi-goal PSO (BMPSO) algorithm, IMPSO 

algorithm realizes better solution diversity and searching ability 

by integrating an innovative dominant strategy and the 

mutation-crossover operation of inferior solutions. Four 

experiments prove that the proposed IMPSO algorithm achieves 

more superior Pareto optimal set (POS) and best compromise 

scheme (BCS) than BMPSO algorithm. Furthermore, the 

multi-output BP power flow prediction model is put forward in 

this paper to seek the winning elite schemes (WES) around the 

BCS of IMPSO algorithm. The presented BP prediction model 

can find multiple WES schemes of bi-objective and tri-objective 

MOOPF problems, which realize zero constraint violation and 

smaller goals. In general, the superior WES schemes determined 

by proposed IMPSO and BP power flow prediction model are of 

great help to realize the optimal operation of power system with 

improved economy and safety. 

 
Index Terms—Particle swarm optimization, Optimal power 

flow, BP prediction model, Optimal operation 

I. INTRODUCTION 

S an important energy, electric energy plays a key role in 

maintaining daily life. The optimal power flow (OPF) 

research can reduce the fuel cost, exhaust emission and power 

loss [1-3], which contributes to realize the better operation of 

power system. Furthermore, compared with single-objective 

OPF, the multi-goal OPF (MOOPF) research which can 

optimize more than two goals at the same time is more 

concerned by scholars. 

However, the high dimensional and non-differentiable 

characteristics make traditional methods not suitable for 

MOOPF problems. The advanced computer technologies 

represented by intelligent algorithms and neural networks 

provide great inspiration for efficiently solving MOOPF 
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problems. For example, the QOMJaya method with quasi 

-oppositional based learning [4], the NSGA-FA algorithm 

with special sorting rule and location-updating mechanism [5], 

the FAHSPSO-DE algorithm with fuzzy adaptive hybrid 

configuration [6] have smoothly solved MOOPF problems. 

A review of literatures shows that these algorithms suitable 

for MOOPF problems require satisfactory population 

diversity and excellent searching ability. Particle swarm 

optimization (PSO) algorithm as a representative swarm 

intelligence algorithm has wide application and good 

robustness. In recent years, PSO algorithm has solved many 

complex optimizations in power system such as the forecast 

of satellite power system parameter interval [7] and the power 

system network reconfiguration [8]. Therefore, PSO 

algorithm has the potential to deal with complex MOOPF 

problems. 

A. Contributions 

It is worth noting that, there are two key points in solving 

MOOPF problems with PSO algorithm. Firstly, an effective 

dominant strategy is indispensable to evaluate different 

scheduling schemes with m (m≥2) goals. In this paper, a 

constraint-goal dominant strategy considering constraint 

violation and candidate goal is put forward. Integrating the 

presented constraint-goal dominant strategy into the single 

objective PSO algorithm model can generate the basic 

multi-goal PSO (BMPSO) algorithm, which is used as the 

comparison algorithm in this paper. Then, in order to obtain 

high-quality Pareto optimal set (POS) and best compromise 

scheme (BCS) of MOOPF, two other improvements are 

combined with BMPSO to form the proposed improved 

multi-goal PSO (IMPSO) algorithm. 

Besides the constraint-goal dominant strategy, the 

additional local exploration operation and mutation crossover 

operation of inferior solutions greatly improve the population 

diversity and optimization performance of IMPSO algorithm. 

Compared with BMPSO algorithm, the suggested IMPSO 

algorithm has better running stability and is capable to 

determine feasible BCS schemes with clear competitive 

advantage. 

Furthermore, a multi-output BP power flow network which 

can predict the fuel cost, power loss and emission of MOOPF 

problems is constructed in this paper. The proposed BP 

prediction model can quickly find the winning elite schemes 

(WES) of MOOPF problems in a small range near the 

obtained BCS. The WES schemes should satisfy all system 

constraints and have m smaller goals than current BCS, which 
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are beneficial to achieve the optimal operation of power 

system. 

B. Structure 

The structure of this paper is set as follows. Three 

components of MOOPF including goals, constraints and 

constraint handling strategy are given in Section Ⅱ. Then, 

Section Ⅲ gives the improvements and application of 

proposed IMPSO algorithm. Four experiments prove the 

advantages of IMPSO algorithm in obtaining better BCS and 

running stability when solving MOOPF problems. Besides, 

the application of proposed BP power flow prediction model 

on bi-objective and tri-objective MOOPF problems is given 

in Section Ⅳ. Finally, Section Ⅴ gives the conclusion of this 

paper. 

II. MATHEMATICAL MODEL 

Four goals of MOOPF problems are studied in this paper. 

Each available power flow dispatching scheme should satisfy 

all system constraints. Therefore, the appropriate constraint 

processing method is also an important part of MOOPF 

mathematical model. 

A. Goals 

The novel IMPSO algorithm is put forward to determine 

the qualified dispatching schemes which reduce power loss 

(Gpl), basic fuel cost (Gfc), fuel cost with valve point effect 

(Gfv) and emission (Ge). The mentioned goals are shown as (1) 

~ (4) [9, 10]. 
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where con(k) is the conductance of kth branch. NL and NG are 

the numbers of transmission lines and generators. V and δ are 

the amplitude and phase angle of voltage, respectively. a, b, c, 

d and e are five cost coefficients while α, β, γ, η and λ are 

emission coefficients. In addition, PGi is the active power of 

ith node. 

B. Constraints 

The constraints of MOOPF problems include two equality 

constraints and two kinds of inequality constraints. Two 

equality constraints show the active power balance and 

reactive one. The inequality constraints of control variables 

act on generator active power output at PV node (PG), 

generator node voltage (VG), transformer (T) and reactive 

power injection (QC). Meanwhile, the inequality constraints 

of state variables act on generator active power at slack node 

(PG1), load node voltage (VL), generator reactive power (QG) 

and apparent power of transmission line (S). 

The above system constraints of MOOPF problems can be 

found in [11, 12]. Two equality constraints are used as the 

termination condition of Newton-Raphson calculation. Thus, 

this paper focuses on the treatment strategy of inequality 

constraints. 

C. Constraints processing 

As independent variables of MOOPF problems, the control 

variables which do not satisfy inequality constraints will be 

adjusted according to formula (5). 
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where Vc
min 
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G , V
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Gi , Tmax, 

Q
max 

C ] define the valid ranges of ith control variables set (Vc). 

Additionally, the constraint violation (Viol) of unqualified 

state variables defined as (6) is used as one criterion of 

adoption priority of different scheduling schemes. 

 ( ) | ( ) | | ( ) | | ( ) | | ( ) |i P i V i Q i S iViol S Viol S Viol S Viol S Viol S     (6) 

where ViolP(Si), ViolV(Si), ViolQ(Si) and ViolS(Si) are the 

violations of the ith scheme (Si) which violates the inequality 

constraints of PG1, VL, QG and S, respectively. 

III. IMPSO ALGORITHM AND APPLICATION 

To smoothly solve the complex MOOPF problems with m 

conflicting goals, the original single-objective PSO algorithm 

needs to be combined with effective non-inferior dominance 

rule of different dispatching schemes. In this paper, the 

BMPSO algorithm which is able to find the feasible POS of 

MOOPF is generated by integrating constraint-goal dominant 

strategy. 

A. BMPSO algorithm 

The velocity with inertia weight and position update 

formulas of BMPSO algorithm are shown as (7) and (8). 

Meanwhile, the inertia weight is updated based on (9). 
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where c1, c2 are two learning factors and r1, r2 are random 

numbers between (0, 1). xp and xg indicate the current local 

optimum and global one. ωs and ωe are the maximum and 

minimum of inertia weight. And kmax is the maximum 

iteration. 

For specific MOOPF problems, the constraint-goal 

dominant strategy is also integrated into BMPSO algorithm. 

The proposed constraint-goal dominant strategy aims to select 

the final POS set of MOOPF problems based on goal values 

and constraint violation. 

Firstly, the Rank index of each candidate power flow 

scheme is determined based on the non-inferior sorting rule 

proposed by Deb [13, 14]. In detail, it can be judged that the Si 

scheme dominates the Sj one when condition (10) or (11) is 

satisfied. 

Among Na candidate schemes, these elite schemes that are 

not dominated by any other scheme are marked as Rank=1. 

Regardless of the schemes with definite Rank index, these 

suboptimal schemes with Rank=2 are also determined 

according to (10) and (11). Repeat the above process until all 

Na candidate schemes have their corresponding Rank index. 

In this paper, R(i) represents the number of schemes with 

Rank≤i, and Np is the scale of POS set. 
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When R(i-1)＜Np and R(i)＞Np, the (R(i)- Np) schemes with 

better performance are determined from the candidate 

schemes with Rank=i and included in the final POS set. After 

clarifying the Rank index according to constraint-goal 

dominant strategy, the POS of MOOPF problems can be 

determined as follows. 

(i) According to the satisfaction function shown in 

formulas (12) and (13), a relatively optimal scheduling 

scheme BCSR is determined from the R(1) dominant schemes 

with Rank=1. The detail of satisfaction function can be found 

in [12, 15]. 
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where f
max 

i  and f
min 

i  are the maximum and minimum of ith goal. 

(ⅱ) Calculate the Euclidean distances (DEuc) between the 

(R(i)-R(i-1)) schemes with Rank=i and BCSR scheme, 

respectively. 

(ⅲ) The (R(i)-Np) schemes with smaller DEuc are selected 

from (R(i)-R(i-1)) candidate schemes and included into POS set. 

(ⅳ) Determine the final POS set which is composed by the 

above (R(i)- Np) schemes with Rank=i and R(i-1) schemes with 

Rank≤i-1. 

In general, the above BMPSO algorithm with constraint- 

goal dominant strategy is capable to handle MOOPF 

problems. 

B. Proposed IMPSO algorithm 

Experiments show that BMPSO algorithm can obtain 

feasible POS. However, the uniformity of Pareto Front (PF) 

and the quality of BCS schemes still have room for 

improvement. Therefore, besides the proposed constraint goal 

dominant strategy, IMPSO algorithm also integrates local 

exploration operation and mutation crossover operation to 

further optimize the performance of solving MOOPF 

problems. 

1) Local exploration operation 

In order to improve the population diversity, the local 

exploration operation is supplemented in the suggested 

IMPSO algorithm. Specifically, the local exploration 

operation shown as (14) is performed on the current Np 

solutions for each 50 iteration. 

 3 , 1,2, ,new original original

i i ix x r x i Np     (14) 

where x
original 

 i is the original individual at kth (k=50,100,…, kmax) 

iteration and r3 is a random number between (-1,1). 

After the local search operation is completed, Np xoriginal 

schemes and Np xnew ones are integrated and duplicate 

solutions are deleted to obtain Nv (Np≤Nv≤2Np) candidate 

schemes. The Rank index of Nv schemes and the DEuc distance 

of corresponding candidate solutions are clarified first. Then, 

the Np schemes with better quality determined based on 

constraint-goal dominant strategy are selected for the next 

iteration. 

2) Mutation-crossover operation 

The current POS set of MOOPF problems can be obtained 

by presented IMPSO algorithm after kmax iteration. In this 

paper, the Ni scheduling schemes with largest Rank index in 

POS set is defined as inferior schemes. The mutation 

crossover operation shown in (15) and (16) is implemented on 

inferior schemes to improve the quality of POS set. In 

addition, at least 20%Np schemes perform the mutation 

crossover operation in this paper. If Ni＜20%Np, the (20%Np 

-Ni) random schemes with lower adoption priority are also 

perform this operation to further optimize the variety and 

performance of scheduling schemes. The mutation crossover 

operation is inspired by differential evolution algorithm and 

the details can be referred to [16, 17]. 
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where xS1, xS2 and xS3 are three different schemes. Fmu and Fcr 

are, respectively, the mutation factor and crossover one. η is a 

random number between 0 and 1. D is the dimension of 

independent variables and q is a positive integer between [1, 

D]. 

C. Application of IMPSO algorithm 

The innovative IMPSO algorithm is put forward by 

integrating the above three improvements and the main flow 

of IMPSO algorithm to solve MOOPF problems is shown in 

Fig. 1. 

To verify the applicability and advantages of IMPSO 

algorithm, four MOOPF simulation experiments shown in 

TABLE Ⅰ are carried out in this paper. 

1) Case 1 

In this paper, Case 1 simultaneously considers the 

reduction of power loss and basic fuel cost on IEEE 30-bus 

system. The structure and details of standard IEEE 30-bus 

system can be found in [12, 18]. 

The PFs of Case 1 obtained by BMPSO and IMPSO 

algorithms are shown in Fig. 2. Fig. 2 indicates that the 

proposed IMPSO algorithm determines the uniformly 

distributed PF while the PF of BMPSO algorithm is relatively 

scattered. 

TABLE I 

CASE SETTINGS 

Cases Goals m System 
Number of independent 

experiments 

Case 1 Gfc & Gpl 2 IEEE 30 30 

Case 2 Gfv & Gpl 2 IEEE 30 30 

Case 3 Gfc & Gpl & Ge 3 IEEE 30 30 

Case 4 Gfc & Gpl 2 IEEE 57 30 
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Input parameters of IMPSO algorithm and Np initial 

scheduling schemes
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Fig. 1. IMPSO algorithm on MOOPF problems 

Furthermore, Fig. 2 also gives the objectively determined 

BCS scheme and two schemes which respectively obtain the 

minimum cost and minimum power loss. It clearly states that 

IMPSO algorithm achieves the minimum power loss with 

2.8547 MW and the minimum fuel cost with 799.3476 $/h. 

For Case 1, the 24-dimensional control variables of specific 

schemes are given in TABLE Ⅱ. TABLE Ⅱ shows that the 

BCS of IMPSO algorithm including 5.0715 MW of power 

loss and 831.2837 $/h of fuel cost is obviously better than the 

one of BMPSO algorithm including 5.1425 MW of power 

loss and 836.4278 $/h of fuel cost. 

The PF-uniformity and BCS-quality show the effectiveness 

of three improvements and the competitive advantage of 

proposed IMPSO algorithm in solving dual-objective 

MOOPF problems. 

2) Case 2 

In Case 2, the power loss and fuel cost with valve-point are 

optimized at the same time on IEEE 30-bus system. The 

valve-point effect increases the difficulty of solving MOOPF 

problems, which is also the main reason that intelligent 

algorithms are adopted instead of traditional methods to solve 

MOOPF problems. 

Fig. 3 gives the PFs of Case 2 and states the PF uniformity 

of IMPSO algorithm is more superior to the one of BMPSO 

algorithm. Fig. 3 also shows IMPSO algorithm obtains the 

minimum power loss with 2.8410 MW and the minimum fuel 

cost considering valve-point with 831.3622 $/h. Besides, the 

presented IMPSO algorithm finds the BCS scheme composed 

by 5.6685 MW of power loss and 863.3560 $/h of fuel cost 

considering valve-point. TABLE Ⅲ gives the detail control 

variables of corresponding scheduling schemes for Case 2. 

In general, Fig. 3 and TABLE Ⅲ intuitively prove the 

superiorities of IMPSO algorithm put forward in this paper 

for solving complex MOOPF problems compared with the 

basic BMPSO algorithm. 

3) Case 3 

In contrast to the dual-objective optimizations, the 

tri-objective MOOPF problems with greater difficulty can 

evaluate the performance of novel IMPSO algorithm more 

comprehensively. 

The Case 3 in this paper aims to realize the simultaneous 

optimization of power loss, emission and fuel cost on IEEE 

30-bus system. The PFs of Case 3 obtained by BMPSO and 

IMPSO algorithms are given in Fig. 4 and Fig. 5, respectively. 

It indicates that BMPSO algorithm obtains the feasible POS 

set, but the PF-uniformity is not as good as that of IMPSO 

algorithm. Additionally, Fig. 5 shows the distribution of three 

scheduling schemes with minimum single goal obtained by 

IMPSO algorithm. In detail, IMPSO algorithm achieves the 

minimum emission with 0.1942 ton/h, the minimum power 

loss with 2.8544 MW and the minimum fuel cost with 

799.1717 $/h. 

 
Fig. 2. PFs of Case 1 

 
Fig. 3. PFs of Case 2 
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TABLE  Ⅱ 

CONTROL VARIABLES OF SCHEDULING SCHEMES IN CASE 1 

Case 1 

Variables 

BCS  Schemes with minimum single goal of IMPSO 

BMPSO IMPSO  Minimum fuel cost Minimum power loss 

PG2(MW) 54.4895 52.7942  48.2721 80.0000 

PG5(MW) 36.2669 30.8092  21.2022 50.0000 

PG8(MW) 33.6890 34.8318  23.2476 35.0000 

PG11(MW) 27.3292 27.6957  10.7979 30.0000 

PG13(MW) 16.4369 23.0659  12.0313 40.0000 

VG1(p.u.) 1.1000 1.1000  1.0998 1.1000 

VG2(p.u.) 1.0902 1.0909  1.0876 1.0985 

VG5(p.u.) 1.0694 1.0696  1.0638 1.0848 

VG8(p.u.) 1.0692 1.0774  1.0671 1.0897 

VG11(p.u.) 1.0895 1.0947  1.0961 1.0875 

VG13(p.u.) 1.0660 1.0997  1.0714 1.1000 

T11(p.u.) 1.0131 1.0464  1.0453 1.0061 

T12(p.u.) 0.9622 0.9347  0.9382 0.9574 

T15(p.u.) 0.9646 0.9949  1.0112 0.9782 

T36(p.u.) 0.9696 0.9828  0.9824 0.9709 

QC10(p.u.) 0.0196 0.0470  0.0013 0.0500 

QC12(p.u.) 0.0276 0.0002  0.0180 0.0000 

QC15(p.u.) 0.0187 0.0273  0.0329 0.0423 

QC17(p.u.) 0.0042 0.0497  0.0300 0.0500 

QC20(p.u.) 0.0363 0.0477  0.0384 0.0453 

QC21(p.u.) 0.0500 0.0495  0.0220 0.0500 

QC23(p.u.) 0.0116 0.0301  0.0292 0.0388 

QC24(p.u.) 0.0398 0.0484  0.0431 0.0483 

QC29(p.u.) 0.0329 0.0263  0.0278 0.0259 

Gpl(MW) 5.1425 5.0715  8.6182 2.8547 

Gfc($/h) 836.4278 831.2837  799.3476 967.0772 

TABLE  Ⅲ 

CONTROL VARIABLES OF SCHEDULING SCHEMES IN CASE 2 

Case 2 

Variables 

BCS  Schemes with minimum single goal of IMPSO 

BMPSO IMPSO  Minimum cost with valve-point Minimum power loss 

PG2(MW) 45.9942 45.7978  45.4282 80.0000 

PG5(MW) 29.3674 32.0684  18.2797 50.0000 

PG8(MW) 34.4707 34.9037  10.0000 35.0000 

PG11(MW) 26.6746 23.4431  10.0000 30.0000 

PG13(MW) 19.3145 17.1178  12.0000 40.0000 

VG1(p.u.) 1.1000 1.1000  1.1000 1.0986 

VG2(p.u.) 1.0798 1.0866  1.0833 1.0978 

VG5(p.u.) 1.0676 1.0664  1.0501 1.0775 

VG8(p.u.) 1.0616 1.0756  1.0564 1.0862 

VG11(p.u.) 1.0860 1.1000  1.0580 1.1000 

VG13(p.u.) 1.0928 1.1000  1.0695 1.1000 

T11(p.u.) 1.0993 1.0646  1.0430 1.0122 

T12(p.u.) 0.9125 0.9005  0.9390 0.9524 

T15(p.u.) 1.0068 0.9935  1.0369 0.9888 

T36(p.u.) 0.9889 0.9749  1.0109 0.9726 

QC10(p.u.) 0.0186 0.0211  0.0000 0.0500 

QC12(p.u.) 0.0192 0.0175  0.0000 0.0500 

QC15(p.u.) 0.0500 0.0321  0.0220 0.0404 

QC17(p.u.) 0.0315 0.0458  0.0437 0.0500 

QC20(p.u.) 0.0267 0.0482  0.0492 0.0478 

QC21(p.u.) 0.0183 0.0500  0.0279 0.0500 

QC23(p.u.) 0.0495 0.0225  0.0205 0.0285 

QC24(p.u.) 0.0144 0.0496  0.0197 0.0500 

QC29(p.u.) 0.0500 0.0301  0.0500 0.0280 

Gpl(MW) 5.8706 5.6685  10.3532 2.8410 

Gfv ($/h) 866.4884 863.3560  831.3622 1026.6280 
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Furthermore, TABLE Ⅳ, which gives the control variables 

of tri-objective scheduling schemes, indicates IMPSO 

algorithm determines the BCS schemes including 0.2131 

ton/h of emission, 4.3958 MW of power loss and 863.2721 

$/h of fuel cost. Obviously, the BCS of IMPSO algorithm is 

more preferable than the one of BMPSO algorithm which 

includes 0.2131 ton/h of emission, 4.3964 MW of power loss 

and 869.7383 $/h of fuel cost. And the advantage of the BCS 

obtained by IMPSO algorithm is mainly embodied in the 

reduction of fuel cost. 

4) Case 4 

Further, the effectiveness of IMPSO algorithm for MOOPF 

problems is also verified on the more complex IEEE 57-bus 

system with 33 dimensional control variables. The Case 4 

considers the simultaneous reduction of power loss and fuel 

cost on IEEE 57-bus system. The structure and details of 

standard 57-bus system can be found in [19, 20]. 

The PFs of Case 4 obtained by BMPSO and IMPSO are 

shown in Fig. 6. Fig. 6 shows that IMPSO algorithm obtains 

the uniformly distributed PF while BMPSO algorithm finds a 

scattered one. Besides, Fig. 6 indicates on IEEE 57-bus 

system, IMPSO algorithm achieves the minimum power loss 

with 9.6184 MW and the minimum fuel cost with 41672.8007 

$/h. The control variables of BCS schemes and two schemes 

with minimum single goal are given in TABLE Ⅴ. TABLE Ⅴ 

states that IMPSO algorithm achieves the BCS scheme 

including 10.9830 MW of power loss and 41988.2811 $/h of 

fuel cost, which dominates BMPSO algorithm.  

Case 4 states that the advantages of IMPSO in obtaining the 

uniformly distributed PF and high quality BCS are more fully 

reflected in high-dimensional 57-bus system. 

 

                      
Fig. 4. PF of BMPSO algorithm for Case 3                                                          Fig. 5. PF of IMPSO algorithm for Case 3 

TABLE  Ⅳ 

CONTROL VARIABLES OF SCHEDULING SCHEMES IN CASE 3 

Case 3 

Variables 

BCS  Schemes with minimum single goal of IMPSO 

BMPSO IMPSO  Minimum fuel cost Minimum power loss Minimum emission 

PG2(MW) 57.9676 62.1318  48.1791 80.0000 72.4413 

PG5(MW) 39.4766 35.9530  21.1218 50.0000 50.0000 

PG8(MW) 31.7923 34.4143  22.0236 35.0000 35.0000 

PG11(MW) 29.7538 29.4704  11.3591 30.0000 30.0000 

PG13(MW) 31.5219 29.8920  12.0450 40.0000 40.0000 

VG1(p.u.) 1.0977 1.1000  1.1000 1.1000 1.1000 

VG2(p.u.) 1.0893 1.0902  1.0881 1.0974 1.0980 

VG5(p.u.) 1.0786 1.0852  1.0594 1.0807 1.0770 

VG8(p.u.) 1.0765 1.0861  1.0698 1.0896 1.0877 

VG11(p.u.) 1.0594 1.0786  1.0978 1.0914 1.1000 

VG13(p.u.) 1.0108 1.1000  1.1000 1.1000 1.1000 

T11(p.u.) 1.0977 1.0083  0.9369 1.0831 1.0912 

T12(p.u.) 1.0183 0.9048  1.0513 0.9000 0.9000 

T15(p.u.) 1.1000 1.0673  1.0216 0.9775 0.9899 

T36(p.u.) 1.0563 0.9868  0.9831 0.9783 0.9755 

QC10(p.u.) 0.0500 0.0316  0.0031 0.0500 0.0500 

QC12(p.u.) 0.0149 0.0017  0.0469 0.0000 0.0000 

QC15(p.u.) 0.0446 0.0331  0.0306 0.0456 0.0500 

QC17(p.u.) 0.0500 0.0490  0.0422 0.0470 0.0435 

QC20(p.u.) 0.0204 0.0487  0.0448 0.0401 0.0428 

QC21(p.u.) 0.0488 0.0489  0.0377 0.0500 0.0500 

QC23(p.u.) 0.0430 0.0489  0.0413 0.0500 0.0500 

QC24(p.u.) 0.0056 0.0130  0.0305 0.0413 0.0298 

QC29(p.u.) 0.0048 0.0092  0.0376 0.0226 0.0209 

Ge(ton/h) 0.2131 0.2131  0.3296 0.1949 0.1942 

Gpl (MW) 4.3964 4.3958  8.6474 2.8544 2.9348 

Gfv ($/h) 869.7383 863.2721  799.1717 967.0766 952.1179 
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TABLE  Ⅴ 

CONTROL VARIABLES OF SCHEDULING SCHEMES IN CASE 4 

Case 4 

Variables 

BCS  Schemes with minimum single goal of IMPSO 

BMPSO IMPSO  Minimum fuel cost Minimum power loss 

PG2(MW) 86.9564 77.7233  94.7361 0.0000 

PG3(MW) 68.2585 57.3050  44.7901 140.0000 

PG6(MW) 79.6996 91.3638  74.0569 99.6210 

PG8(MW) 365.1545 374.0779  458.6700 305.2403 

PG9(MW) 99.8420 99.5810  83.3328 99.9532 

PG12(MW) 410.0000 408.8989  366.3933 409.8839 

VG1(p.u.) 1.1000 1.1000  1.1000 1.1000 

VG2(p.u.) 1.1000 1.0976  1.0977 1.0950 

VG3(p.u.) 1.1000 1.0920  1.0886 1.1000 

VG6(p.u.) 1.1000 1.1000  1.1000 1.1000 

VG8(p.u.) 1.1000 1.1000  1.1000 1.1000 

VG9(p.u.) 1.1000 1.0933  1.0874 1.0948 

VG12(p.u.) 1.1000 1.0933  1.0866 1.0949 

T19(p.u.) 0.9712 0.9538  0.9555 0.9710 

T20(p.u.) 1.0280 1.0625  1.0957 1.0353 

T31(p.u.) 0.9995 0.9640  0.9502 0.9775 

T35(p.u.) 0.9969 0.9991  1.0946 0.9346 

T36(p.u.) 1.1000 0.9582  0.9386 0.9933 

T37(p.u.) 1.0958 0.9631  0.9864 0.9510 

T41(p.u.) 1.0871 1.0071  1.0265 0.9980 

T46(p.u.) 0.9265 0.9641  0.9646 0.9677 

T54(p.u.) 0.9477 0.9843  1.0013 0.9717 

T58(p.u.) 1.0144 1.0037  1.0061 0.9996 

T59(p.u.) 0.9917 1.0259  1.0467 1.0091 

T65(p.u.) 1.0348 1.0449  1.0310 1.0503 

T66(p.u.) 0.9872 1.0146  1.0449 1.0062 

T71(p.u.) 1.0446 0.9632  0.9783 0.9674 

T73(p.u.) 0.9250 1.0706  1.0768 1.0587 

T76(p.u.) 1.1000 0.9892  1.0272 0.9663 

T80(p.u.) 1.1000 1.0041  0.9976 1.0036 

QC18(p.u.) 0.0538 0.1644  0.2193 0.1130 

QC25(p.u.) 0.1161 0.1733  0.2193 0.1375 

QC53(p.u.) 0.1971 0.1435  0.1565 0.1566 

Gpl(MW) 11.1328 10.9830  14.7281 9.6184 

Gfc ($/h) 42150.7986 41988.2811  41672.8007 45072.2203 

 
Fig. 6. PF of Case 4 

D. Evaluation of IMPSO algorithm 

Besides the comparison algorithm BMPSO in this paper, 

the scheduling schemes of MOOPF problems obtained by 

proposed IMPSO algorithm are also compared with the 

recently published results. The comprehensive evaluation 

based on the single-objective optimal scheduling schemes, the 

BCS schemes and the operational stability can effectively 

prove the competitive advantages of IMPSO algorithm. 

1) Single-objective optimal scheme 

When solving MOOPF problems, IMPSO algorithm can 

obtain a feasible POS set which is composed of Np schemes. 

TABLE Ⅵ gives four minimum single-objective schemes on 

IEEE 30-bus system obtained by IMPSO algorithm and 

multiple published results. In detail, the suggested IMPSO 

algorithm achieves the minimum emission with 0.1942 ton/h, 

minimum power loss with 2.8410 MW, minimum fuel cost 

with 799.1717 $/h and minimum fuel cost considering 

valve-point with 831.3622 $/h. On IEEE 30-bus system, the 

optimal schemes that only consider single goal obtained by 

proposed IMPSO algorithm are better than many published 

methods such as FAHSPSO-DE [6] and INSGA-Ⅲ [21]. 
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Similarly, TABLE Ⅶ gives the comparisons of minimum 

single-objective schemes on IEEE 57-bus system. It clearly 

shows that IMPSO algorithm achieves the minimum power 

loss with 9.6184 MW and minimum fuel cost with 

41672.8007 $/h, which dominates multiple published 

algorithms such as ESDE-MC [9] and DA-PSO [22]. 

2) BCS scheme 

In addition, the BCS scheme is also an intuitive and 

important indicator to evaluate the performance of different 

algorithms for solving MOOPF problems. 

In this paper, TABLE Ⅷ gives the comparisons of 

obtained BCS schemes of Case 1 and Case 2 while TABLE Ⅸ 

gives the ones of Case 3 and Case 4. It indicates that the 

IMPSO algorithm finds the more desirable BCS schemes than 

most published algorithms such as MPIO-COSR [20] and 

MFA [5] algorithms. There is no doubt that the comparison 

results of BCS schemes provide strong persuasion for the 

superiorities of IMPSO algorithm. 

However, there is still room for further improvement in the 

BCS quality of IMPSO algorithm. For example, TABLE Ⅷ 

shows that for Case 2, the BCS of IMPSO algorithm is better 

than the ones of MFA [5] and NHBA-CPFD [18] algorithms. 

Regrettably, based on the power loss and fuel cost with 

valve-point, IMPSO algorithm in this paper and NMBAS [11] 

algorithm do not dominate each other. It is also one of key 

reasons that BP power flow prediction model is proposed to 

further optimize BCS and determine WES scheduling 

schemes. 

3) Operational stability 

Furthermore, the operational stability of BMPSO and 

IMPSO algorithms is evaluated based on the PF superposition 

of 30 independent experiments.  

TABLE  Ⅵ 

COMPARISONS OF MINIMUM SINGLE-OBJECTIVE SCHEMES ON IEEE 30-BUS SYSTEM 

Algorithm Emission Algorithm Power loss Algorithms Fuel cost Algorithm Cost with 

valve-point 
IMPSO 0.1942 IMPSO 2.8410 IMPSO 799.1717 IMPSO 831.3622 

INSGA-Ⅲ[21] 0.1943 INSGA-Ⅲ[21] 3.1242 INSGA-Ⅲ[21] 799.5961 IMFO[23] 832.1023 

MOIBA[15] 0.20 ESDE-MC[9] 2.8482 HHODE[24] 800.9959 ECHT-DE[16] 832.1356 

NISSO[19] 0.2048 MSCA[25] 2.9334 NISSO[19] 799.7624 SF-DE[16] 832.0882 

MOEA/D-SF[26] 0.2056 Hybrid DE-HS[27] 3.0542 AMTPG-Jaya[1] 800.1946 SP-DE[16] 832.4813 

FAHSPSO-DE[6] 0.2042 AMTPG-Jaya[1] 3.0802 FAHSPSO-DE[6] 799.8066 ACDE[28] 832.0722 

ACDE[28] 0.2048 ACDE[28] 3.0840 ACDE[28] 800.4113   

QRJFS[29] 0.204688 QRJFS[29] 2.856711     

TABLE  Ⅶ 

COMPARISONS OF MINIMUM SINGLE-OBJECTIVE SCHEMES ON IEEE 57-BUS SYSTEM 

Algorithm Power loss Algorithm Fuel cost 

IMPSO 9.6184 IMPSO 41672.8007 

ESDE-MC[9] 9.9799 ESDE-EC[9] 41677.7543 

DA-PSO[22] 10.1212 DA-PSO[22] 41674.62 

FAHSPSO-DE[6] 11.7328 IMOBA[30] 41673 

HPSO-DE[6] 11.9788 MOEA/D-SF[26] 41683.39 

SMA[31] 10.6734 ISSA[3] 41675.0203 

  SMA[31] 41697.1189 

TABLE Ⅷ 

COMPARISONS OF BCS SCHEMES OF CASE 1 AND CASE 2 

Comparisons  
Case 1  

Comparisons 
Case 2 

Power loss Fuel cost  Power loss Fuel cost with valve-point 

BMPSO 5.1425 836.4278  BMPSO 5.8706 866.4884 

IMPSO 5.0715 831.2837  IMPSO 5.6685 863.3560 

MPIO-COSR[20] 5.1085 831.5576  MFA[5] 5.9195 867.60 

HFBA-COFS[32] 5.0796 832.3203  NHBA-CPFD[18] 5.6726 865.9106 

INSGA-Ⅲ[21] 5.0766 832.0140  HFBA-COFS[32] 5.6791 863.7107 

MOBBA-CPNS[33] 5.0223 834.6417  NMBAS[11] 5.6487 863.5610 

TABLE Ⅸ 

COMPARISONS OF BCS SCHEMES OF CASE 3 AND CASE 4 

Comparisons 
Case 3  

Comparisons 
Case 4 

Emission Power loss Fuel cost  Power loss Fuel cost 

BMPSO 0.2131 4.3964 869.7383  BMPSO 11.1328 42150.7986 

IMPSO 0.2131 4.3958 863.2721  IMPSO 10.9830 41988.2811 

NSGA-FA[5] 0.2121 4.5558 863.79  ESDE-EC[9] 11.9668 42013.3395 

NSGA-Ⅲ[34] 0.2219 4.8522 873.7811  ESDE-MC[9] 11.8415 41998.3588 

I-NSGA-Ⅲ[34] 0.2218 4.6004 871.0226  HFBA-COFS[32] 10.6995 42122.0140 

MPIO-PFM[20] 0.2160 4.4474 866.0601  MOJFS[29] 15.1461 42591.8712 
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Fig. 7 gives the PF-superposition of BMPSO and IMPSO 

algorithms for the dual-objective MOOPF case on 30-bus 

system (Case 1). Fig. 7 intuitively shows that there is almost 

no difference between 30 PFs obtained by IMPSO algorithm 

while the 30 PFs of BMPSO algorithm have poor consistency. 

Meanwhile, Fig. 8 gives the PF-superposition of two involved 

algorithms for the tri-objective experiment on 30-bus system 

(Case 3) and Fig. 9 gives the PF-superposition result of a 

dual-objective MOOPF case on 57-bus system (Case 4). 

 Fig. 7 ~ Fig. 9 strongly prove that the presented IMPSO 

algorithm has more significant advantages over the basic 

BMPSO algorithm in terms of operation stability even on 

more complex 57-bus system. 

IV. BP PREDICTION NETWORK AND APPLICATION 

Four MOOPF experiments verify that the BCS of proposed 

IMPSO algorithm is not only superior to the BCS of BMPSO 

algorithm, but also dominates the ones of most published 

algorithms. However, further research shows that there is 

room for further optimization of the BCS quality. Therefore, a 

multi-output BP prediction model which is suitable for 

MOOPF problems is proposed in this paper. 

A. Proposed BP prediction network 

In order to reduce the randomness of experimental results, 

five candidate BP prediction models are generated according 

to the main process shown in TABLE Ⅹ. Then, a relatively 

optimal BP power flow prediction network is determined 

from candidate networks based on the mean absolute error 

(MAE), root mean squared error (RMSE) and mean absolute 

percentage error (MAPE). Three mentioned errors are shown 

in (17) ~ (19)  [21, 35]. 
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where Greal and GBP are true and predicted goal values. 

B. Application of BP network 

In this paper, the feasibility of proposed BP power flow 

prediction model is demonstrated by a dual-objective 

MOOPF simulation experiment and a tri-objective one. 

1) BP network for dual-objective MOOPF 

First, a dual output BP prediction model is constructed for 

Case 1 which optimizes the fuel cost and power loss on IEEE 

30-bus system. TABLE Ⅺ gives the RMSE, MAE and MAPE 

errors corresponding to the fuel cost and power loss 

prediction of five candidate networks. It indicates that the 

fifth candidate network achieves the smallest prediction 

errors of Gfc and Gpl goals, which is adopted as the final BP 

power flow prediction model of Case 1. 

In detail, Fig. 10 gives the fitting results of two goals 

studied in Case 1 and it clearly shows that the presented BP 

network can accurately predict fuel cost and power loss based 

on control variables. The four WES scheduling schemes of 

Case 1 obtained by BP prediction network are given in 

TABLE Ⅻ. It should be noted that TABLE Ⅻ only gives the 

continuous control variables of WES schemes, while the 

discrete control variables are the same as the BCS of IMPSO 

algorithm shown in TABLE Ⅱ. The fuel cost and power loss 

goals of WES schemes are both smaller than the ones of BCS 

determined by IMPSO algorithm, which strongly proves the 

superiority of BP prediction network. 

2) BP network for tri-objective MOOPF 

Then, an effective BP power flow prediction network is 

built for the tri-objective MOOPF Case 3 which optimizes 

fuel cost, power loss and emission simultaneously. 

TABLE ⅩⅢ gives the evaluation results of five candidate 

BP networks and the second BP network which realizes the 

smallest prediction errors is adopted as the final BP power 

flow prediction model of Case 3. Besides, Fig. 11 gives the 

fitting results of the predicted fuel cost, power loss, emission 

and the real ones. Fig. 11 indicates that the BP network built 

for tri-objective MOOPF problem is not as accurate as the one 

built for dual-objective MOOPF problem, which points out 

the direction for further research. 

Thrillingly, the proposed BP power flow prediction 

network is also suitable for the more complex tri-objective 

MOOPF problem, and successfully obtains three high quality 

WES schemes shown in TABLE ⅩⅣ. The WES schemes 

determined by BP power flow prediction network, which have 

higher adoption priority than the BCS of IMPSO algorithm, 

provide multiple satisfactory scheduling schemes for the 

optimal operation of power system. 

 

 
Fig. 7. Superposition of 30 PFs of dual-objective MOOPF on 30-bus system 
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Fig. 8. Superposition of 30 PFs of triple-objective MOOPF on 30-bus system  

 
Fig. 9. Superposition of 30 PFs of dual-objective MOOPF on 57-bus system 

TABLE Ⅹ 

BP POWER FLOW PREDICTION NETWORK FOR MOOPF PROBLEMS 

Begin 

Input 1000 scheduling schemes and the corresponding Ge, Gfc, Gfv, Gpl goals 

for i=1:5 

Select the random 900 schemes for BP network training (Intrain) and the other 100 schemes for testing (Intest); 

Identify the corresponding output data of training data (Outtrain) and testingdata (Outtest); 

Perform the data normalization; 

Clarify the structure of BP power flow prediction network; 

Generate the ith candidate BP prediction network NBP(i); 

Predict the m goals of Intest set (OutBPtest) according to NBP(i) model; 

Perform the inverse-normalization on OutBPtest set to obtain the predictive goals (Pretest); 

Save the ith BP model NBP(i); 

   end for 

Evaluate the quality of five candidate BP prediction networks based on Outtest and Pretest; 

Determine the relatively-best model N
best 

BP  based on RMSE, MAE and MAPE errors; 

Input the control variables of BCS scheme determined by IMPSO algorithm (BCSIMPSO); 

Set the valid ranges of BP exploration operation within [0.999 BCSIMPSO, 1.001 BCSIMPSO]; 

Randomly generate Nbp candidate scheduling schemes within the above valid ranges; 

Regulate the mentioned Nbp schemes based on (5);  

Obtain the predictive Ge, Gfc, Gfv and Gpl goals of Nbp schemes based on N
best 

BP network; 

Pick out the elite schemes with m smaller goals than the current BCS scheme; 

Perform the Newton-Raphson power flow calculation to the above elite schemes and obtain the real Ge, Gfc, Gfv, Gpl goals; 

Determine the WES schemes which realize zero constraint-violation and dominate the BCS of IMPSO algorithm; 

End 
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Fig. 10. Fitting results of predicted and real goals of dual-objective Case 1 

 

 
Fig. 11. Fitting results of predicted and real goals of tri-objective Case 3 

TABLE Ⅺ 

PREDICTION ERRORS OF BP NETWORK FOR DUAL-OBJECTIVE MOOPF PROBLEM 

Errors 
Case 1 - Fuel cost  Case 1 - Power loss 

RMSE MAE MAPE  RMSE MAE MAPE 

Network 1 0.0565 0.0229 2.7482E-05  0.0057 0.0022 4.3849E-04 

Network 2 0.0683 0.0305 3.6652E-05  0.0030 0.0019 3.7848E-04 

Network 3 0.0663 0.0440 5.2813E-05  0.0058 0.0042 8.3856E-04 

Network 4 0.2300 0.0641 7.6857E-05  0.0112 0.0038 7.5259E-04 

Network 5 0.0220 0.0118 1.4133E-05  0.0020 0.0014 2.7511E-04 
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TABLE Ⅻ 

WES SCHEMES OF DUAL-OBJECTIVE CASE 1 

WES schemes WES1 WES2 WES3 WES4 

PG2(MW) 52.8254 52.7750 52.7681 52.7945 

PG5(MW) 30.8117 30.8151 30.8217 30.8340 

PG8(MW) 34.8115 34.8603 34.8128 34.8312 

PG11(MW) 27.6847 27.6881 27.7070 27.6711 

PG13(MW) 23.0703 23.0556 23.0601 23.0510 

VG1(p.u.) 1.1000 1.1000 1.1000 1.0998 

VG2(p.u.) 1.0911 1.0909 1.0910 1.0912 

VG5(p.u.) 1.0692 1.0707 1.0693 1.0696 

VG8(p.u.) 1.0783 1.0779 1.0778 1.0784 

VG11(p.u.) 1.0958 1.0953 1.0954 1.0956 

VG13(p.u.) 1.1000 1.1000 1.0991 1.1000 

Gpl(MW) 5.0700 5.0710 5.0714 5.0714 

Gfc ($/h) 831.2763 831.2825 831.2808 831.2759 

TABLE ⅩⅢ 

PREDICTION ERRORS OF BP NETWORK FOR TRI-OBJECTIVE MOOPF PROBLEM 

Errors 
Case 3 - Emission  Case 3 - Power loss  Case 3 - Fuel cost 

RMSE MAE MAPE  RMSE MAE MAPE  RMSE MAE MAPE 

Network 1 0.0038 0.0025 0.0115  0.2327 0.1637 0.0341  0.4541 0.3833 4.44E-04 

Network 2 0.0025 0.0013 0.0057  0.1158 0.0591 0.0121  0.3804 0.1564 1.81E-04 

Network 3 0.0089 0.0020 0.0038  0.1358 0.1020 0.0213  0.4062 0.2945 3.41E-04 

Network 4 0.0025 0.0014 0.0062  0.1345 0.0855 0.0172  0.3860 0.2230 2.58E-04 

Network 5 0.0034 0.0020 0.0092  0.1979 0.1551 0.0322  0.4618 0.3727 4.32E-04 

TABLE ⅩⅣ 

WES SCHEMES OF TRI-OBJECTIVE CASE 3 

WES schemes WES1 WES2 WES3 

PG2(MW) 62.1317 62.1276 62.1295 

PG5(MW) 35.9534 35.9499 35.9523 

PG8(MW) 34.4145 34.4141 34.4162 

PG11(MW) 29.4704 29.4697 29.4676 

PG13(MW) 29.8893 29.8930 29.8898 

VG1(p.u.) 1.1000 1.1000 1.0999 

VG2(p.u.) 1.0903 1.0902 1.0903 

VG5(p.u.) 1.0851 1.0851 1.0852 

VG8(p.u.) 1.0861 1.0861 1.0861 

VG11(p.u.) 1.0787 1.0787 1.0786 

VG13(p.u.) 1.1000 1.1000 1.1000 

Ge(ton/h) 0.2131 0.2131 0.2131 

Gpl(MW) 4.3943 4.3949 4.3952 

Gfc($/h) 863.2644 863.2562 863.2589 

V. CONCLUSION 

To explore high-quality dispatching schemes and realize 

the optimal operation of power system, the innovative IMPSO 

algorithm and BP power flow prediction network are 

proposed in this paper.  

By integrating constraint-goal dominant strategy, local 

exploration and mutation-crossover operations, the presented 

IMPSO algorithm can solve the high dimensional MOOPF 

problems smoothly. Four MOOPF experiments on different 

systems verify that IMPSO achieves better PF and BCS than 

basic BMPSO and published algorithms. Furthermore, the 

effective BP power flow prediction network suitable for both 

dual-objective and tri-objective MOOPF problems is put 
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forward in this paper. Based on the BCS found by IMPSO 

algorithm, the presented BP prediction network successfully 

obtains more than three WES scheduling schemes with zero 

constraint-violation and better performance. 

In general, the preferable power flow scheduling schemes 

determined by proposed IMPSO algorithm and BP prediction 

network can reduce fuel cost, power loss and emission, which 

is very valuable for the optimal operation of power system.  
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