Improved Multi-goal Particle Swarm Optimization Algorithm and Multi-output BP Network for Optimal Operation of Power System

Jie Qian and Gonggui Chen*

Abstract—To achieve the optimal operation of power system, an improved multi-goal particle swarm optimization (IMPSO) algorithm is proposed in this paper. Based on the multi-goal optimal power flow (MOOPF) calculation, IMPSO algorithm can determine high-quality scheduling schemes which effectively reduce fuel cost, power loss and exhaust emission. Compared with the basic multi-goal PSO (BMPSO) algorithm, IMPSO algorithm realizes better solution diversity and searching ability by integrating an innovative dominant strategy and the mutation-crossover operation of inferior solutions. Four experiments prove that the proposed IMPSO algorithm achieves more superior Pareto optimal set (POS) and best compromise scheme (BCS) than BMPSO algorithm. Furthermore, the multi-output BP power flow prediction model is put forward in this paper to seek the winning elite schemes (WES) around the BCS of IMPSO algorithm. The presented BP prediction model can find multiple WES schemes of bi-objective and tri-objective MOOPF problems, which realize zero constraint violation and smaller goals. In general, the superior WES schemes determined by proposed IMPSO and BP power flow prediction model are of great help to realize the optimal operation of power system with improved economy and safety.

Index Terms—Particle swarm optimization, Optimal power flow, BP prediction model, Optimal operation

I. INTRODUCTION

As an important energy, electric energy plays a key role in maintaining daily life. The optimal power flow (OPF) research can reduce the fuel cost, exhaust emission and power loss [1-3], which contributes to realize the better operation of power system. Furthermore, compared with single-objective OPF, the multi-goal OPF (MOOPF) research which can optimize more than two goals at the same time is more concerned by scholars.

However, the high dimensional and non-differentiable characteristics make traditional methods not suitable for MOOPF problems. The advanced computer technologies represented by intelligent algorithms and neural networks provide great inspiration for efficiently solving MOOPF

Manuscript received December 21, 2021; revised May 16, 2022. This work was supported by the Doctoral Talent Training Project of Chongqing University of Posts and Telecommunications under Grant BYJS202113.

Jie Qian is a PhD candidate of School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China (e-mail: qianjie@126.com).

Gonggui Chen is a professor of Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China (corresponding author, e-mail: chenggpower@163.com). problems. For example, the QOMJaya method with quasi -oppositional based learning [4], the NSGA-FA algorithm with special sorting rule and location-updating mechanism [5], the FAHSPSO-DE algorithm with fuzzy adaptive hybrid configuration [6] have smoothly solved MOOPF problems.

A review of literatures shows that these algorithms suitable for MOOPF problems require satisfactory population diversity and excellent searching ability. Particle swarm optimization (PSO) algorithm as a representative swarm intelligence algorithm has wide application and good robustness. In recent years, PSO algorithm has solved many complex optimizations in power system such as the forecast of satellite power system parameter interval [7] and the power system network reconfiguration [8]. Therefore, PSO algorithm has the potential to deal with complex MOOPF problems.

A. Contributions

It is worth noting that, there are two key points in solving MOOPF problems with PSO algorithm. Firstly, an effective dominant strategy is indispensable to evaluate different scheduling schemes with m ($m\geq 2$) goals. In this paper, a constraint-goal dominant strategy considering constraint violation and candidate goal is put forward. Integrating the presented constraint-goal dominant strategy into the single objective PSO algorithm model can generate the basic multi-goal PSO (BMPSO) algorithm, which is used as the comparison algorithm in this paper. Then, in order to obtain high-quality Pareto optimal set (POS) and best compromise scheme (BCS) of MOOPF, two other improvements are combined with BMPSO to form the proposed improved multi-goal PSO (IMPSO) algorithm.

Besides the constraint-goal dominant strategy, the additional local exploration operation and mutation crossover operation of inferior solutions greatly improve the population diversity and optimization performance of IMPSO algorithm. Compared with BMPSO algorithm, the suggested IMPSO algorithm has better running stability and is capable to determine feasible BCS schemes with clear competitive advantage.

Furthermore, a multi-output BP power flow network which can predict the fuel cost, power loss and emission of MOOPF problems is constructed in this paper. The proposed BP prediction model can quickly find the winning elite schemes (WES) of MOOPF problems in a small range near the obtained BCS. The WES schemes should satisfy all system constraints and have *m* smaller goals than current BCS, which are beneficial to achieve the optimal operation of power system.

B. Structure

The structure of this paper is set as follows. Three components of MOOPF including goals, constraints and constraint handling strategy are given in Section II. Then, Section III gives the improvements and application of proposed IMPSO algorithm. Four experiments prove the advantages of IMPSO algorithm in obtaining better BCS and running stability when solving MOOPF problems. Besides, the application of proposed BP power flow prediction model on bi-objective and tri-objective MOOPF problems is given in Section IV. Finally, Section V gives the conclusion of this paper.

II. MATHEMATICAL MODEL

Four goals of MOOPF problems are studied in this paper. Each available power flow dispatching scheme should satisfy all system constraints. Therefore, the appropriate constraint processing method is also an important part of MOOPF mathematical model.

A. Goals

The novel IMPSO algorithm is put forward to determine the qualified dispatching schemes which reduce power loss (G_{pl}) , basic fuel cost (G_{fc}) , fuel cost with valve point effect (G_{fv}) and emission (G_e) . The mentioned goals are shown as (1) ~ (4) [9, 10].

$$G_{pl} = \sum_{k=1}^{N_L} con_{(k)} [V_i^2 + V_j^2 - 2V_i V_j \cos(\delta_i - \delta_j)] MW$$
(1)

$$G_{fc} = \sum_{i=1}^{N_G} (a_i + b_i P_{Gi} + c_i P_{Gi}^2) \ \$ / h$$
 (2)

$$G_{fv} = \sum_{i=1}^{N_G} (a_i + b_i P_{Gi} + c_i P_{Gi}^2 + \left| d_i \times \sin(e_i \times (P_{Gi}^{\min} - P_{Gi})) \right|) \$ / h$$
(3)

$$G_e = \sum_{i=1}^{N_G} [\alpha_i P_{Gi}^2 + \beta_i P_{Gi} + \gamma_i + \eta_i \exp(\lambda_i P_{Gi})] \text{ ton } / h \quad (4)$$

where $con_{(k)}$ is the conductance of *k*th branch. N_L and N_G are the numbers of transmission lines and generators. *V* and δ are the amplitude and phase angle of voltage, respectively. *a*, *b*, *c*, *d* and *e* are five cost coefficients while α , β , γ , η and λ are emission coefficients. In addition, P_{Gi} is the active power of *i*th node.

B. Constraints

The constraints of MOOPF problems include two equality constraints and two kinds of inequality constraints. Two equality constraints show the active power balance and reactive one. The inequality constraints of control variables act on generator active power output at PV node (P_G), generator node voltage (V_G), transformer (T) and reactive power injection (Q_C). Meanwhile, the inequality constraints of state variables act on generator active power at slack node (P_{G1}), load node voltage (V_L), generator reactive power (Q_G) and apparent power of transmission line (S).

The above system constraints of MOOPF problems can be found in [11, 12]. Two equality constraints are used as the termination condition of Newton-Raphson calculation. Thus, this paper focuses on the treatment strategy of inequality constraints.

C. Constraints processing

As independent variables of MOOPF problems, the control variables which do not satisfy inequality constraints will be adjusted according to formula (5).

$$Vc_{i} = \begin{cases} Vc_{i}^{min} , Vc_{i} < Vc_{i}^{min} \\ Vc_{i}^{max} , Vc_{i} > Vc_{i}^{max} \end{cases}$$
(5)

where $Vc_i^{min} = [P_G^{min}, V_G^{min}, T^{min}, Q_C^{min}]$ and $Vc_i^{max} = [P_G^{max}, V_{Gi}^{max}, T^{max}, Q_C^{max}]$ define the valid ranges of *i*th control variables set (*Vc*).

Additionally, the constraint violation (*Viol*) of unqualified state variables defined as (6) is used as one criterion of adoption priority of different scheduling schemes.

 $Viol(S_i) = Viol_P(S_i) + |Viol_V(S_i)| + |Viol_Q(S_i)| + |Viol_S(S_i)|$ (6) where $Viol_P(S_i)$, $Viol_V(S_i)$, $Viol_Q(S_i)$ and $Viol_S(S_i)$ are the violations of the *i*th scheme (S_i) which violates the inequality

III. IMPSO ALGORITHM AND APPLICATION

constraints of P_{G1} , V_L , Q_G and S, respectively.

To smoothly solve the complex MOOPF problems with m conflicting goals, the original single-objective PSO algorithm needs to be combined with effective non-inferior dominance rule of different dispatching schemes. In this paper, the BMPSO algorithm which is able to find the feasible POS of MOOPF is generated by integrating constraint-goal dominant strategy.

A. BMPSO algorithm

The velocity with inertia weight and position update formulas of BMPSO algorithm are shown as (7) and (8). Meanwhile, the inertia weight is updated based on (9).

$$\sum_{i}^{k+1} = \omega^{k} v_{i}^{k} + c_{1} r_{1} (x_{p} - x_{i}^{k}) + c_{2} r_{2} (x_{g} - x_{i}^{k})$$
(7)

$$x_i^{k+1} = x_i^k + v_i^{k+1}$$
(8)

$$\omega^{k} = \omega_{s} - \frac{(\omega_{s} - \omega_{e})k}{k^{\max}}$$
(9)

where c_1 , c_2 are two learning factors and r_1 , r_2 are random numbers between (0, 1). x_p and x_g indicate the current local optimum and global one. ω_s and ω_e are the maximum and minimum of inertia weight. And k^{max} is the maximum iteration.

For specific MOOPF problems, the constraint-goal dominant strategy is also integrated into BMPSO algorithm. The proposed constraint-goal dominant strategy aims to select the final POS set of MOOPF problems based on goal values and constraint violation.

Firstly, the *Rank* index of each candidate power flow scheme is determined based on the non-inferior sorting rule proposed by Deb [13, 14]. In detail, it can be judged that the S_i scheme dominates the S_j one when condition (10) or (11) is satisfied.

Among *Na* candidate schemes, these elite schemes that are not dominated by any other scheme are marked as *Rank*=1. Regardless of the schemes with definite *Rank* index, these suboptimal schemes with *Rank*=2 are also determined according to (10) and (11). Repeat the above process until all *Na* candidate schemes have their corresponding *Rank* index. In this paper, $R_{(i)}$ represents the number of schemes with *Rank*≤*i*, and *Np* is the scale of POS set.

$$Viol(S_i) < Viol(S_j)$$
 (10)

$$\begin{cases} Viol(S_{i}) = Viol(S_{j}) \\ f_{p}(S_{i}) \leq f_{p}(S_{j}), \forall p \in \{1, 2, ..., m\} \\ f_{q}(S_{i}) < f_{q}(S_{j}), \exists q \in \{1, 2, ..., m\} \end{cases}$$
(11)

When $R_{(i-1)} < Np$ and $R_{(i)} > Np$, the $(R_{(i)} - Np)$ schemes with better performance are determined from the candidate schemes with Rank=i and included in the final POS set. After clarifying the Rank index according to constraint-goal dominant strategy, the POS of MOOPF problems can be determined as follows.

(*i*) According to the satisfaction function shown in formulas (12) and (13), a relatively optimal scheduling scheme BCS_R is determined from the $R_{(1)}$ dominant schemes with *Rank*=1. The detail of satisfaction function can be found in [12, 15].

$$Ffuz_{i}^{j} = \begin{cases} 1 & f_{i} \leq f_{i}^{\min} \\ \frac{f_{i}^{\max} - f_{i}}{f_{i}^{\max} - f_{i}^{\min}} & f_{i}^{\min} < f_{i} < f_{i}^{\max} \\ 0 & f_{i} \geq f_{i}^{\max} \end{cases}$$
(12)

$$Fsat(j) = \frac{\sum_{i=1}^{m} Ffuz_{i}^{j}}{\sum_{j=1}^{N_{p}} \sum_{i=1}^{m} Ffuz_{i}^{j}}$$
(13)

where f_i^{max} and f_i^{min} are the maximum and minimum of *i*th goal.

(*ii*) Calculate the Euclidean distances (D_{Euc}) between the $(R_{(i)}-R_{(i-1)})$ schemes with Rank=i and BCS_R scheme, respectively.

(*iii*) The $(R_{(i)}-Np)$ schemes with smaller D_{Euc} are selected from $(R_{(i)}-R_{(i-1)})$ candidate schemes and included into POS set.

(*iv*) Determine the final POS set which is composed by the above ($R_{(i)}$ - Np) schemes with Rank=i and $R_{(i-1)}$ schemes with $Rank\leq i-1$.

In general, the above BMPSO algorithm with constraintgoal dominant strategy is capable to handle MOOPF problems.

B. Proposed IMPSO algorithm

Experiments show that BMPSO algorithm can obtain feasible POS. However, the uniformity of Pareto Front (PF) and the quality of BCS schemes still have room for improvement. Therefore, besides the proposed constraint goal dominant strategy, IMPSO algorithm also integrates local exploration operation and mutation crossover operation to further optimize the performance of solving MOOPF problems.

1) Local exploration operation

In order to improve the population diversity, the local exploration operation is supplemented in the suggested IMPSO algorithm. Specifically, the local exploration operation shown as (14) is performed on the current *Np* solutions for each 50 iteration.

$$x_i^{new} = x_i^{original} + r_3 x_i^{original}, i = 1, 2, \cdots, Np$$
(14)

where $x_i^{original}$ is the original individual at *k*th (*k*=50,100,..., *k*^{max}) iteration and r_3 is a random number between (-1,1).

After the local search operation is completed, $Np x^{original}$ schemes and $Np x^{new}$ ones are integrated and duplicate

solutions are deleted to obtain Nv ($Np \le Nv \le 2Np$) candidate schemes. The *Rank* index of Nv schemes and the D_{Euc} distance of corresponding candidate solutions are clarified first. Then, the Np schemes with better quality determined based on constraint-goal dominant strategy are selected for the next iteration.

2) Mutation-crossover operation

The current POS set of MOOPF problems can be obtained by presented IMPSO algorithm after k^{max} iteration. In this paper, the *Ni* scheduling schemes with largest *Rank* index in POS set is defined as inferior schemes. The mutation crossover operation shown in (15) and (16) is implemented on inferior schemes to improve the quality of POS set. In addition, at least 20%*Np* schemes perform the mutation crossover operation in this paper. If *Ni* < 20%*Np*, the (20%*Np -Ni*) random schemes with lower adoption priority are also perform this operation to further optimize the variety and performance of scheduling schemes. The mutation crossover operation is inspired by differential evolution algorithm and the details can be referred to [16, 17].

$$x_{mu}(i) = x_{S1} + F_{mu}(x_{S2} - x_{S3}), i = 1, 2, \dots N_i$$
(15)

$$x_{cr}(i) = \begin{cases} x_{mu}(i), & \text{if } \eta \leq F_{cr} \text{ or } j = q \\ x_i, & \text{otherwise} \end{cases} \quad j = 1, 2, \cdots, D \quad (16)$$

where x_{S1} , x_{S2} and x_{S3} are three different schemes. F_{mu} and F_{cr} are, respectively, the mutation factor and crossover one. η is a random number between 0 and 1. *D* is the dimension of independent variables and *q* is a positive integer between [1, *D*].

C. Application of IMPSO algorithm

The innovative IMPSO algorithm is put forward by integrating the above three improvements and the main flow of IMPSO algorithm to solve MOOPF problems is shown in Fig. 1.

To verify the applicability and advantages of IMPSO algorithm, four MOOPF simulation experiments shown in TABLE I are carried out in this paper.

1) Case 1

In this paper, Case 1 simultaneously considers the reduction of power loss and basic fuel cost on IEEE 30-bus system. The structure and details of standard IEEE 30-bus system can be found in [12, 18].

The PFs of Case 1 obtained by BMPSO and IMPSO algorithms are shown in Fig. 2. Fig. 2 indicates that the proposed IMPSO algorithm determines the uniformly distributed PF while the PF of BMPSO algorithm is relatively scattered.

TABLE I

Casas	Coals		Sustam	Number of independent	
Cases	Goals	т	System	experiments	
Case 1	G_{fc} & G_{pl}	2	IEEE 30	30	
Case 2	G_{fv} & G_{pl}	2	IEEE 30	30	
Case 3	G_{fc} & G_{pl} & G_e	3	IEEE 30	30	
Case 4	G_{fc} & G_{pl}	2	IEEE 57	30	

Fig. 1. IMPSO algorithm on MOOPF problems

Furthermore, Fig. 2 also gives the objectively determined BCS scheme and two schemes which respectively obtain the minimum cost and minimum power loss. It clearly states that IMPSO algorithm achieves the minimum power loss with 2.8547 MW and the minimum fuel cost with 799.3476 \$/h. For Case 1, the 24-dimensional control variables of specific schemes are given in TABLE II. TABLE II shows that the BCS of IMPSO algorithm including 5.0715 MW of power loss and 831.2837 \$/h of fuel cost is obviously better than the one of BMPSO algorithm including 5.1425 MW of power loss and 836.4278 \$/h of fuel cost.

The PF-uniformity and BCS-quality show the effectiveness of three improvements and the competitive advantage of proposed IMPSO algorithm in solving dual-objective MOOPF problems.

2) Case 2

In Case 2, the power loss and fuel cost with valve-point are optimized at the same time on IEEE 30-bus system. The valve-point effect increases the difficulty of solving MOOPF problems, which is also the main reason that intelligent algorithms are adopted instead of traditional methods to solve MOOPF problems.

Fig. 3 gives the PFs of Case 2 and states the PF uniformity

of IMPSO algorithm is more superior to the one of BMPSO algorithm. Fig. 3 also shows IMPSO algorithm obtains the minimum power loss with 2.8410 MW and the minimum fuel cost considering valve-point with 831.3622 \$/h. Besides, the presented IMPSO algorithm finds the BCS scheme composed by 5.6685 MW of power loss and 863.3560 \$/h of fuel cost considering valve-point. TABLE III gives the detail control variables of corresponding scheduling schemes for Case 2.

In general, Fig. 3 and TABLE III intuitively prove the superiorities of IMPSO algorithm put forward in this paper for solving complex MOOPF problems compared with the basic BMPSO algorithm.

3) Case 3

In contrast to the dual-objective optimizations, the tri-objective MOOPF problems with greater difficulty can evaluate the performance of novel IMPSO algorithm more comprehensively.

The Case 3 in this paper aims to realize the simultaneous optimization of power loss, emission and fuel cost on IEEE 30-bus system. The PFs of Case 3 obtained by BMPSO and IMPSO algorithms are given in Fig. 4 and Fig. 5, respectively. It indicates that BMPSO algorithm obtains the feasible POS set, but the PF-uniformity is not as good as that of IMPSO algorithm. Additionally, Fig. 5 shows the distribution of three scheduling schemes with minimum single goal obtained by IMPSO algorithm. In detail, IMPSO algorithm achieves the minimum emission with 0.1942 ton/h, the minimum power loss with 2.8544 MW and the minimum fuel cost with 799.1717 \$/h.

Volume 52, Issue 3: September 2022

	Co	TABLE II NTROL VARIABLES OF SCHEDUI	I ING SCHEMES IN CASE 1	
Case 1	BC	S	Schemes with minimur	n single goal of IMPSO
Variables	BMPSO	IMPSO	Minimum fuel cost	Minimum power loss
P _{G2} (MW)	54.4895	52.7942	48.2721	80.0000
P _{G5} (MW)	36.2669	30.8092	21.2022	50.0000
P _{G8} (MW)	33.6890	34.8318	23.2476	35.0000
P _{G11} (MW)	27.3292	27.6957	10.7979	30.0000
PG13(MW)	16.4369	23.0659	12.0313	40.0000
V _{G1} (p.u.)	1.1000	1.1000	1.0998	1.1000
V _{G2} (p.u.)	1.0902	1.0909	1.0876	1.0985
V _{G5} (p.u.)	1.0694	1.0696	1.0638	1.0848
V _{G8} (p.u.)	1.0692	1.0774	1.0671	1.0897
V _{G11} (p.u.)	1.0895	1.0947	1.0961	1.0875
V _{G13} (p.u.)	1.0660	1.0997	1.0714	1.1000
T ₁₁ (p.u.)	1.0131	1.0464	1.0453	1.0061
T ₁₂ (p.u.)	0.9622	0.9347	0.9382	0.9574
T ₁₅ (p.u.)	0.9646	0.9949	1.0112	0.9782
T ₃₆ (p.u.)	0.9696	0.9828	0.9824	0.9709
Q _{C10} (p.u.)	0.0196	0.0470	0.0013	0.0500
Q _{C12} (p.u.)	0.0276	0.0002	0.0180	0.0000
Q _{C15} (p.u.)	0.0187	0.0273	0.0329	0.0423
Q _{C17} (p.u.)	0.0042	0.0497	0.0300	0.0500
Qc20(p.u.)	0.0363	0.0477	0.0384	0.0453
Q _{C21} (p.u.)	0.0500	0.0495	0.0220	0.0500
Q _{C23} (p.u.)	0.0116	0.0301	0.0292	0.0388
Qc24(p.u.)	0.0398	0.0484	0.0431	0.0483
Qc29(p.u.)	0.0329	0.0263	0.0278	0.0259
$G_{pl}(MW)$	5.1425	5.0715	8.6182	2.8547
$G_{fc}(\$/h)$	836.4278	831.2837	799.3476	967.0772

		TAB		
Case 2	B	CONTROL VARIABLES OF SCH	Schemes with minimum sing	le goal of IMPSO
Variables	BMPSO	IMPSO	Minimum cost with valve-point	Minimum power loss
P _{G2} (MW)	45.9942	45.7978	45.4282	80.0000
P _{G5} (MW)	29.3674	32.0684	18.2797	50.0000
P _{G8} (MW)	34.4707	34.9037	10.0000	35.0000
P _{G11} (MW)	26.6746	23.4431	10.0000	30.0000
P _{G13} (MW)	19.3145	17.1178	12.0000	40.0000
V _{G1} (p.u.)	1.1000	1.1000	1.1000	1.0986
V _{G2} (p.u.)	1.0798	1.0866	1.0833	1.0978
V _{G5} (p.u.)	1.0676	1.0664	1.0501	1.0775
V _{G8} (p.u.)	1.0616	1.0756	1.0564	1.0862
V _{G11} (p.u.)	1.0860	1.1000	1.0580	1.1000
V _{G13} (p.u.)	1.0928	1.1000	1.0695	1.1000
T ₁₁ (p.u.)	1.0993	1.0646	1.0430	1.0122
T ₁₂ (p.u.)	0.9125	0.9005	0.9390	0.9524
T ₁₅ (p.u.)	1.0068	0.9935	1.0369	0.9888
T ₃₆ (p.u.)	0.9889	0.9749	1.0109	0.9726
Q _{C10} (p.u.)	0.0186	0.0211	0.0000	0.0500
Q _{C12} (p.u.)	0.0192	0.0175	0.0000	0.0500
Q _{C15} (p.u.)	0.0500	0.0321	0.0220	0.0404
Qc17(p.u.)	0.0315	0.0458	0.0437	0.0500
Qc20(p.u.)	0.0267	0.0482	0.0492	0.0478
Qc21(p.u.)	0.0183	0.0500	0.0279	0.0500
Qc23(p.u.)	0.0495	0.0225	0.0205	0.0285
Qc24(p.u.)	0.0144	0.0496	0.0197	0.0500
Qc29(p.u.)	0.0500	0.0301	0.0500	0.0280
$G_{pl}(MW)$	5.8706	5.6685	10.3532	2.8410
G_{fv} (\$/h)	866.4884	863.3560	831.3622	1026.6280

Furthermore, TABLE IV, which gives the control variables of tri-objective scheduling schemes, indicates IMPSO algorithm determines the BCS schemes including 0.2131 ton/h of emission, 4.3958 MW of power loss and 863.2721 \$/h of fuel cost. Obviously, the BCS of IMPSO algorithm is more preferable than the one of BMPSO algorithm which includes 0.2131 ton/h of emission, 4.3964 MW of power loss and 869.7383 \$/h of fuel cost. And the advantage of the BCS obtained by IMPSO algorithm is mainly embodied in the reduction of fuel cost.

4) Case 4

Further, the effectiveness of IMPSO algorithm for MOOPF problems is also verified on the more complex IEEE 57-bus system with 33 dimensional control variables. The Case 4 considers the simultaneous reduction of power loss and fuel cost on IEEE 57-bus system. The structure and details of

standard 57-bus system can be found in [19, 20].

The PFs of Case 4 obtained by BMPSO and IMPSO are shown in Fig. 6. Fig. 6 shows that IMPSO algorithm obtains the uniformly distributed PF while BMPSO algorithm finds a scattered one. Besides, Fig. 6 indicates on IEEE 57-bus system, IMPSO algorithm achieves the minimum power loss with 9.6184 MW and the minimum fuel cost with 41672.8007 \$/h. The control variables of BCS schemes and two schemes with minimum single goal are given in TABLE V. TABLE V states that IMPSO algorithm achieves the BCS scheme including 10.9830 MW of power loss and 41988.2811 \$/h of fuel cost, which dominates BMPSO algorithm.

Case 4 states that the advantages of IMPSO in obtaining the uniformly distributed PF and high quality BCS are more fully reflected in high-dimensional 57-bus system.

TABLE IV

Case 3	BC	CS CONTINUE VIIILIE	Schemes	with minimum single goal of	IMPSO
Variables	BMPSO	IMPSO	Minimum fuel cost	Minimum power loss	Minimum emission
P _{G2} (MW)	57.9676	62.1318	48.1791	80.0000	72.4413
P _{G5} (MW)	39.4766	35.9530	21.1218	50.0000	50.0000
P _{G8} (MW)	31.7923	34.4143	22.0236	35.0000	35.0000
P _{G11} (MW)	29.7538	29.4704	11.3591	30.0000	30.0000
PG13(MW)	31.5219	29.8920	12.0450	40.0000	40.0000
V _{G1} (p.u.)	1.0977	1.1000	1.1000	1.1000	1.1000
V _{G2} (p.u.)	1.0893	1.0902	1.0881	1.0974	1.0980
V _{G5} (p.u.)	1.0786	1.0852	1.0594	1.0807	1.0770
V _{G8} (p.u.)	1.0765	1.0861	1.0698	1.0896	1.0877
V _{G11} (p.u.)	1.0594	1.0786	1.0978	1.0914	1.1000
V _{G13} (p.u.)	1.0108	1.1000	1.1000	1.1000	1.1000
T ₁₁ (p.u.)	1.0977	1.0083	0.9369	1.0831	1.0912
T ₁₂ (p.u.)	1.0183	0.9048	1.0513	0.9000	0.9000
T ₁₅ (p.u.)	1.1000	1.0673	1.0216	0.9775	0.9899
T ₃₆ (p.u.)	1.0563	0.9868	0.9831	0.9783	0.9755
Q _{C10} (p.u.)	0.0500	0.0316	0.0031	0.0500	0.0500
Q _{C12} (p.u.)	0.0149	0.0017	0.0469	0.0000	0.0000
Q _{C15} (p.u.)	0.0446	0.0331	0.0306	0.0456	0.0500
Q _{C17} (p.u.)	0.0500	0.0490	0.0422	0.0470	0.0435
Q _{C20} (p.u.)	0.0204	0.0487	0.0448	0.0401	0.0428
Qc21(p.u.)	0.0488	0.0489	0.0377	0.0500	0.0500
Qc23(p.u.)	0.0430	0.0489	0.0413	0.0500	0.0500
Qc24(p.u.)	0.0056	0.0130	0.0305	0.0413	0.0298
Qc29(p.u.)	0.0048	0.0092	0.0376	0.0226	0.0209
$G_e(\text{ton/h})$	0.2131	0.2131	0.3296	0.1949	0.1942
$G_{pl}(MW)$	4.3964	4.3958	8.6474	2.8544	2.9348
<i>G</i> _{fv} (\$/h)	869.7383	863.2721	799.1717	967.0766	952.1179

	CONT	TROL VARIABLES OF SCHEDULIN	IG SCHEMES IN CASE 4	
Case 4	BC	S	Schemes with minimun	n single goal of IMPSO
Variables	BMPSO	IMPSO	Minimum fuel cost	Minimum power loss
P _{G2} (MW)	86.9564	77.7233	94.7361	0.0000
P _{G3} (MW)	68.2585	57.3050	44.7901	140.0000
P _{G6} (MW)	79.6996	91.3638	74.0569	99.6210
P _{G8} (MW)	365.1545	374.0779	458.6700	305.2403
P _{G9} (MW)	99.8420	99.5810	83.3328	99.9532
P _{G12} (MW)	410.0000	408.8989	366.3933	409.8839
V _{G1} (p.u.)	1.1000	1.1000	1.1000	1.1000
V _{G2} (p.u.)	1.1000	1.0976	1.0977	1.0950
V _{G3} (p.u.)	1.1000	1.0920	1.0886	1.1000
V _{G6} (p.u.)	1.1000	1.1000	1.1000	1.1000
V _{G8} (p.u.)	1.1000	1.1000	1.1000	1.1000
V _{G9} (p.u.)	1.1000	1.0933	1.0874	1.0948
V _{G12} (p.u.)	1.1000	1.0933	1.0866	1.0949
T ₁₉ (p.u.)	0.9712	0.9538	0.9555	0.9710
T ₂₀ (p.u.)	1.0280	1.0625	1.0957	1.0353
T ₃₁ (p.u.)	0.9995	0.9640	0.9502	0.9775
T ₃₅ (p.u.)	0.9969	0.9991	1.0946	0.9346
T ₃₆ (p.u.)	1.1000	0.9582	0.9386	0.9933
T ₃₇ (p.u.)	1.0958	0.9631	0.9864	0.9510
T ₄₁ (p.u.)	1.0871	1.0071	1.0265	0.9980
T ₄₆ (p.u.)	0.9265	0.9641	0.9646	0.9677
T ₅₄ (p.u.)	0.9477	0.9843	1.0013	0.9717
T ₅₈ (p.u.)	1.0144	1.0037	1.0061	0.9996
T ₅₉ (p.u.)	0.9917	1.0259	1.0467	1.0091
T ₆₅ (p.u.)	1.0348	1.0449	1.0310	1.0503
T ₆₆ (p.u.)	0.9872	1.0146	1.0449	1.0062
T ₇₁ (p.u.)	1.0446	0.9632	0.9783	0.9674
T ₇₃ (p.u.)	0.9250	1.0706	1.0768	1.0587
T ₇₆ (p.u.)	1.1000	0.9892	1.0272	0.9663
T ₈₀ (p.u.)	1.1000	1.0041	0.9976	1.0036
Q _{C18} (p.u.)	0.0538	0.1644	0.2193	0.1130
Q _{C25} (p.u.)	0.1161	0.1733	0.2193	0.1375
Q _{C53} (p.u.)	0.1971	0.1435	0.1565	0.1566
$G_{pl}(MW)$	11.1328	10.9830	14.7281	9.6184
<i>G_{fc}</i> (\$/h)	42150.7986	41988.2811	41672.8007	45072.2203

TABLE V

Fig. 6. PF of Case 4

D. Evaluation of IMPSO algorithm

Besides the comparison algorithm BMPSO in this paper,

the scheduling schemes of MOOPF problems obtained by proposed IMPSO algorithm are also compared with the recently published results. The comprehensive evaluation based on the single-objective optimal scheduling schemes, the BCS schemes and the operational stability can effectively prove the competitive advantages of IMPSO algorithm. Single-objective optimal scheme 1)

When solving MOOPF problems, IMPSO algorithm can obtain a feasible POS set which is composed of Np schemes. TABLE VI gives four minimum single-objective schemes on IEEE 30-bus system obtained by IMPSO algorithm and multiple published results. In detail, the suggested IMPSO algorithm achieves the minimum emission with 0.1942 ton/h, minimum power loss with 2.8410 MW, minimum fuel cost with 799.1717 \$/h and minimum fuel cost considering valve-point with 831.3622 \$/h. On IEEE 30-bus system, the optimal schemes that only consider single goal obtained by proposed IMPSO algorithm are better than many published methods such as FAHSPSO-DE [6] and INSGA-III [21].

Similarly, TABLE VII gives the comparisons of minimum single-objective schemes on IEEE 57-bus system. It clearly shows that IMPSO algorithm achieves the minimum power loss with 9.6184 MW and minimum fuel cost with 41672.8007 \$/h, which dominates multiple published algorithms such as ESDE-MC [9] and DA-PSO [22].

2) BCS scheme

In addition, the BCS scheme is also an intuitive and important indicator to evaluate the performance of different algorithms for solving MOOPF problems.

In this paper, TABLE VIII gives the comparisons of obtained BCS schemes of Case 1 and Case 2 while TABLE IX gives the ones of Case 3 and Case 4. It indicates that the IMPSO algorithm finds the more desirable BCS schemes than most published algorithms such as MPIO-COSR [20] and MFA [5] algorithms. There is no doubt that the comparison

results of BCS schemes provide strong persuasion for the superiorities of IMPSO algorithm.

However, there is still room for further improvement in the BCS quality of IMPSO algorithm. For example, TABLE VIII shows that for Case 2, the BCS of IMPSO algorithm is better than the ones of MFA [5] and NHBA-CPFD [18] algorithms. Regrettably, based on the power loss and fuel cost with valve-point, IMPSO algorithm in this paper and NMBAS [11] algorithm do not dominate each other. It is also one of key reasons that BP power flow prediction model is proposed to further optimize BCS and determine WES scheduling schemes.

3) Operational stability

Furthermore, the operational stability of BMPSO and IMPSO algorithms is evaluated based on the PF superposition of 30 independent experiments.

TABLE VI Comparisons of Minimum Single-objective Schemes on IEEE 30-bus System								
Algorithm	Emission	Algorithm	Power loss	Algorithms	Fuel cost	Algorithm	Cost with	
IMPSO	0.1942	IMPSO	2.8410	IMPSO	799.1717	IMPSO	831.3622	
INSGA-III[21]	0.1943	INSGA-III[21]	3.1242	INSGA-III[21]	799.5961	IMFO[23]	832.1023	
MOIBA[15]	0.20	ESDE-MC[9]	2.8482	HHODE[24]	800.9959	ECHT-DE[1	6] 832.1356	
NISSO[19]	0.2048	MSCA[25]	2.9334	NISSO[19]	799.7624	SF-DE[16]	832.0882	
MOEA/D-SF[26]	0.2056	Hybrid DE-HS[27]	3.0542	AMTPG-Jaya[1]	800.1946	SP-DE[16]	832.4813	
FAHSPSO-DE[6]	0.2042	AMTPG-Jaya[1]	3.0802	FAHSPSO-DE[6]	799.8066	ACDE[28]	832.0722	
ACDE[28]	0.2048	ACDE[28]	3.0840	ACDE[28]	800.4113			
QRJFS[29]	0.204688	QRJFS[29]	2.856711					
			TA	BLE VII				
	(COMPARISONS OF MINI	MUM SINGLE-OI	BJECTIVE SCHEMES ON	IEEE 57-BUS	System		
Algorith	m	Power	loss	Algo	rithm		Fuel cost	
)	9.61	54	IMI	PSU ECI01		41672.8007	
ESDE-MC	-[9] 221	9.97	12	ESDE	-EC[9]		410/7.7343	
	22] DE[6]	10.12	.12	DA-PA	SU[22]		410/4.02	
FAHSPSU-I		11./3	28	IMOBA[30]			41673	
HPSO-DE[0] 11.97		00			41675 0203			
SMA[31]		10.07	10.0754		ISSA[5] SMA[21]		41073.0203	
				SMA	4[31]		41097.1189	
		Сомр	TA ARISONS OF BCS	SMA BLE VIII S Schemes of Case 1	A[31] AND CASE 2		41097.1189	
Comparisons		Comp. Case 1	TA ARISONS OF BCS	SMA BLE VIII S Schemes of Case 1 Comparisons	A[31] AND CASE 2	Ca	41097.1189 se 2	
Comparisons	Pow	Comp. Case 1 /er loss Fuel	TA ARISONS OF BCS cost	SMA BLE VIII S SCHEMES OF CASE 1 Comparisons	A[31] AND CASE 2 Power 1	Ca loss F	se 2 uel cost with valve-point	
Comparisons BMPSO	Pow 5.	Comp. Case 1 ver loss Fuel 1425 836.	TA ARISONS OF BC: cost 4278	BLE VIII S SCHEMES OF CASE 1 Comparisons BMPSO	A[31] AND CASE 2 Power 1 5.870	Ca loss F 16	se 2 viel cost with valve-point 866.4884	
Comparisons BMPSO IMPSO	Pow 5. 5.	Comp. Case 1 ver loss Fuel 1425 836. 0715 831.	TA ARISONS OF BCS cost 4278 2837	BLE VIII S SCHEMES OF CASE 1 Comparisons BMPSO IMPSO	A[31] AND CASE 2 Power 1 5.870 5.668	Ca loss F 16	41697.1189 se 2 uel cost with valve-point 866.4884 863.3560	
Comparisons BMPSO IMPSO MPIO-COSR[20]	Pow 5. 5. 5.	Comp. Case 1 ver loss Fuel 1425 836. 0715 831. 1085 831.	TA ARISONS OF BCS cost 4278 2837 5576	BLE VIII <u>S SCHEMES OF CASE 1</u> Comparisons BMPSO IMPSO MFA[5]	A[31] <u>AND CASE 2</u> <u>Power 1</u> 5.870 5.668 5.919	Ca loss F 16 55	41697.1189 se 2 uel cost with valve-point 866.4884 863.3560 867.60	
Comparisons BMPSO IMPSO MPIO-COSR[20] HFBA-COFS[32]	Pow 5. 5. 5. 5.	Comp. Case 1 ver loss Fuel 1425 836.4 0715 831.1 1085 831.2 0796 832.2	TA ARISONS OF BCS cost 4278 2837 55576 3203	BLE VIII S SCHEMES OF CASE 1 Comparisons BMPSO IMPSO MFA[5] NHBA-CPFD[18]	A[31] AND CASE 2 Power 1 5.870 5.668 5.919 5.672	Ca loss F 16 15 15 15	se 2 vel cost with valve-point 866.4884 863.3560 867.60 865.9106 062.5107	
Comparisons BMPSO IMPSO MPIO-COSR[20] HFBA-COFS[32] INSGA-III[21]	Pow 5. 5. 5. 5.	Comp. Case 1 ver loss Fuel 1425 836 0715 831 1085 831 0796 832 0766 832	TA ARISONS OF BCS cost 4278 2837 5576 3203 0140	BLE VIII <u>S SCHEMES OF CASE 1</u> <u>Comparisons</u> BMPSO IMPSO MFA[5] NHBA-CPFD[18] HFBA-COFS[32]	A[31] AND CASE 2 Power 1 5.870 5.668 5.919 5.672 5.679 5.679	Ca loss F 6 5 5 6 1 1	41697.1189 se 2 uel cost with valve-point 866.4884 863.3560 867.60 865.9106 863.7107 863.7107	
Comparisons BMPSO IMPSO MPIO-COSR[20] HFBA-COFS[32] INSGA-III[21] MOBBA-CPNS[33]	Pow 5. 5. 5. 5. 5. 1 5.	Comp. Case 1 ver loss Fuel 1425 836. 0715 831. 1085 831. 0796 832. 0766 832. 0223 834.	TA <u>ARISONS OF BCS</u> <u>cost</u> 4278 2837 5576 3203 0140 5417	BLE VIII <u>S SCHEMES OF CASE 1</u> Comparisons BMPSO IMPSO MFA[5] NHBA-CPFD[18] HFBA-COFS[32] NMBAS[11]	A[31] AND CASE 2 Power 1 5.870 5.668 5.919 5.672 5.679 5.648	Ca loss F 6 5 5 6 6 11 7	41697.1189 se 2 uel cost with valve-point 866.4884 863.3560 867.60 865.9106 863.7107 863.5610	
Comparisons BMPSO IMPSO MPIO-COSR[20] HFBA-COFS[32] INSGA-III[21] MOBBA-CPNS[33]	Pow 5. 5. 5. 5. 5.	Comp. Case 1 ver loss Fuel 1425 836. 0715 831. 1085 831. 0796 832. 0766 832. 0223 834.	TA <u>ARISONS OF BCS</u> <u>cost</u> 4278 2837 5576 3203 0140 6417 TA ARISONS OF BCS	BLE VIII <u>S SCHEMES OF CASE 1</u> Comparisons BMPSO IMPSO MFA[5] NHBA-CPFD[18] HFBA-COFS[32] NMBAS[11] MBLE IX S SCHEMES OF CASE 3	A[31] AND CASE 2 Power 1 5.870 5.668 5.919 5.672 5.679 5.648 AND CASE 4	Ca loss F 6 5 5 6 1 7	41697.1189 se 2 fuel cost with valve-point 866.4884 863.3560 867.60 865.9106 863.7107 863.5610	
Comparisons BMPSO IMPSO MPIO-COSR[20] HFBA-COFS[32] INSGA-III[21] MOBBA-CPNS[33]	Pow 5. 5. 5. 5. 1 5.	Сомр. Сase 1 /er loss Fuel 1425 836 0715 831.: 1085 831.: 0796 832.: 0796 832.: 0766 832 0223 834 Сомр. Саse 3	TA ARISONS OF BCS cost 4278 2837 5576 3203 0140 6417 TA ARISONS OF BCS	BLE VIII S SCHEMES OF CASE 1 Comparisons BMPSO IMPSO MFA[5] NHBA-CPFD[18] HFBA-COFS[32] NMBAS[11] BLE IX S SCHEMES OF CASE 3 Compariso	A[31] AND CASE 2 Power 1 5.870 5.668 5.919 5.672 5.679 5.648 AND CASE 4 Ins	Ca loss F 16 15 15 16 11 17	41697.1189 see 2 fuel cost with valve-point 866.4884 863.3560 867.60 865.9106 863.7107 863.5610 Case 4	
Comparisons BMPSO IMPSO MPIO-COSR[20] HFBA-COFS[32] INSGA-III[21] MOBBA-CPNS[33] Comparisons	Pow 5. 5. 5. 5. 1 5. 2 5.	Comp. Case 1 /er loss Fuel 1425 836 0715 831 1085 831 0796 832 0766 832 0223 834 Comp. Case 3 Power loss	TA <u>ARISONS OF BCS</u> <u>cost</u> 4278 2837 5576 3203 0140 6417 TA <u>ARISONS OF BCS</u> Fuel cost	BLE VIII S SCHEMES OF CASE 1 Comparisons BMPSO IMPSO IMPSO MFA[5] NHBA-CPFD[18] HFBA-COFS[32] NMBAS[11] BLE IX S SCHEMES OF CASE 3 Compariso	A[31] AND CASE 2 Power 1 5.870 5.668 5.919 5.672 5.679 5.679 5.648 AND CASE 4 ms	Ca loss F 6 5 5 6 1 7 7 Power loss	41697.1189 se 2 fuel cost with valve-point 866.4884 863.3560 867.60 865.9106 863.7107 863.5610 Case 4 Fuel cost	
Comparisons BMPSO IMPSO MPIO-COSR[20] HFBA-COFS[32] INSGA-III[21] MOBBA-CPNS[33] Comparisons BMPSO	Pow 5. 5. 5. 5. 5. 5. 5. 9 0.2131	COMP. Case 1 ver loss Fuel 1425 836. 0715 831. 1085 831. 1085 831. 0796 832. 0766 832. 0223 834. COMP. Case 3 Power loss 4.3964	TA <u>ARISONS OF BCS</u> <u>cost</u> 4278 2837 5576 3203 0140 6417 TA <u>ARISONS OF BCS</u> <u>Fuel cost</u> 869.7383	BLE VIII S SCHEMES OF CASE 1 Comparisons BMPSO IMPSO MFA[5] NHBA-CPFD[18] HFBA-COFS[32] NMBAS[11] MBLE IX S SCHEMES OF CASE 3 Compariso BMPSO	A[31] AND CASE 2 Power 1 5.870 5.668 5.919 5.672 5.679 5.648 AND CASE 4 ms	Ca loss F 16 15 15 16 11 17 Power loss 11.1328	41697.1189 se 2 fuel cost with valve-point 866.4884 863.3560 867.60 865.9106 863.7107 863.5610 Case 4 Fuel cost 42150.7986	
Comparisons BMPSO IMPSO MPIO-COSR[20] HFBA-COFS[32] INSGA-III[21] MOBBA-CPNS[33] Comparisons BMPSO IMPSO	Pow 5. 5. 5. 5. 5. 5. 5. 5. 7. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	Comp. Case 1 /er loss Fuel 1425 836. 0715 831. 1085 831. 1085 831. 0796 832. 0796 832. 0766 832. 0766 832. 0223 834. Comp. Case 3 Power loss 4.3964 4.3958	TA ARISONS OF BCS cost 4278 2837 5576 3203 0140 6417 TA ARISONS OF BCS Fuel cost 869.7383 863.2721	BLE VIII S SCHEMES OF CASE 1 Comparisons BMPSO IMPSO MFA[5] NHBA-CPFD[18] HFBA-COFS[32] NMBAS[11] BLE IX S SCHEMES OF CASE 3 Compariso BMPSO IMPSO	A[31] AND CASE 2 Power 1 5.870 5.668 5.919 5.672 5.679 5.648 AND CASE 4 ms	Ca loss F 6 5 5 6 6 7 7 Power loss 11.1328 10.9830	41697.1189 se 2 uel cost with valve-point 866.4884 863.3560 867.60 865.9106 863.7107 863.5610 Case 4 Fuel cost 42150.7986 41988.2811	
Comparisons BMPSO IMPSO MPIO-COSR[20] HFBA-COFS[32] INSGA-III[21] MOBBA-CPNS[33] Comparisons BMPSO IMPSO IMPSO NSGA-FA[5]	Pow 5. 5. 5. 5. 5. 5. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	Comp. Case 1 /er loss Fuel 1425 836 0715 831 1085 831 0796 832 0766 832 0223 834 Comp. Case 3 Power loss 4.3964 4.3958 4.5558 4.5558	TA <u>ARISONS OF BCS</u> cost 4278 2837 5576 3203 0140 6417 TA ARISONS OF BCS Fuel cost 869.7383 863.2721 863.79	BLE VIII Comparisons BMPSO IMPSO IMPSO MFA[5] NHBA-CPFD[18] HFBA-COFS[32] NMBAS[11] BLE IX S SCHEMES OF CASE 3 Compariso BMPSO IMPSO ESDE-EC	A[31] AND CASE 2 Power 1 5.870 5.668 5.919 5.672 5.679 5.648 AND CASE 4 ms	Ca loss F 16 15 15 16 11 17 Power loss 11.1328 10.9830 11.9668	41697.1189 se 2 uel cost with valve-point 866.4884 863.3560 867.60 863.7107 863.5610 Case 4 Fuel cost 42150.7986 41988.2811 42013.3395	
Comparisons BMPSO IMPSO MPIO-COSR[20] HFBA-COFS[32] INSGA-III[21] MOBBA-CPNS[33] Comparisons BMPSO IMPSO IMPSO NSGA-FA[5] NSGA-III[34]	Pow 5. 5. 5. 5. 5. 5. 5. 5. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	COMP. Case 1 ver loss Fuel 1425 836. 0715 831. 1085 831. 0796 832. 0766 832. 0223 834. 0223 834. COMP. Case 3 Power loss 4.3964 4.3958 4.5558 4.5558 4.8522	TA ARISONS OF BCS cost 4278 2837 5576 3203 0140 6417 TA ARISONS OF BCS Fuel cost 869.7383 863.2721 863.79 873.7811	BLE VIII S SCHEMES OF CASE 1 Comparisons BMPSO IMPSO MFA[5] NHBA-CPFD[18] HFBA-COFS[32] NMBAS[11] MBLE IX S SCHEMES OF CASE 3 Compariso BMPSO IMPSO ESDE-EC[ESDE-MC	A[31] AND CASE 2 Power 1 5.870 5.668 5.919 5.672 5.679 5.648 AND CASE 4 Ins [9] [9]	Ca loss F 16 15 15 16 15 16 11 17 Power loss 11.1328 10.9830 11.9668 11.8415	41697.1189 se 2 fuel cost with valve-point 866.4884 863.3560 867.60 865.9106 863.7107 863.5610 Case 4 Fuel cost 42150.7986 41988.2811 42013.3395 41998.3588	
Comparisons BMPSO IMPSO MPIO-COSR[20] HFBA-COFS[32] INSGA-III[21] MOBBA-CPNS[33] Comparisons BMPSO IMPSO IMPSO NSGA-FA[5] NSGA-III[34] I-NSGA-III[34]	Pow 5. 5. 5. 5. 5. 5. 5. 5. 5. 7. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	Comp. Case 1 ver loss Fuel 1425 836. 0715 831. 1085 831. 1085 831. 00796 832. 00766 832. 0223 834. Comp. Case 3 Power loss 4.3964 4.3958 4.5558 4.8522 4.6004 4.6004	TA ARISONS OF BCS cost 4278 2837 5576 3203 0140 5417 TA ARISONS OF BCS Fuel cost 869.7383 863.2721 863.79 873.7811 871.0226	BLE VIII S SCHEMES OF CASE 1 Comparisons BMPSO IMPSO MFA[5] NHBA-CPFD[18] HFBA-COFS[32] NMBAS[11] BLE IX S SCHEMES OF CASE 3 Compariso BMPSO IMPSO IMPSO ESDE-EC ESDE-MC HFBA-COFS	A[31] AND CASE 2 Power 1 5.870 5.668 5.919 5.672 5.679 5.648 AND CASE 4 ms [9] [9] [9] [9]	Ca loss F 6 5 5 6 6 11 7 7 Power loss 11.1328 10.9830 11.9668 11.8415 10.6995	41697.1189 se 2 uel cost with valve-point 866.4884 863.3560 867.60 865.9106 863.7107 863.5610 Case 4 Fuel cost 42150.7986 41988.2811 42013.3395 41998.3588 42122.0140	

Fig. 7 gives the PF-superposition of BMPSO and IMPSO algorithms for the dual-objective MOOPF case on 30-bus system (Case 1). Fig. 7 intuitively shows that there is almost no difference between 30 PFs obtained by IMPSO algorithm while the 30 PFs of BMPSO algorithm have poor consistency. Meanwhile, Fig. 8 gives the PF-superposition of two involved algorithms for the tri-objective experiment on 30-bus system (Case 3) and Fig. 9 gives the PF-superposition result of a dual-objective MOOPF case on 57-bus system (Case 4).

Fig. 7 ~ Fig. 9 strongly prove that the presented IMPSO algorithm has more significant advantages over the basic BMPSO algorithm in terms of operation stability even on more complex 57-bus system.

IV. BP PREDICTION NETWORK AND APPLICATION

Four MOOPF experiments verify that the BCS of proposed IMPSO algorithm is not only superior to the BCS of BMPSO algorithm, but also dominates the ones of most published algorithms. However, further research shows that there is room for further optimization of the BCS quality. Therefore, a multi-output BP prediction model which is suitable for MOOPF problems is proposed in this paper.

A. Proposed BP prediction network

In order to reduce the randomness of experimental results, five candidate BP prediction models are generated according to the main process shown in TABLE X. Then, a relatively optimal BP power flow prediction network is determined from candidate networks based on the mean absolute error (*MAE*), root mean squared error (*RMSE*) and mean absolute percentage error (*MAPE*). Three mentioned errors are shown in (17) ~ (19) [21, 35].

$$MAE = \frac{1}{Np} \sum_{i=1}^{Np} |G_{real}(i) - G_{BP}(i)|$$
(17)

$$RMSE = \sqrt{\frac{\sum\limits_{i=1}^{Np} (G_{real}(i) - G_{BP}(i))^2}{Np}}$$
(18)

$$MAPE = \frac{1}{Np} \sum_{i=1}^{Np} \left| \frac{G_{real}(i) - G_{BP}(i)}{G_{real}(i)} \right| \times 100\%$$
(19)

Case 1 - BMPSO(PFs)

where G_{real} and G_{BP} are true and predicted goal values.

B. Application of BP network

980

960

940

920

Fuel cost (\$/h) 880 896 806 806

840

820

800

In this paper, the feasibility of proposed BP power flow

prediction model is demonstrated by a dual-objective MOOPF simulation experiment and a tri-objective one. 1) BP network for dual-objective MOOPF

1) BP network for dual-objective MOOPF

First, a dual output BP prediction model is constructed for Case 1 which optimizes the fuel cost and power loss on IEEE 30-bus system. TABLE XI gives the *RMSE*, *MAE* and *MAPE* errors corresponding to the fuel cost and power loss prediction of five candidate networks. It indicates that the fifth candidate network achieves the smallest prediction errors of G_{fc} and G_{pl} goals, which is adopted as the final BP power flow prediction model of Case 1.

In detail, Fig. 10 gives the fitting results of two goals studied in Case 1 and it clearly shows that the presented BP network can accurately predict fuel cost and power loss based on control variables. The four WES scheduling schemes of Case 1 obtained by BP prediction network are given in TABLE XII. It should be noted that TABLE XII only gives the continuous control variables of WES schemes, while the discrete control variables are the same as the BCS of IMPSO algorithm shown in TABLE II. The fuel cost and power loss goals of WES schemes are both smaller than the ones of BCS determined by IMPSO algorithm, which strongly proves the superiority of BP prediction network.

2) BP network for tri-objective MOOPF

Then, an effective BP power flow prediction network is built for the tri-objective MOOPF Case 3 which optimizes fuel cost, power loss and emission simultaneously.

TABLE XIII gives the evaluation results of five candidate BP networks and the second BP network which realizes the smallest prediction errors is adopted as the final BP power flow prediction model of Case 3. Besides, Fig. 11 gives the fitting results of the predicted fuel cost, power loss, emission and the real ones. Fig. 11 indicates that the BP network built for tri-objective MOOPF problem is not as accurate as the one built for dual-objective MOOPF problem, which points out the direction for further research.

Thrillingly, the proposed BP power flow prediction network is also suitable for the more complex tri-objective MOOPF problem, and successfully obtains three high quality WES schemes shown in TABLE XIV. The WES schemes determined by BP power flow prediction network, which have higher adoption priority than the BCS of IMPSO algorithm, provide multiple satisfactory scheduling schemes for the optimal operation of power system.

Fig. 7. Superposition of 30 PFs of dual-objective MOOPF on 30-bus system

5 Power loss (MW)

4

Volume 52, Issue 3: September 2022

TABLE X BP Power Flow Prediction Network for MOOPF Problems

Begin

Input 1000 scheduling schemes and the corresponding Ge, Gfc, Gfv, Gpl goals

for i=1:5

Select the random 900 schemes for BP network training (Intrain) and the other 100 schemes for testing (Intest);

Identify the corresponding output data of training data (Out_{train}) and testingdata (Out_{test});

Perform the data normalization;

Clarify the structure of BP power flow prediction network;

Generate the *i*th candidate BP prediction network $N_{BP(i)}$;

Predict the *m* goals of *Intest* set (*OutBPtest*) according to *N*_{BP(i)} model;

Perform the inverse-normalization on *OutBP_{test}* set to obtain the predictive goals (*Pre_{test}*);

Save the *i*th BP model *N*_{BP(i)};

end for

Evaluate the quality of five candidate BP prediction networks based on Out_{lest} and Pretest;

Determine the relatively-best model N_{BP}^{best} based on *RMSE*, *MAE* and *MAPE* errors;

Input the control variables of BCS scheme determined by IMPSO algorithm (BCS_{IMPSO});

Set the valid ranges of BP exploration operation within [0.999 BCSIMPSO, 1.001 BCSIMPSO];

Randomly generate N_{bp} candidate scheduling schemes within the above valid ranges;

Regulate the mentioned N_{bp} schemes based on (5);

Obtain the predictive G_e , G_{fc} , G_{fv} and G_{pl} goals of N_{bp} schemes based on N_{Bp}^{best} network;

Pick out the elite schemes with m smaller goals than the current BCS scheme;

Perform the Newton-Raphson power flow calculation to the above elite schemes and obtain the real Ge, Gfc, Gfv, Gpl goals;

Determine the WES schemes which realize zero constraint-violation and dominate the BCS of IMPSO algorithm;

Fig. 11. Fitting results of predicted and real goals of tri-objective Case 3

TABLE XI	
PREDICTION ERRORS OF BP NETWORK FOR DUAL-OBJECTIVE MOOPF PROBLEM	

Errors		Case 1 - Fuel cost			Case 1 - Power loss		
	RMSE	MAE	MAPE	RMSE	MAE	MAPE	
Network 1	0.0565	0.0229	2.7482E-05	0.0057	0.0022	4.3849E-04	
Network 2	0.0683	0.0305	3.6652E-05	0.0030	0.0019	3.7848E-04	
Network 3	0.0663	0.0440	5.2813E-05	0.0058	0.0042	8.3856E-04	
Network 4	0.2300	0.0641	7.6857E-05	0.0112	0.0038	7.5259E-04	
Network 5	0.0220	0.0118	1.4133E-05	0.0020	0.0014	2.7511E-04	

WES schemes	WES1	WES ₂	WES ₃	WES_4
P _{G2} (MW)	52.8254	52.7750	52.7681	52.7945
P _{G5} (MW)	30.8117	30.8151	30.8217	30.8340
P _{G8} (MW)	34.8115	34.8603	34.8128	34.8312
P _{G11} (MW)	27.6847	27.6881	27.7070	27.6711
P _{G13} (MW)	23.0703	23.0556	23.0601	23.0510
V _{G1} (p.u.)	1.1000	1.1000	1.1000	1.0998
V _{G2} (p.u.)	1.0911	1.0909	1.0910	1.0912
V _{G5} (p.u.)	1.0692	1.0707	1.0693	1.0696
V _{G8} (p.u.)	1.0783	1.0779	1.0778	1.0784
V _{G11} (p.u.)	1.0958	1.0953	1.0954	1.0956
V _{G13} (p.u.)	1.1000	1.1000	1.0991	1.1000
$G_{pl}(MW)$	5.0700	5.0710	5.0714	5.0714
G_{fc} (\$/h)	831.2763	831.2825	831.2808	831.2759

TABLE XIII

PREDICTION ERRORS OF BP NETWORK FOR TRI-OBJECTIVE MOOPF PROBLEM

E	С	Case 3 - Emission		Cas	Case 3 - Power loss			Case 3 - Fuel cost		
Errors	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	
Network 1	0.0038	0.0025	0.0115	0.2327	0.1637	0.0341	0.4541	0.3833	4.44E-04	
Network 2	0.0025	0.0013	0.0057	0.1158	0.0591	0.0121	0.3804	0.1564	1.81E-04	
Network 3	0.0089	0.0020	0.0038	0.1358	0.1020	0.0213	0.4062	0.2945	3.41E-04	
Network 4	0.0025	0.0014	0.0062	0.1345	0.0855	0.0172	0.3860	0.2230	2.58E-04	
Network 5	0.0034	0.0020	0.0092	0.1979	0.1551	0.0322	0.4618	0.3727	4.32E-04	

TAD	IEV	TV	

	WES SCHEMES C	OF TRI-OBJECTIVE CASE 3	
WES schemes	WES1	WES ₂	WES ₃
P _{G2} (MW)	62.1317	62.1276	62.1295
P _{G5} (MW)	35.9534	35.9499	35.9523
P _{G8} (MW)	34.4145	34.4141	34.4162
P _{G11} (MW)	29.4704	29.4697	29.4676
P _{G13} (MW)	29.8893	29.8930	29.8898
V _{G1} (p.u.)	1.1000	1.1000	1.0999
V _{G2} (p.u.)	1.0903	1.0902	1.0903
V _{G5} (p.u.)	1.0851	1.0851	1.0852
V _{G8} (p.u.)	1.0861	1.0861	1.0861
V _{G11} (p.u.)	1.0787	1.0787	1.0786
V _{G13} (p.u.)	1.1000	1.1000	1.1000
$G_e(ext{ton/h})$	0.2131	0.2131	0.2131
$G_{pl}(MW)$	4.3943	4.3949	4.3952
$G_{fc}(h)$	863.2644	863.2562	863.2589

V. CONCLUSION

To explore high-quality dispatching schemes and realize the optimal operation of power system, the innovative IMPSO algorithm and BP power flow prediction network are proposed in this paper.

By integrating constraint-goal dominant strategy, local

exploration and mutation-crossover operations, the presented IMPSO algorithm can solve the high dimensional MOOPF problems smoothly. Four MOOPF experiments on different systems verify that IMPSO achieves better PF and BCS than basic BMPSO and published algorithms. Furthermore, the effective BP power flow prediction network suitable for both dual-objective and tri-objective MOOPF problems is put forward in this paper. Based on the BCS found by IMPSO algorithm, the presented BP prediction network successfully obtains more than three WES scheduling schemes with zero constraint-violation and better performance.

In general, the preferable power flow scheduling schemes determined by proposed IMPSO algorithm and BP prediction network can reduce fuel cost, power loss and emission, which is very valuable for the optimal operation of power system.

REFERENCES

- W. Warid, "Optimal power flow using the AMTPG-Jaya algorithm," *Applied Soft Computing*, vol. 91, pp. 106252, 2020.
- [2] J. S. Ferreira, E. J. de Oliveira, A. N. de Paula, L. W. de Oliveira, and J. A. Passos Filho, "Optimal power flow with security operation region," *International Journal of Electrical Power & Energy Systems*, vol. 124, pp. 106272, 2021.
- [3] S. Abd El-sattar, S. Kamel, M. Ebeed, and F. Jurado, "An improved version of salp swarm algorithm for solving optimal power flow problem," *Soft Computing*, vol. 25, no. 5, pp. 4027-4052, 2021.
- [4] W. W, H. Hashim, M. Norman, W. Noor, and I. Abdul, "A novel quasi-oppositional modified Jaya algorithm for multi-objective optimal power flow solution," *Applied Soft Computing*, vol. 65, pp. 360-373, 2018.
- [5] G. Guo, J. Qian and S. Li, "Novel many-objective NSGA-FA algorithm to minimize fuel cost, power loss and emission of electric systems," *IAENG International Journal of Computer Science*, vol. 47, no. 4, pp. 634-644, 2020.
- [6] E. Naderi, M. Pourakbari-Kasmaei, F. V. Cerna, and M. Lehtonen, "A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems," *International Journal of Electrical Power & Energy Systems*, vol. 125, pp. 106492, 2021.
- [7] X. Kang and D. Pi, "Forecasting satellite power system parameter interval based on relevance vector machine with modified particle swarm optimization," *IAENG International Journal of Computer Science*, vol. 44, no. 1, pp. 68-78, 2017.
- [8] Y. Wu and Q. Song, "Improved particle swarm optimization algorithm in power system network reconfiguration," *Mathematical Problems in Engineering*, vol. 2021, no. 9, pp. 5574501, 2021.
- [9] H. Pulluri, R. Naresh and V. Sharma, "An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow," *Applied Soft Computing*, vol. 54, pp. 229-245, 2017.
- [10] G. Chen, X. Zhao, K. Peng, P. Zhou, X. Zeng, H. Long, and M. Zou, "Optimized configuration of location and size for DGs and SCs in radial distributed networks based on improved butterfly algorithm," *IAENG International Journal of Applied Mathematics*, vol. 52, no. 1, pp. 81-100, 2022.
- [11] J. Qian, P. Wang, C. Pu, and G. Chen, "Joint application of multi-object beetle antennae search algorithm and BAS-BP fuel cost forecast network on optimal active power dispatch problems," *Knowledge Based Systems*, vol. 226, pp. 107149, 2021.
- [12]G. Chen, X. Yi, Z. Zhang, and H. Wang, "Applications of multi-objective dimension-based firefly algorithm to optimize the power losses, emission, and cost in power systems," *Applied Soft Computing*, vol. 68, pp. 322-342, 2018.
- [13]K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," *IEEE Transactions on Evolutionary Computation*, vol. 2, no. 6, pp. 182-197, 2002.
- [14] P. C. Roy, K. Deb and M. M. Islam, "An efficient nondominated sorting algorithm for large number of fronts," *IEEE Transactions on Cybernetics*, vol. 49, no. 3, pp. 859-869, 2019.
- [15]G. Chen, J. Qian, Z. Zhang, and Z. Sun, "Multi-objective improved bat algorithm for optimizing fuel cost, emission and active power loss in power system," *IAENG International Journal of Computer Science*, vol. 46, no. 1, pp. 118-133, 2019.
- [16] P. P. Biswas, P. N. Suganthan, R. Mallipeddi, and G. A. J. Amaratunga, "Optimal power flow solutions using differential evolution algorithm"

integrated with effective constraint handling techniques," *Engineering Applications of Artificial Intelligence*, vol. 68, pp. 81-100, 2018.

- [17]S. Li, W. Gong, L. Wang, X. Yan, and C. Hu, "Optimal power flow by means of improved adaptive differential evolution," *Energy*, vol. 198, pp. 117314, 2020.
- [18]G. Chen, J. Qian, Z. Zhang, and Z. Sun, "Applications of novel hybrid bat algorithm with constrained Pareto fuzzy dominant rule on multi objective optimal power flow problems," *IEEE Access*, vol. 7, pp. 52060-52084, 2019.
- [19]T. T. Nguyen, "A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization," *Energy*, vol. 171, pp. 218-240, 2019.
- [20]G. Chen, J. Qian, Z. Zhang, and S. Li, "Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem," *Applied Soft Computing*, vol. 92, pp. 106321, 2020.
- [21]J. Qian, H. Long, Y. Long, and C. Zhao, "Improved NSGA-III algorithm and BP fuel-cost prediction network for many-objective optimal power flow problems," *IAENG International Journal of Applied Mathematics*, vol. 51, no. 2, pp. 307-320, 2021.
- [22]S. Khunkitti, A. Siritaratiwat, S. Premrudeepreechacharn, R. Chatthaworn, and N. Watson, "A hybrid DA-PSO optimization algorithm for multiobjective optimal power flow problems," *Energies*, vol. 11, no. 9, pp. 2270, 2018.
- [23]M. A. Taher, S. Kamel, F. Jurado, and M. Ebeed, "An improved moth-flame optimization algorithm for solving optimal power flow problem," *International Transactions on Electrical Energy Systems*, vol. 29, no. 3, pp. e2743, 2018.
- [24]S. Birogul, "Hybrid harris hawk optimization based on differential evolution (HHODE) algorithm for optimal power flow problem," *IEEE Access*, vol. 7, pp. 184468-184488, 2019.
- [25] A. F. Attia, R. A. El Schiemy and H. M. Hasanien, "Optimal power flow solution in power systems using a novel Sine-Cosine algorithm," *International Journal of Electrical Power & Energy Systems*, vol. 99, pp. 331-343, 2018.
- [26]P. P. Biswas, P. N. Suganthan, R. Mallipeddi, and G. A. J. Amaratunga, "Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms," *Soft Computing*, vol. 24, no. 4, pp. 2999-3023, 2020.
- [27]S. S. Reddy, "Optimal power flow using hybrid differential evolution and harmony search algorithm," *International Journal of Machine Learning and Cybernetics*, vol. 10, no. 5, pp. 1077–1091, 2019.
- [28]S. Li, W. Gong, C. Hu, X. Yan, L. Wang, and Q. Gu, "Adaptive constraint differential evolution for optimal power flow," *Energy*, vol. 235, pp. 121362, 2021.
- [29] A. M. Shaheen, R. A. El-Sehiemy, M. M. Alharthi, S. S. M. Ghoneim, and A. R. Ginidi, "Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework," *Energy*, vol. 237, pp. 121478, 2021.
- [30] Y. Yuan, X. Wu, P. Wang, and X. Yuan, "Application of improved bat algorithm in optimal power flow problem," *Applied Intelligence*, vol. 48, no. 8, pp. 2304-2314, 2018.
- [31]S. Khunkitti, A. Siritaratiwat and S. Premrudeepreechacharn, "Multi-objective optimal power flow problems based on slime mould algorithm," *Sustainability*, vol. 13, no. 13, pp. 7448, 2021.
- [32]G. Chen, J. Qian, Z. Zhang, and Z. Sun, "Multi-objective optimal power flow based on hybrid firefly-bat algorithm and constraints-prior object fuzzy sorting strategy," *IEEE Access*, vol. 7, pp. 139726-139745, 2019.
- [33]G. Chen, J. Qian, Z. Zhang, and Z. Sun, "Many-objective new bat algorithm and constraint-priority non-inferior sorting strategy for optimal power flow," *Engineering Letters*, vol. 27, no. 4, pp. 882-892, 2019.
- [34] J. Zhang, S. Wang, Q. Tang, Y. Zhou, and T. Zeng, "An improved NSGA-III integrating adaptive elimination strategy to solution of many-objective optimal power flow problems," *Energy*, vol. 172, pp. 945-957, 2019.
- [35]C. Liu and M. Jiang, "Robust adaptive filter with lncosh cost," *Signal Processing*, vol. 168, pp. 107348, 2019.