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Abstract—The Cumulative Sum (CUSUM) control chart is a 

widely used statistical quality control tool, especially in 

manufacturing processes. It serves to give an alarm when the 

process is out of control. Control Charts are frequently used to 

monitor and evaluate product quality in the manufacturing 

process. In real-world situations where random processes are 

related in sequence, such as hospitalizations, stock prices, or 

daily rainfall. The main purpose of this paper is to develop the 

explicit formula for the average run length (ARL) of the 

CUSUM control chart based on a seasonal autoregressive model 

with one exogenous variable (SARX(1,1)L) using the Fredholm 

integral equation. The findings of the explicit formula were 

also compared to the results of a numerical integral equation 

using the Gaussian rule, the Midpoint rule, and the 

Trapezoidal rule. The results show that the analytical solution 

of the ARL is sufficiently accurate and easy to calculate in 

comparison with the numerical integration techniques. In 

addition, evaluating the proposed explicit formulas on the CPU 

time takes less than a second, whereas the numerical integration 

takes 13–18 minutes.  

 
Index Terms—Statistical Process Control, Analytical solution, 

Numerical integration, Average Run Length 

I. INTRODUCTION 

WO of the most prevalent types of control charts are 

Xbar-R charts and individual charts. Shewhart control 

charts were first introduced by Walter Shewhart [1]. 

Shewhart control charts are useful for detecting somewhat 

large changes in the mean of the process. The Cumulative 

Sum (CUSUM) control chart is an alternate control chart 

that is primarily used to detect small shifts in the mean of 

the process. Page [2] introduced the CUSUM control chart 

in 1954. It's been used in a variety of industries, but it's most 

famous for its use in the chemical industry. The CUSUM 

control charts are used to detect changes in the output of the 

manufacturing process. In terms of detecting small changes 

in the process means, Hawkins and Olwell [3] and Lucas [4] 
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show that the CUSUM chart is more efficient than the 

Shewhart chart.  

Control charts are currently utilized in medicine to ensure 

the quality of drug manufacture. The cumulative sum 

control chart has recently been introduced to detect process 

changes in dichotomized or quantitative data. It's a simple 

and effective chart for detecting small changes, with the 

additional benefit of demonstrating the robustness to non-

normality (See for detail Borror et, al. [5]). The observations 

from the process are usually assumed to be independent and 

identically distributed (i.i.d.) with a normal distribution when 

control charts are created and evaluated. In real applications, 

there are several instances where process data is derived from 

non-normal distributions, such that the data is autocorrelated, 

which necessitates the use of appropriate control charts to 

monitor the data. 

 Average Run Length (ARL) is a common criterion for 

comparing the performance of control charts. 0ARL  denotes 

the expected number of observations taken from an in-control 

process before the control chart inappropriately signals out-

of-control. An 0ARL  is considered appropriate if it is large 

enough to keep the false alarm rate under control. The 

expected number of observations obtained from an out-of-

control process until the control chart alerts that the process 

is out-of-control, which is denoted by 1ARL , is a second 

common characteristic.  

 Many approaches for evaluating the ARL have been 

proposed in the literature, including Monte Carlo simulations 

(MC), Markov Chain Methodology (MCA), and the 

Numerical Integral Equation approach (NIE). Busaba et al. 

[6] studied the ARL for the CUSUM control chart by using 

the Fredholm Integral Equation to derive the ARL. Phanyaem 

et al. [7] used the integral equation technique to derive the 

explicit formula for the ARL of the CUSUM control chart 

for an autoregressive and moving average process with 

exponential white noise. Petcharat et al. [8] established an 

analytical equation for the ARL of the CUSUM control 

chart when the random observations are modeled as a 

moving average of an order q process. Later, Paichit [9] 

presented an analytical solution for the ARL of a CUSUM 

control chart for an autoregressive process with one 

explanatory variable. Subsequently, Phanyaem [10] used an 

Integral Equation approach for the seasonal autoregressive 

moving average; (1,1)LSARMA model to evaluate the ARL of 

the CUSUM control chart. Recently, Piyapatr and Lili [11] 

compared numerical integration to explicit formulas for the 
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ARL of the CUSUM control chart for an autoregressive 

integrated moving average model with exponential white 

noise. Furthermore, Peerajit et al. [12] showed the explicit 

formulas for the ARL of CUSUM control chart for ARMA 

with an exogenous variable; ( , , )ARMAX p q r model. Finallly, 

Phanyaem [13] derived the explicit formula of the ARL for 

the Exponentially Weighted Moving Average chart by using 

an integral equation when observations are described by an 

autoregressive integrated moving average; ( , , )ARIMA p d q  

model.  

 The analytical formula for 0ARL  and 1ARL  of the CUSUM 

chart when observations are seasonal autoregressive with a 

single exogenous variable; (1,1)LSARX  model with exponential 

white noise which is derived in this research. In addition, we 

approximate the ARL using the Gaussian rule, the Midpoint 

rule, and the Trapezoidal rule, and compare the results 

obtained using explicit formulae. The following is the structure 

of this paper: The materials and methods are given in Section 

2. In Section 3, we compare the numerical results obtained 

from the explicit formula for the ARL of (1,1)LSARX  model 

with the numerical solution obtained from a numerical 

integral equation. The final section contains the conclusions. 

II. MATERIALS AND METHODS 

The statistical process control chart is investigated in this 

study under the assumption that sequential data are a 

seasonal autoregressive model with an exogenous variable 

and exponential white noise. The “in-control state” is defined 

as 
0  before a change-point time   , and the “out-

of-control state” is defined as 
1   after a change-point time 

.  The stopping times of the control charts are used to 

construct the statistical process control charts. The CUSUM 

control chart’s stopping time is given by 

 

    =  inf 0;b tt C b   ;  = 1,2,....t  (1) 

 

where tC is the CUSUM statistics  

 b  is the upper control limit of the CUSUM chart. 

The following are the general criteria for selecting the 

stopping times b : 

 

   ( ) =  bE T  (2) 

 

where T is a constant, and (.)E  is the expectation that the 

change point will occur at   under distribution 0( , )F x  . 

The average run length for the in-control state is defined in 

this paper as ( ).bE   The average run length for an in-

control process is known as 0ARL  and is calculated as 

 

   0 ( )   bARL E T   (3) 

 

The constraint, on the other hand, is to minimize the quantity 

to as small as possible. 

   ( 1 )b bSup E         (4) 

where (.)E  is the expectation under distribution 1( , )F x   

and the value of a parameter after a change-point occurs is 

1. The average run length is called 1ARL  and it is given by 

1   for out-of-control processes. 

 

   1 1( )bARL E   (5) 

 

 Page [2] proposed recursive CUSUM statistics, which are 

defined as 

 

  1max(0,C ) ; 1,2,....t t tC Y a t     (6) 

 

where tY   is a (1,1)LSARX  model with exponential white  

 noise sequence 

0C  is the starting value of the CUSUM statistics;  

a    is the reference value of CUSUM control chart. 

 In this paper, we consider the seasonal autoregressive 

model with one exogenous variable. The (1,1)LSARX  model 

is defined as 
 

  ; 1, 2,....t t L t tY Y X t         (7) 

 

where   is a process mean 

          tX  is an exogenous variable 

            is an exogenous variable coefficient 

            is an autoregressive coefficient 

          t  is an exponential white noise. 

Let CP is the probability measure and CE is the expectation 

corresponding to the initial value of CUSUM 

statistics 0C u . The CUSUM control chart's average run 

length is defined as 
 

  ( ) ( ) ; [0, ]bL u u b   E    (8) 

 

The average run length is solved using the Fredholm 

Integral Equations of the second kind:  

 1 1( ) [ { }] [ { }( )]C C bL u I C b I C b    E E     

 1 11 [ {0 }] ( )C I C b L C   E     

 1 1 11 [ {0 } ( )] { 0} (0)C CI C b L C C L     E P    (9) 

   
Consequently, we get the following formula for the ARL 

of the CUSUM control chart: 

 

 
( )

0

( ) 1 ( )t L t
b

u a Y X yL u e L y e dy
             

  
( )

(1 (0).t L ta u Y X
e L

       
      (10) 
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Let d  be a constant of the function ( );L u
0

( ) .
b

yd L y e dy    

So, the corresponding function of ARL can be written as 

  

 
( )

( ) 1 t L tu a Y X
L u e d

       
   

   
( )

(1 (0).t L ta u Y X
e L

       
      (11) 

For the case 0u   we obtain the function (0)L  as follow: 

 

 
( )

(0) 1 t L tu a Y X
L e d

       
   

    
( )

(1 (0)t L ta u Y X
e L

       
   

  
( )

.t L ta Y X
e d
      

         (12) 

 

We get the function ( )L u  by substituting (0)L  into (11). 

 
( )

( ) 1 t L tu a Y X
L u e d

       
   

    
( ) ( )

(1 ;t L t t L ta u Y X a Y X
e e d

                
    

  
( )

1 .t L ta Y X ue d e
      

           (13) 

 

Next, we consider finding the constant d  as follows: 

 
0

( ) .
b

yd L y e dy   

 
( )

0

(1 )t L t
b

a Y X u yd e e e dy
              

 
( )

0 0

(1 )t L t
b b

a Y X u y yd e e dy e dy
                 

 
( )

(1 )(1 )t L t

b
a Y Xb be

e e be


    


         (14) 

  
 As a result of solving the Integral Equation, the following 

explicit formulas are obtained: 

 
( )

( ) (1 ) ; 0t L ta Y Xb uL u e e b e u
      

       (15) 

 

 The value of the exponential white noise parameter is set 

to
0   while the process is in the control state. Hence, we 

can derive the explicit formula of 0ARL  for the CUSUM 

control chart as follows: 

 

0 0 0( )
0 0(1 ) ; 0t L tb a Y X u

ARL e e b e u
       

       (16) 

 

 While the process is out-of-control state, the value of 

exponential white noise parameter 
1;   

1 0 (1+ ).    

Thus, we obtain the explicit formula of 1ARL  for CUSUM 

control chart as follows: 

 

11 1( )
1 1(1 ) ; 0t L ta Y Xb u

ARL e e b e u
      

        (17) 

III. NUMERICAL METHODS FOR SOLVING THE INTEGRAL 

EQUATION 

Quadratures of the Gaussian type are particularly useful 

for calculating integrals of the average run length. The 

Gauss–Legendre quadrature formula is used to achieve 

accurate numerical integration. Champ and Rigdon [14] 

introduce the numerical integral equation, or NIE method.  

In this paper, we study at how to find an approximation 

of an integral equation using Gaussian rules, Midpoint rule 

and Trapezoidal rule.  

The scheme for numerically evaluating the solutions of 

the integral equation is presented in this section. Firstly, the 

integral equation of the ARL in equation (10) can be rewritten 

as follows: 

 

 ( ) 1 (0) ( )t L tL u L F a u Y X       %  

       
0

( ) ( )

b

t L tL y f y a u Y X         (18) 

 

If y  is a random variable with an exponential distribution 

and ( ) yf y e   is the probability density function, and 

( ) 1 yF y e    is the cumulative density function. This 

numerical approximation method divides the interval [0, b] 

into the same m subintervals and uses specific formulas to 

calculate the area of the function for each subinterval.  

In Gaussian rules, the integration interval can be infinite, 

the weight function ( )W y might not equal 1, and the set of 

points { , 1, 2,..., }ky k n is equally spaced. Gauss-Legendre 

quadrature is a form of the Gaussian quadrature rule that is 

used to approximate the integral equation. 

The Gaussian quadrature rule has the following form for 

integrating over the interval [0, b] 

 
10

( ) ( ) ( )

b m

k k

k

W y f y dy w f a


  

where ak is a set of point, 1 20 ...a a   ma b   and wk 

is a set of constant weight, wk / 0.b m    

The Midpoint rule approximation for integrating over the 

interval [0, b] is given by: 

0 1

1
( ) .

2

b m

k

f y dy h f a k h


          
  

   

where h  is the width of subinterval, h = b/m 

          m  is the subinterval. 

The Trapezoidal rule approximation for integrating over 

the interval [0, b] is given by: 

0 1

( ) ( (0) ( )) ( ).
2

b m

k
k

h
f y dy f f b h f y



     

where h  is the width of subinterval,
0

2

b
h

m


  

          m  is the subinterval. 
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( )iL a%  denotes the ARL’s numerical approximation to the 

numerical integral equation for the (1,1)LSARX  model.   

( ) 1 (0)F( )i i t L tH a H a a Y X       % %  

   
1

( ) ( ).
m

j j j i t L t
j

w H a f a a a Y X  


      %  

 

 We can approximate the function ( )L u%  to solve this set 

of equations for the approximate values of 1 2( ), ( ),..,L a L a% %  

and ( ),mL a%  which can be written as 

1 1 1( ) 1 ( )[F( )t L tL a L a a a Y X       % %  

        1 ( )]t L tw f a Y X       

    
1

2

( ) ( )
m

j j j t L t
j

w L a f a a a Y X  


      %  

2 1 2( ) 1 ( )[F( )t L tL a L a a a Y X       % %  

 1 1 2( )]t L tw f a a a Y X         

 
2

2

( ) ( )
m

j j j t L t
j

w L a f a a a Y X  


      %  

  

1( ) 1 ( )[F( )m m t L tL a L a a a Y X       % %  

 1 1+ ( )]m t L tw f a a a Y X           

  
2

( ) ( )
m

j j j m t L t
j

w L a f a a a Y X  


      %  

 The numerical integral equation can be rewritten in 

matrix form as follows: 

    1 1 1m m m m m    L 1 R L
 

where  

1

2
1

( )

( )
 = 

( )

m

m

L a

L a

L a



 
 
 
 
 
 
 
 
 
  
 

L

%

%

M
%

 ,  1

1

1
 = 

1

m

 
 
 
 
  
 

1
M

 

and Im = diag(1,1,…,1) is the unit matrix of order m. If there 

exists an (Im - Rmxm)-1, the solution of the matrix equation is 

as follows: 

   
1

1 1( )m m m m m


   L I R 1 . 

As a result, for the CUSUM chart based on the (1,1)LSARX  

model, the numerical integration of ARL is as follows: 

1( ) 1 ( )[F( )t L tL u L a a u Y X       % %  

      1 1( )]t L tw f a a u Y X         (19) 

 
2

( ) ( )
m

j j j t L t
j

w L a f a a u Y X  


      %  

IV. RESULTS 

In this section, we compute the explicit formula values 

for ARL0 and ARL1 from equation (16) and equation (17) 

with the parameters (a and b) and compare these results with 

values obtained from the numerical integration approach. 

( )L u  denotes the explicit formula, while ( )L u%  denotes the 

numerical integral equation. The computational time (CPU) 

required to compute the numerical values for ARL0 and 

ARL1 is also compared, the values in parentheses denote the 

computational times. The absolute percentage difference is 

calculated as follows: 

(%) 100.
EF NIE

EF

ARL ARL
Diff

ARL


   

where EFARL   is the ARL from explicit formula 

 NIEARL  is the ARL from NIE method. 

Table I and Table II shows the ARL0 and ARL1 on the 

SARX(1,1)4 model with  = 0.10,  = 0.1 by using the explicit 

formula and the Gaussian rule NIE methods on the CUSUM 

control chart. The ARL are computed for an in-control 

parameter value 0 = 1 and the numerical values for ARL1 are 

computed for a range of out-of-control parameter values 

1 0 (1+ )      where   = 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 

2.2, 2.3, 2.4, 2.5, and 3.0. The reference values (a) were 2.50 

and 3.00, respectively and an initial value (u) was 1.  

In Table I, we set the parameter values for the SARX(1,1)4 

model with   = 0.10,  = 0.10 then the parameter values of 

CUSUM control chart are a = 2.50 and b = 3.976. The CPU 

times have been obtained for each computation. For the case 

0 = 1 and ARL0 = 370, the computing time based on the 

explicit formula takes less than 1 second, while the CPU 

time required for Gaussian rule NIE method runs for 13-14 

minutes.  

In Fig 1, we compare the ARL of the CUSUM control 

chart based on the SARX(1,1)4 model by using the explicit 

formula and the Gaussian rule NIE methods, given ARL0 = 

370, a = 2.50, and b = 3.976. The results show that the ARL 

from the explicit formula method and the Gaussian rule NIE 

method differ only slightly. 

In Table II, we set the parameter values for the SARX(1,1)4 

model with   = 0.10, and  = 0.10, then the parameter values 

of CUSUM control chart are a = 3.00 and b = 3.270. The 

results show that the explicit formula takes less than a 

second to compute, whereas the Gaussian rule NIE approach 

takes 13-15 minutes on the CPU. 

 In Fig 2, we compare the ARL of the CUSUM control 

chart based on the SARX(1,1)4 model by using the explicit 

formula and the Gaussian rule NIE methods, given ARL0 = 

370, a = 3.00, and b = 3.270. The results show that the ARL 

from the explicit formula is close to the Gaussian rule NIE 

methods. 

In Table III, we set the parameter values for the SARX(1,1)4 

model with   = 0.10,  = 0.10 then the parameter values of 

CUSUM control chart are a = 2.50 and b = 4.326. The CPU 

times have been obtained for each computation. For the case 

0 = 1 and ARL0 = 500, the computing time based on the 
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explicit formula takes less than 1 second, while the CPU time 

required for Gaussian rule NIE method runs for 12-13 minutes.  

In Fig.3, we compare the ARL of the CUSUM control 

chart based on the SARX(1,1)4 model by using the explicit 

formula and the Gaussian rule NIE methods, The parameter 

values used for the CUSUM control chart were a = 2.5 and 

b = 4.326. The results suggest that the explicit formula's 

ARL is comparable to the Gaussian rule NIE approaches. 

In Table IV, we set the parameter values for the SARX(1,1)4 

model with   = 0.10,  = 0.10 then the parameter values of 

CUSUM control chart are a = 3.00 and b = 3.592. The CPU 

times have been obtained for each computation. For the case 

0 = 1 and ARL0 = 500, the CPU time required for the 

Gaussian rule NIE method is 13-14 minutes, but the calculation 

time based on the explicit formula is less than 1 second. 

 In Fig 4, we compare the ARL of the CUSUM control 

chart based on the SARX(1,1)4 model by using the explicit 

formula and the Gaussian rule NIE methods, the parameter 

values used for the CUSUM control chart were a = 3.00 and 

b = 3.592. The results suggest that the explicit formula's 

ARL is comparable to the Gaussian rule NIE approaches. 

Table V and VI show the ARL0 and ARL1 on the 

SARX(1,1)12 model with  = 0.30,  = 0.50 by using the 

explicit formula and the Midpoint rule NIE methods on the 

CUSUM control chart. The ARLs are computed for an in-

control parameter value 
0 1   and numerical values for ARL1 

are computed for a range of out-of-control parameter values 

1 0 (1+ )      where   = 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 

2.2, 2.3, 2.4, 2.5, and 3.0. The CUSUM control chart was set 

the reference values (a) is 4.50 and 5.00, respectively, and 

an initial value (u) is 1.  

In Table V, we set the parameter values for the SARX(1,1)12 

model with   = 0.30,  = 0.50 then the parameter values of 

CUSUM control chart are a = 4.50 and b = 2.253. The CPU 

times have been obtained for each computation. For the 

case
0 1   and ARL0 = 370, the computing time based on the 

explicit formula takes less than 1 second, while the CPU time 

required for Midpoint rule NIE method runs for 14-15 minutes.  

In Fig 5, we compare the ARL of the CUSUM control 

chart based on the SARX(1,1)12 model by using the explicit 

formula and the Midpoint rule NIE methods, given ARL0 = 

370 and a = 4.50. The results show that the ARL from the 

explicit formula and the Midpoint rule NIE methods differ 

only slightly. 

In Table VI, we set the parameter values for the SARX(1,1)12 

model with   = 0.30,  = 0.50 then the parameter values of 

CUSUM control chart are a = 5.0 and b = 1.732. The CPU 

times have been obtained for each computation. For the 

case
0 1   and ARL0 = 370, the computing time based on 

the explicit formula takes less than 1 second, while the CPU 

time required for Midpoint rule NIE method runs for 14-15 

minutes.  

 In Fig 6, we compare the ARL of the CUSUM control 

chart based on the SARX(1,1)12 model by using the explicit 

formula and the Midpoint rule NIE methods, given ARL0 = 

370 and a = 5.00. The results show that the ARL from the 

explicit formula and the Midpoint rule NIE methods differ 

only slightly. 

Table VII and VIII presents the ARL0 and ARL1 on the 

SARX(1,1)12 model with  = 0.50,  = 0.80 by using the 

explicit formula and the Trapezoidal rule NIE methods on 

the CUSUM control chart. The ARLs are computed for an 

in-control parameter value 0 = 1 and numerical values for 

ARL1 are computed for a range of out-of-control parameter 

values  = 1 = 0 (1+) where   = 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 

2.1, 2.2, 2.3, 2.4, 2.5, and 3.0. The CUSUM control chart was 

set with the reference values (a) at 4.50 and 5.00, 

respectively, and an initial value (u) at 1.  

In Table VII, we set the parameter values for the SARX(1,1)12 

model with   = 0.50,  = 0.80 then the parameter values of 

CUSUM control chart are a = 4.5 and b = 3.110. The CPU 

times have been obtained for each computation. For the 

case
0 1   and ARL0 = 500, the computing time based on 

the explicit formula takes less than 1 second, while the CPU 

time required for the Trapezoidal rule NIE method runs for 

15-18 minutes.  

 In Fig 7, we compare the ARL of the CUSUM control 

chart based on the SARX(1,1)12 model by using the explicit 

formula and the Trapezoidal rule NIE methods, given ARL0 

= 500 and a = 4.50. The results show that the ARL from the 

explicit formula and the Trapezoidal rule NIE methods differ 

only slightly. 

In Table VIII, we set the parameter values for SARX(1,1)12 

model with   = 0.50,  = 0.80 then the parameter values of 

the CUSUM control chart are a = 5.0 and b = 2.560. The 

CPU times have been obtained for each computation. For the 

case 
0 1   and ARL0 = 500, the computing time based on 

the explicit formula takes less than 1 second, while the CPU 

time required for Trapezoidal rule NIE method runs for 15-

18 minutes.  

 In Fig 8, we compare the ARL of the CUSUM control 

chart based on the SARX(1,1)12 model by using the explicit 

formula and the Trapezoidal rule NIE methods, given ARL0 

= 500 and a = 5.00. The results show that the ARL from the 

explicit formula and the Trapezoidal rule NIE methods differ 

only slightly. 
 

TABLE I 

COMPARISON OF ARL COMPUTED USING EXPLICIT FORMULA AGAINST 

GAUSSIAN RULE NUMERICAL INTEGRAL EQUATION FOR  SARX(1,1)4  

MODEL GIVEN  ARL0 = 370,   = 0.10,  = 0.10, a  = 2.5 AND b  = 3.976  

Shift 

size 

 

Explicit  

Formula 

Method 

Gaussian Rule 

NIE 

Method 

 

Diff (%) 

 ARLEF CPUEF ARLNIE CPUNIE  

0.00 370.31 0.01  370.00  13.46 0.0834 

1.50 7.922 0.01 8.025  12.95 1.3002 

1.60 7.266 0.01 7.351 13.35 1.1698 

1.70 6.712 0.01 6.784 13.16 1.0727 

1.80 6.240 0.01 6.300 13.72 0.9615 

1.90 5.834 0.01 5.885 13.72 0.8742 

2.00 5.481 0.01 5.526 13.24 0.8210 

2.10 5.173 0.01  5.211 13.62 0.7346 

2.20 4.901 0.01 4.935 13.47 0.6937 

2.30 4.661 0.01 4.691 13.83 0.6436 

2.40 4.446 0.01 4.473 13.09 0.6073 

2.50 4.254 0.01 4.278 13.91 0.5642 

3.00 3.534 0.01 3.548 13.07 0.3962 
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TABLE II 

COMPARISON OF ARL COMPUTED USING EXPLICIT FORMULA AGAINST   

GAUSSIAN RULE NUMERICAL INTEGRAL EQUATION FOR  SARX(1,1)4  

MODEL GIVEN  ARL0 = 370,   = 0.10,  = 0.10, a  = 3.0 AND b  = 3.270  

Shift 

size 

 

Explicit  

Formula 

Method 

Gaussian Rule 

NIE 

Method 

 

Diff (%) 

 ARLEF CPUEF ARLNIE CPUNIE  

0.00 370.24 0.01  370.00  14.04 0.0637 

1.50 8.705 0.01 8.752 13.88 0.5399 

1.60 7.950 0.01 7.989 14.52 0.4906 

1.70 7.313 0.01 7.346 14.89 0.4513 

1.80 6.770 0.01 6.799 14.85 0.4284 

1.90 6.304 0.01 6.329 13.12 0.3966 

2.00 5.900 0.01 5.922 14.23 0.3729 

2.10 5.547 0.01 5.566 13.57 0.3425 

2.20 5.237 0.01 5.254 13.64 0.3246 

2.30 4.963 0.01 4.978 14.03 0.3022 

2.40 4.719 0.01 4.733 14.12 0.2967 

2.50 4.501 0.01 4.513 13.93 0.2666 

3.00 3.690 0.01 3.697 14.27 0.1897 

 

TABLE III 

COMPARISON OF ARL COMPUTED USING EXPLICIT FORMULAS AGAINST   

GAUSSIAN RULE NUMERICAL INTEGRAL EQUATION FOR  SARX(1,1)4  

MODEL GIVEN  ARL0 = 500,    = 0.10,  = 0.10, a  = 2.5 AND b  = 4.326 

Shift 

size 

 

Explicit  

Formula 

Method 

Gaussian Rule 

NIE 

Method 

 

Diff (%) 

 ARLEF CPUEF ARLNIE CPUNIE  

0.00 500.16 0.01 500.00 13.01 0.0316 

1.50 8.546 0.01 8.698 13.19 1.7786 

1.60 7.814 0.01 7.938 13.49 1.5869 

1.70 7.198 0.01 7.301 13.55 1.4310 

1.80 6.675 0.01 6.762 13.63 1.3034 

1.90 6.227 0.01 6.300 13.44 1.1723 

2.00 5.839 0.01 5.902 13.46 1.0790 

2.10 5.500 0.01 5.555 13.05 1.0000 

2.20 5.203 0.01 5.250 13.67 0.9033 

2.30 4.940 0.01 4.981 13.14 0.8300 

2.40 4.706 0.01 4.728 13.08 0.4675 

2.50 4.497 0.01 4.529 13.98 0.7116 

3.00 3.717 0.01   3.736 12.54 0..5112 

 

TABLE IV 

COMPARISON OF ARL COMPUTED USING EXPLICIT FORMULAS AGAINST   

GAUSSIAN RULE NUMERICAL INTEGRAL EQUATION FOR  SARX(1,1)4  

MODEL GIVEN  ARL0 = 500,   = 0.10,  = 0.10, a  = 3.0 AND b  = 3.592  

Shift 

size 

 

Explicit  

Formula 

Method 

Gaussian Rule 

NIE 

Method 

 

Diff (%) 

 ARLEF CPUEF ARLNIE CPUNIE  

0.00 500.22 0.01 500.00 13.08 0.0448 

1.50 9.565 0.01 9.635 13.32 0.7318 

1.60 8.699 0.01 8.757 13.84 0.6667 

1.70 7.972 0.01 8.021 13.81 0.6147 

1.80 7.355 0.01 7.397 13.69 0.5710 

1.90 6.827 0.01 6.863 13.86 0.5273 

2.00 6.371 0.01 6.402 13.72 0.4866 

2.10 5.975 0.01 6.001 13.75 0.4351 

2.20 5.627 0.01 5.651 13.78 0.4265 

2.30 5.321 0.01 5.342 13.00 0.3947 

2.40 5.049 0.01 5.068 13.13 0.3363 

2.50 4.807 0.01 4.823 13.08 0.3328 

3.00 3.909 0.01   3.919 13.02 0.2558 
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Fig 1 Comparison of ARL of the explicit formula and the Gaussian rule NIE 

methods for SARX(1,1)4 model with ARL0 = 370, a = 2.5 and b = 3.976 
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Fig 2 Comparison of ARL of the Explicit formula and the Gaussian rule NIE 

methods for SARX(1,1)4 model with ARL0 = 370, a = 3.0 and b = 3.270 
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Fig 3 Comparison of ARL of the Explicit formula and the Gaussian rule NIE 

methods for SARX(1,1)4 model with ARL0 = 500, a = 2.5 and b = 4.326 
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TABLE V 

COMPARISON OF ARL COMPUTED USING EXPLICIT FORMULA  AGAINST 

MIDPOINT RULE NUMERICAL INTEGRAL EQUATION FOR  SARX(1,1)12  

MODEL GIVEN  ARL0 = 370,   = 0.30,  = 0.50, a  = 4.5 AND b  = 2.253  

Shift 

size 

 

Explicit  

Formula 

Method 

Midpoint Rule 

NIE 

Method 

 

Diff (%) 

 ARLEF CPUEF ARLNIE CPUNIE  

0.00 370.26 0.01  370.99  15.35 0.1756 

1.50 9.569 0.01 9.559  15.14 0.1045 

1.60 8.720 0.01 8.710 14.36 0.1147 

1.70 8.002 0.01 7.994 14.73 0.1000 

1.80 7.389 0.01 7.383 14.47 0.0812 

1.90 6.863 0.01 6.857 15.11 0.0874 

2.00 6.406 0.01 6.401 14.90 0.0781 

2.10 6.008 0.01 6.003  14.78 0.0832 

2.20 5.657 0.01 5.653 15.04 0.0707 

2.30 5.348 0.01 5.344 15.08 0.0748 

2.40 5.072 0.01 5.069 15.18 0.0591 

2.50 4.826 0.01 4.823 15.19 0.0622 

3.00 3.912 0.01 3.910 14.96 0.0511 

 

TABLE VI 

COMPARISON OF ARL COMPUTED USING EXPLICIT FORMULA  AGAINST 

MIDPOINT RULE NUMERICAL INTEGRAL EQUATION FOR  SARX(1,1)12  

MODEL GIVEN  ARL0 = 370,   = 0.30,  = 0.50, a  = 5.0 AND b  = 1.732  

Shift 

size 

 

Explicit  

Formula 

Method 

Midpoint Rule 

NIE 

Method 

 

Diff (%) 

 ARLEF CPUEF ARLNIE CPUNIE  

0.00 370.05 0.01  370.91  14.53 0.2324 

1.50 9.850 0.01 9.841  14.99 0.0914 

1.60 8.973 0.01 8.965 15.20 0.0892 

1.70 8.231 0.01 8.224 14.55 0.0850 

1.80 7.598 0.01 7.592 14.72 0.0790 

1.90 7.053 0.01 7.048 15.17 0.0709 

2.00 6.581 0.01 6.576 14.54 0.0760 

2.10 6.168 0.01 6.164  14.80 0.0649 

2.20 5.805 0.01 5.801 14.95 0.0689 

2.30 5.484 0.01 5.481 14.90 0.0547 

2.40 5.199 0.01 5.196 15.41 0.0577 

2.50 4.944 0.01 4.941 15.23 0.0607 

3.00 3.996 0.01 3.995 14.82 0.0250 

 
 

TABLE VII 

COMPARISON OF ARL COMPUTED USING EXPLICIT FORMULA  AGAINST 

TRAPEZOIDAL RULE NUMERICAL INTEGRAL EQUATION FOR  SARX(1,1)12  

MODEL GIVEN  ARL0 = 500,   = 0.50,  = 0.80, a  = 4.5 AND b  = 3.110  

Shift 

size 

 

Explicit  

Formula 

Method 

Trapezoidal Rule 

NIE 

Method 

 

Diff (%) 

 ARLEF CPUEF ARLNIE CPUNIE  

0.00 500.02 0.01  500.50  15.29 0.0960 

1.50 10.140 0.01 10.126  15.32 0.1381 

1.60 9.206 0.01 9.194 16.80 0.1303 

1.70 8.422 0.01 8.412 16.92 0.1187 

1.80 7.756 0.01 7.748 14.67 0.1031 

1.90 7.186 0.01 7.179 16.12 0.0974 

2.00 6.694 0.01 6.688 16.06 0.0896 

2.10 6.266 0.01 6.261 16.18 0.0798 

2.20 5.892 0.01 5.886 16.20 0.1018 

2.30 5.561 0.01 5.557 17.70 0.0719 

2.40 5.268 0.01 5.264 17.56 0.0759 

2.50 5.007 0.01 5.004 18.10 0.0599 

3.00 4.043 0.01 4.041 15.41 0.0495 
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Fig 4 Comparison of ARL of the Explicit formula and the Gaussian rule NIE 

methods for SARX(1,1)4 model with ARL0 = 500, a = 3.0 and b =  3.592 
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Fig 5 Comparison of ARL of the Explicit formula and the Midpoint rule NIE 

methods for SARX(1,1)12  model with ARL0 = 370, a = 4.5 and b = 2.253 
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Fig 6 Comparison of ARL of the explicit formula and the Midpoint rule NIE 

methods for SARX(1,1)12  model with ARL0 = 370, a = 5.0 and b = 1.732 
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TABLE VIII 

COMPARISON OF ARL COMPUTED USING EXPLICIT FORMULA  AGAINST 

TRAPEZOIDAL RULE NUMERICAL INTEGRAL EQUATION FOR  SARX(1,1)12  

MODEL GIVEN  ARL0 = 500,   = 0.50,  = 0.80, a  = 5.0 AND b  = 2.560  

Shift 

size 

 

Explicit  

Formula 

Method 

Trapezoidal Rule 

NIE 

Method 

 

Diff (%) 

 ARLEF CPUEF ARLNIE CPUNIE  

0.00 500.32 0.01  500.23  18.23 0.0180 

1.50 10.673 0.01 10.659  17.83 0.1312 

1.60 9.680 0.01 9.669 16.42 0.1136 

1.70 8.846 0.01 8.836 17.38 0.1130 

1.80 8.138 0.01 8.129 16.62 0.1106 

1.90 7.531 0.01 7.523 17.46 0.1062 

2.00 7.007 0.01 7.000 16.94 0.0999 

2.10 6.551 0.01 6.545  15.64 0.0916 

2.20 6.151 0.01 6.146 17.27 0.0813 

2.30 5.799 0.01 5.794 16.13 0.0862 

2.40 5.487 0.01 5.482 16.25 0.0911 

2.50 5.208 0.01 5.204 14.80 0.0768 

3.00 4.181 0.01 4.179 15.41 0.0478 
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Fig 7 Comparison of ARL of the explicit formula and the Trapezoidal rule 

NIE methods for SARX(1,1)12 model with ARL0 = 500, a = 4.5 and b = 3.110 
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Fig 8 Comparison of ARL of the explicit formula and the Trapezoidal rule 

NIE methods for SARX(1,1)12  model with ARL0 = 500, a = 5.0 and b = 2.560 

V. CONCLUSION 

This paper presents the explicit formula and a numerical 

integral estimation formula for ARL0 and ARL1 of CUSUM 

control chart when observations are seasonal autoregressive 

models with one exogenous variables (SARX(1,1)L). Our 

explicit formulas have been demonstrated to be extremely 

accurate and simple to calculate. We also proposed a 

numerical integration approach which can be used to 

approximate the ARL of the CUSUM control chart. In 

conclusion, the ARL from explicit formulas is close to the 

numerical integration with an absolute percentage difference 

of less than 2%. The CPU time for evaluating the proposed 

explicit formulas is less than 1 second, whereas the Gaussian 

rule numerical integral equation approach takes over 13-15 

minutes, the Midpoint rule numerical integral equation 

approach takes over 14-15 minutes, and the Trapezoidal rule 

numerical integral equation approach takes over 15-18 

minutes. 
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