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Abstract—Sum of linear ratios problem is a particularly 

special kind of the fractional programming problem. Its 

solution usually has multiple levels and many local optimal 

solutions of non-global solutions. In this paper, an improved 

branch and bound global optimization is proposed for a class of 

sum of linear ratios problems. Firstly, the original problem is 

transformed into its equivalent form by introduced variables, 

and the equivalence of the two optimal solutions is proved. 

Secondly, the linear relaxation programming of the equivalent 

problem is constructed by using linear relaxation technique. 

The upper and lower bounds of the optimal value of the original 

problem are continuously improved by solving a sequence of 

linear relaxation programming problems, then we can get an 

approximate optimal solution of the original problem. Finally, 
with the combination of branch rules and bounding techniques, 

an improved branch-and-bound global optimization algorithm 

is designed to solve the optimal solution of the original problem. 

The numerical experimental results show that the improved 

algorithm is feasible and effective. 

 
Index Terms—Sum of linear rations sum of linear rations, 

linear relaxation technique, branch and bound global 

optimization  

 

I. INTRODUCTION 

 RACTIONAL programming is an important type of 

non-linear programming problem which can be applied 

in many fields and has a widely range of practical 

applications. Linear fractional programming problem(LFP) 

is a special type of fractional programming problem, and it is 

also a NP-hard problem[1-2]. Researchers reckon that it has 

certain difficulties in the theoretical research and 

computational solution, because the original problem has 

multiple non-global local optimal solutions. Moreover, the 

original problem also has many applications. such as in the 

field of transportation and economy[3-4], multi-level random 

transportation problem[5], cluster analysis problem[6] and 

queuing theory[7]. so the problem (LFP) has attracted a lot of 

researchers for decades.  
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We can consider that the sum of linear ratios fractional 

programming problem[8] such as the following form: 
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Where the numerator )(xPi and the denominator )(xDi are all 

affine functions defined on nR , and we have 
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If ( )
i

P x  is an arbitrary function, we can see that there will 

exists a positive number
i

 large enough to arrive at： 

( ) ( ) 0
i i i

P x D x   

Thus, we can assume ( ) 0
i

P x   [9].  

For special sum of linear ratios problem, the earliest 

algorithm was proposed when the objective function only has 

the sum of two terms. For this problem, when 1p  , Charnes 

and Cooper[10] proposed an effective simplex method; 

When 2p  , Konno constructed a similar parametric 

simplex algorithm, which was used to solve large-scale 

optimization problems[11].When 3p  , Konno developed 
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parametric simplex algorithm and constructed an effective 

heuristic algorithm, When 3p  , solution methods are 

branch and bound algorithm, concave minimization algorithm, 

harmony search algorithm, outer approximation algorithm, 

and about cutting plane algorithm [12].  

For the sum of linear ratios problem with some 

multinomial sum of objective functions, Hongwei Lin 

obtained the value space of each denominator by solving the 

linear programming problem, and formed these spaces into a 

super rectangle           according to the Cartesian product, and 

proposed a branch and bound algorithm based on this 

super-rectangular [13].Yonghong Zhang and others, 

proposed a branch and bound algorithm to solve the linear 

ratio sum problem by using the techniques of equivalent 

transformation and linear transformation[14]; Yuelin Gao 

and Siqiao Jin, proposed a sum of linear ratios problem can 

be transformed into  bilinear programming problems, 

Through the characteristics of convex envelope linearity and 

a binary concave envelope product function, the relaxed 

linear programming of bilinear programming problem can be 

given to determine the lower bound of the optimal value of 

the original problem[15]. Yanxia Chen, An improved branch 

and bound algorithm was proposed to solve a series of linear 

ratio problems, The main feature of the algorithm was using 

the monotonicity and concavity of exponential and 

logarithmic functions, proposed a new second-level 

relaxation programming to determine the lower bound of the 

optimal value of the original problem[16]; Jiao and Liu 

considered the sum of linear ratios problem as symbol. 

Converted the original problem to bilinear programming, and 

then used the definition of convex and concave envelopes to 

construct linear relaxation programming problem[17]; 

Danhua Li proposed a new branch and bound algorithm for 

sum of linear ratios problem, Firstly, the original problem 

was equivalently transformed, then the linear relaxation 

programming of the equivalent problem was constructed. 

Finally, an approximate optimal solution of the original 

problem was obtained by solving a series of linear 

programming problems[18].In this paper, An improved 

branch and bound algorithm is proposed, which is used to 

solve a class of linear ratio sum problems. Numerical 

examples show that the improved new algorithm has higher 

accuracy, better convergence and fewer iterations. The 

improved algorithm is proposed on the basis of a large 

number of algorithms in the traditional fractional 

programming literature. 

The structure of this paper is organized as follows: In 

Chapter 2, the original problem is transformed, including the 

equivalent transformation of the original problem and the 

relaxed linear programming of the equivalent problem; In   

Chapter 3, the branching rule is given, and the description of 

the specific steps of the branch and bound algorithm and the 

proof of convergence are carried out. In Chapter 4, the 

numerical experiments are carried out and making a 

comparison with the numerical results and each other. 

 

II. LINEAR RELAXATION PROGRAMMING 

Before solving the linear ratio sum problem (LFP), we 

convert the original problem, which is mainly divided into 

two parts. The first part is to transform the original 

problem(LFP) into the linear programming problem(LP) by 

using transformation techniques, and the second part is to use 

the relaxation technique to convert the linear programming 

problem into the linear relaxation programming problem 

(RLP). 

 

A. Equivalent Transformation 

Before solving the original problem, we can solve that this 

following 2n  linear programming problems[16]: 
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obviously for each i , , , , 0i i i il u L U  .Introducing the 

variables: 
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and converting the original problem into its equivalence 

problem as follows[17]: 
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Among them,  

 2( , ) ,p

i i i i i iy z R l y u L z U      ∣  

Theorem 1. If  * * *, ,x y z is a global optimal solution of the 

problem (LP), then 
*x  is a global optimal solution to the 

problem (LFP), and for every 1,2, ,i p  ,  * *

i iy P x  , 

 
*

*

1
, i

j

z
D x

 ,Conversely, if 
*x  is a global optimal solution 

of the problem(LFP), then  * * *, ,x y z is a global optimal 

solution to the problem(LP) [18], where: 

 
 

* * *

*

1
, , 1,2, ,i i i

i

y P x z i p
D x
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Proof: With the counter-evidence, if  * * *, ,x y z  is a global 

optimal solution of the problem(LP), assuming that 
*x  is not 
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the global optimal solution of the problem(LFP), then there is 

a feasible solution for(LFP) x with :     
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( , , )x y z  is a feasible solution of the problem(LP), then the 

following inequalities are true: 
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     * * *, ,x y z is a feasible solution of the problem (LP). 

Assuming that  * * *, ,x y z is not a global optimal solution of 

the problem (LP), then there is a feasible solution 

( , , )x y z of the problem(LP), the following inequality is 

established: 
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Obviously x  is a feasible solution of the 

problem(LFP),the above is: 
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 Which in contradiction with 
*x  is a global optimal 

solution of the problem (LFP), so  * * *, ,x y z is a global 

optimal solution of the problem (LP). Then the proof is 

completed.     

We can see that the problem (LFP) and (LP) have the same 

global optimum value by Theorem 1. After these 

transformations, the form of the sum of the ratio in the 

objective function is changed into the form of the sum of the 

linear, which can reduce the complexity of the objective 

function. 

 

B. Linear Relaxation Technique   

In this section, we describe a transformation technique to 

convert an equivalent problem into a linear relaxation 

programming problem by using the objective function and 

constraint function of the equivalent problem. The best 

solution for the linear relaxation problem is the possible 

solution of the original problem, which updates the bias of 

the optimal value of the original problem. The optimal value 

of a linear relaxation problem is the optimal value’s lower 

bound of the original problem. 

Let: 
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Finally, to sum up:  

                          , ,
l

i i i i i i i i

u
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By means of a series of transformation of the above, we 

can get a linear relaxation programming (RLP), and the 

problem (LP) can get the following results [17]: 
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Then the proof is completed.      

According to the above discussion, it is obvious that the 

optimal value of the problem(RLP) can provide the lower 

bound for the optimal value of the problem(LP). 

For
0k

X X  , the feasible domain and the optimal value 

of the problem(LP) are denoted by  k

D X  and ( )G LP . The 

feasible domain and the optimal value of the problem(RLP) 

are denoted by  k

D X  and ( )G RLP , then we have[16]: 

    ( ) ( ),k k

D X D X G RLP G LP                     (18) 

 

III. PROPOSED ALGORITHM AND ITS 

CONVERGENCE 

This section is divided into three parts, In the first part, the 

branching rule is introduced. The second part combines the 

branch rule with the bounding determination technique of the 

precondition, and an effective branch and bound algorithm is 

designed. The third part is the proof of the convergence of 

this algorithm.  

 

A. Branching 

To solve the problem(RLP), let  * * * *

1 2
, , ,
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Through the above branching rule, the box kX is divided 

into two sub-boxes
1

kX and
2

k
X . 

In the k iteration of the algorithm 
[18],

k
Q represents a set of boxes has global optimal solutions

. For each
k

X Q , The feasible solution of the original 

problem (LFP) can be obtained by solving the optimal 

solution and optimal value of the linear relaxation 

programming problem (RLP). 

By improving the optimal value’s   upper bound 
ll

k
f of the 

optimal value of the original problem; we can obtain the 

optimal value’s   lower bound 
l

k
f  of the original problem by 

solving its optimal value. A box with smaller optimal value is 

selected and divided into two parts. The corresponding 

solution of the problem is solved on each new sub box, and 

repeat the process until some criterion for convergence is 

met.  

 

B. Branch and bound algorithm 

The branch and bound algorithm of the original problem is 

stated as follows: 

Step 1 (Initialization). Choose 0  , we can find an 

optimal solution  0 0 0
, ,x y z and the optimal value 

 0 0

0
,

l
y z  on the feasible domain 

0
X  by solving the 

problem (RLP), where 

0 0 0

0

1
, , 1, 2, ,
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Step 2 (Termination). If
0 0

ll j
f f   , stop. 

0
x is the global 

optimal solution of the problem(LFP). Otherwise, 

set  0

0
Q X , the initial iteration number 1k  , and go to 

Step k . 

Step. . 1k k   

Step 1k  (Branching). According to the branching rule, the 

box kX   with the smaller optimal value is selected to be 

divided into two parts
1

kX  and
2 ,kX , and : \ k

k kQ Q X  is 

used to represent the set of new boxes that may have the 

global optimal solution. Set  1 2,k kR X X . 

Step 2k  (Bounding and Pruning). For sub-boxes 
1

kX  and 

2

k
X , if 

k

r
X  , let 

1
,kJ T k kr

i i r i j T k

j r i

y p x z
d x




  


, 

, where 1, 2r  .  

Computing the optimal solution  , ,k kT kT

rx y z  and the 

optimal value  0 ,l l kr kr

kf y z   of the problem (RLP) on 

the sub-boxes 
1

kX  and 
2

kX .  If the optimal value is 

1

l l

k kf f  , let  \ k

rR R X , and there are two cases [13]: 

Case 1: If R  , go to Step k ; 

Case 2: If  R  , 

let 
k kQ Q R  , and update the upper bound 

  1min , k

k k

u

r

uf f f x . select 
kx  to make  k

k

uf f x ,    

and go to Step 3k . 

Step 3k  (Judgment Rule). 

Let: 

 1 \ : ( ) ,ll i

k k k k kQ Q X f X f X Q     , if 
1kQ   , 

then the algorithm terminates. 
kx is a global optimal solution 

of the original problem, and
u

kf is the global optimal value of 

the original problem. otherwise, if 1kQ   , let 1k k  . 

select
kX to make it satisfy

2

arg min ( )k l

e

X f X


 , and 

return to Step k . 

 

C. Convergence analysis 

Theorem 3. If the proposed algorithm terminates in finite 

iterations, the global optimal solution of the problem (LFP) is 

obtained when the algorithm is terminated. If the algorithm 

generates an infinite branch and bound tree sequence, any 

limit point of the sequence is the global optimal solution of 

the problem (LFP)[21], and  

lim limu l

k k
k k

f f v
 

   

Proof: If the algorithm terminates in a finite step, it may be 

assumed to terminate in iteration ( 1)k k  . Let  * * *, ,x y z  

be the optimal solution for solving the problem(RLP) and let 

 0 | , 1,2,...,p

i i iT y R l y u i p    

 0 | , 1,2,...,p

i i iH z R L z U i p    
 

For 0 0, T T H H   and optimal solutions
*x , we can get : 

* * *

*1

1

1
, , 1,2, ,

n

i ij j i i n
j

j j j

j

y p x z i p

d x







    






 

Obviously
*x  is a feasible solution of the original problem, 

and v is an optimal value of the problem(LFP), then  

                              *f x v .                                   (21) 

Since the algorithm terminates when
nk l

k kf f   , the 

update of the upper bound of the original problem is achieved   

by updating the function value of the original problem 

feasible solution, and through the algorithm step, we get the 

following formula: 

 * ,i l

k kf x f f v   ,                 (22) 

Hence, we have  *

kv f x f v      , that is  

 *v f x v                            (23) 

Next is the proof of the second part, if the algorithm 

generates an infinite sequence   , ,k k kx y z , then for 

each 1k  ,   , ,k k kx y z is obtained by solving the 

relaxation problem (RLP). For some 
0 0,k kT T H H  and optimal solutions 

0 1

1

,
n

k k k

i jj j

j

x S y p x 


   ,

1

1k

i n
k

jj j i

j

z

d x 






,

1,2, ,i p  . Obviously, sequence  kx is a feasible 

solution of the original problem. Assuming x is the 

accumulation point of  kx , let us set lim k

k
x x


 , 

Obviously, x is also a feasible solution of the original 

problem, and     

there is ( )f x v . Since 0S is a compact set, there must 

be 0x S . 

For each k of the sequence  kx there 

are
1 0k kT T T   , 

1 0k kH H H   , where 
kT  and 

kH  are defined as: 

 | , 1,2,...,k p k k

i i iT y R l y u i p    
                  (24) 

 | , 1,2,...,k p k k

i i iH z R L z U i p    
                    (25) 

Then for some points ,p py R z R  , we can get: 

lim { }, lim { }k k k k

k k
k k

T T y H H z
 

    . 

For each k , the lkf  obtained by the algorithm step is 
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finite and lim k

k
k

f v


 . For 
0 0,k kT T H H  , 

Since
kx is the optimal solution of the problem  ,k kRLP T H  

and
l

kf  is equal to the optimal value of 

problem  ,k kRLP T H ,    

we can get: 

lim lim { }, lim lim { }k k k k

k k k k
l u y L U z

   
    . 

Hence, lim ( )l

k
k

f v f x


  . By constantly branching, there 

is 

                             lim ( )k
k

f v f x


  .                           (26) 

From the above, x  is a global optimal solution of the 

problem (LFP), according to the algorithm steps, there is 

)( ku

k xff  in iteration k . Since )(xf is a continuous 

function and there is ( )kx x k  , we can 

get )()(lim xfxf k

k




.  

Therefore, we have vxfxff k

k

u

k
k




)()(limlim , that 

is vf u

k
k




lim . Then the proof is completed. 

IV. NUMERICAL EXPERIMENTS AND RESULTS 

In this section, to verify the above algorithm is feasible, we 

selected 3 classical examples in recent literatures and 

compared the results with these three examples. The 

proposed algorithm is coded in MATLAB. 

Example 1(see [17]): 

1,0

0

50.1..

32

4.03.04.0

543

8.18.19.0
max

21

21

21

21

21

21

21
















xx

xx

xxts

xx

xx

xx

xx

 (27) 

Example 2(see [18] and [6]): 

. .s t

1 2 3 1 3

2 3 1 2 3

1 2 3 1 2 3

1 2 3 2 3

1 2 3

1 2 3

1 2 3

1 2 3

4 3 3 50 3 4 50
max

3 3 50 4 4 5 50

2 4 50 2 4 50

5 5 50 5 4 50

. . 2 5 10

6 2 10

9 7 3 10

, , 0

x x x x x

x x x x x

x x x x x x

x x x x x

s t x x x

x x x

x x x

x x x

    


    

     
 

    

  

  

  



 (28) 

Example 3(see [18] and [6]):   

. .s t

1 2 3 1 2

1 2 3 1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

3 5 3 50 3 4 50
max

3 4 5 50 4 3 2 50

4 2 4 50

5 4 3 50

. . 2 5 10

6 2 10

9 7 3 10

, , 0

x x x x x

x x x x x x

x x x

x x x

s t x x x

x x x

x x x

x x x

    


     

  


  

  

  

  



      (29) 

Taking the precision 
610   or 

410   respectively, 

the approximate solutions and approximations of the 

accuracy of the examples 1 to 3 are obtained, and the number 

of iterations and running time of the algorithm are counted. 

These results show in the following three tables: 

 

Table I Result comparison table 

Example 1  

Literature This article Article [17] 

  10-6 10-6 

Optimal 

solution 

(0，1) (0，1) 

The optimal 

value 

3.575 3.575 

Number of 

iterations 

Time(s) 

2 1 

Time(s) 0.24915 _ 

 

Table II Result comparison table 

Example 2 

Literature This article Article [16] 

  10-4 10-4 

Optimal 

solution 

(1. 11, 0, 0) (0,  0.062, 1.875) 

The optimal 

value 

4.0907 4.000 

Number of 

iterations 

Time(s) 

2 58 

Time(s) 0.41822 2.968694 

 

Table III Result comparison table 

Example 3 

Literature This article Article [6] Article [18] 

  10-4 10-4 10-4 

Optimal 

solution 

(0.462, 

0.833, 0) 

(0, 3.3333, 

0) 

(0, 1.6667, 0) 

The optimal 

value 

2.9838 3.0029 3.0009 

Number of 

iterations 

Time(s) 

3 80 64 

Time(s) 0.49573 8.566259 7.4100 

  

The symbol “—“ in Table I indicates that the 

corresponding numerical result is not given in the reference. 

We can get some information from the specific experimental 

results: in the first example, the optimal solution and the 

optimal value of this paper are equal to the article [17], and 

the number of iterations is similar; in the second example, 

comparing with the article[6], this paper not only has better 

results, but also has fewer iterations and less running time 
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than the article[6], We can easily tell that the results in this 

paper are not as good as those obtained in the article[18],  but 

the number of iterations is similar to the running time; in the 

third example, comparing with the article[6] and the 

article[18], The optimal values obtained are similar, but  there 

are fewer iterations and less running time than the article[6] 

and the article[18]. In summary, comparing with the 

reference, although the optimal values obtained are similar, 

the algorithm has fewer iterations and less running time.  

 

V. CONCLUSIONS 

In the paper, Though these three examples of the 

comparison results, we get that our algorithm can be used to 

solve problems of the global, and our algorithm is feasible 

and effective. In lemma assumptions and the experimental 

steps, we verified the feasibility of the algorithm by using the 

programmed experimental data. Therefore, we can use this 

improved branch and bound method to solve this linear ratio 

sum problem. An improved branch-and-bound algorithm is 

discussed for a kind of linear ratio sum problems. This 

algorithm mainly uses new transformation techniques and 

relaxation techniques to obtain the optimal solution of the 

original problem. From the results of the numerical 

experiments, it can be seen that a number of iterations and the 

running time of the optimal solution obtained in this paper are 

less than those in the reference from these three examples,. 

Consistently, the optimal value 4.0907 obtained in Example 2 

is better than the literature [21], and the optimal value 2.9838 

obtained in Example 3 is not as good as the optimal value 

obtained in the literature [21, 41], but it is not much different. 

The results Indicates that the algorithm is feasible and 

efficient. 
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