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Abstract—Discretization is a vital component of solving time-
varying matrix inversion, which determines the effectiveness,
the ability of real-time computation and the precision. Zeroing
neural dynamics is a classical method for solving time-varying
matrix inversion. In that method, conventional Lagrange-type
finite difference formulas cannot be used for discretization
because of the constraint of 0-stability. It thus leads to a lot of
research in the development of effective discretization formulas.
The developed formulas are uniformly called ZeaD. In this
work, we develop a new method instead of zeroing neural
dynamics to solve time-varying matrix inversion. We obtain
a direct calculation scheme instead of a form of differential
equation. Thus, Lagrange-type formulas are still effective for
discretization in our method. Finally, a series of models based
on Lagrange-type formulas as well as ZeaD formulas are
proposed. Note that, compared with ZeaD formulas, Lagrange-
type formulas have higher precision when the numbers of
instances are the same.

Index Terms—Time-varying matrix inversion, Lagrange-type
finite difference formulas, discretization, zeroing neural dynam-
ics, 0-stability.

I. INTRODUCTION

MATRIX inversion is a fundamental mathematic prob-
lem. It is widely encountered in scientific and en-

gineering fields [1]–[5]. Numerous methods have been de-
veloped and investigated for solving this problem [6]–[9].
For example, in [6] a recurrent implicit dynamics was pre-
sented for online matrix inversion. In [8] a completely block
recursive algorithm with low complexity was introduced for
generalized matrix inversion. In [9], different stochastic algo-
rithms were presented to obtain matrix inversion. The quoted
methods mainly aim to solve time-invariant matrix inversion
in terms of the enhancement of computation precision and
the reduction in time consumption.

Manuscript received January 14, 2022; revised June 17, 2022. This work
was supported in part by the National Natural Science Foundation of China
(No. 62006205), by the China Postdoctoral Science Foundation funded
project (No. 2021TQ0299), by Nanhu Scholars Program for Young Scholars
of XYNU and Scientific Research Fund for College Students of XYNU (No.
2022-D-XS-146). (Corresponding author: Jian Li.)

Jian Li is a Lecturer of the School of Computer and Information
Technology, Xinyang Normal University, Xinyang 464000, China (phone:
0376-6392285, e-mail: lijcit@xynu.edu.cn).

Shuang Pan is a postgraduate student of the School of Computer and
Information Technology, Xinyang Normal University, Xinyang 464000,
China (e-mail: 2085929142@qq.com).

Jingjing Chen is an undergraduate student of the School of Computer
and Information Technology, Xinyang Normal University, Xinyang 464000,
China (e-mail: 3040569976@qq.com).

Wenjing Sun is an undergraduate student of the School of Computer
and Information Technology, Xinyang Normal University, Xinyang 464000,
China (e-mail: 1684994701@qq.com).

Qing Chen is an undergraduate student of the School of Computer
and Information Technology, Xinyang Normal University, Xinyang 464000,
China (e-mail: 2499024163@qq.com).

Zhipeng Fu is a postgraduate student of the School of Computer and
Information Technology, Xinyang Normal University, Xinyang 464000,
China (e-mail: 1254747132@qq.com).

Time-varying matrix inversion originates from time-
invariant matrix inversion, and differs from the later by
adding time variable [10]–[13]. Time-varying matrix inver-
sion is also a fundamental mathematic problem, which has
been investigated back in 1997 and even earlier [14], [15].
Solution of time-varying matrix inversion varies over time.
Conventional methods aiming to solve time-invariant matrix
inversion have disappointed performance when solving time-
varying matrix inversion because of time-delay [16]–[18].

Zeroing neural dynamics has been developed recent years
to specially solve time-varying problems [12], [19]–[21].
Since zeroing neural dynamics was developed, various types
of time-varying problems have been solved [22]–[26], such
as time-varying matrix inversion, linear equation system,
nonlinear equation system, nonlinear optimization. There are
three steps to develop models by zeroing neural dynamics
method [27]–[29]. First, we construct vector or matrix error
function according to problem to be solved. Then, we design
dynamic formula to zero out every elements of error function.
In this step, continuous-time model can be obtained, which
has a form of differential equation. Finally, we develop
discretization formula to discretize continuous-time model
and obtain the final model to solve the original problem.
During the developing process, the third step (discretization)
is quite important, which determines the effectiveness, the
ability of real-time computation and the precision [30]–[34].
First, discretization formula must be one-step-ahead, which
makes the model has the ability of real-time computation.
Second, discretization formula must satisfy the constraint of
0-stability, such that the model is convergent and effective.
Thirdly, discretization formula with higher precision leads to
model with higher precision.

As aforementioned, discretization is quite important and
challenging. A lot of researchers have made a great effort
to this point and some effective formulas have been devel-
oped [30]–[34]. For example, in [30], a formula with four
instances used was developed, which has square precision.
In [31], a third-order-accuracy formula was developed with
five instances utilized. In [32], a fourth-order-accuracy for-
mula was developed with eight instances utilized. In [33],
a general four-instant discretization formula was proposed,
which has second order accuracy. In [34], a general five-
instant discretization formula was proposed, which has third
order accuracy. Those formulas are developed in the frame
of zeroing neural dynamics and are called ZeaD.

Finite difference plays an important role in numeri-
cal computation [35]–[39]. Compared with ZeaD formulas,
Lagrange-type finite difference formulas have been devel-
oped earlier [35]. In addition, Lagrange-type finite differ-
ence formulas have higher precision when the numbers of
instances are the same. Unfortunately, Lagrange-type finite
difference formulas are not suitable in zeroing neural dynam-
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ics because of the constraint of 0-stability [40], [41].
In this work, we develop a new method instead of zeroing

neural dynamics to solve time-varying matrix inversion. We
obtain a direct calculation formula instead of a form of
differential equation. Thus, Lagrange-type formulas are still
effective for discretization in our method. A series of models
based on Lagrange-type formulas as well as ZeaD formulas
are proposed. The contributions of this work are listed as
follows.
(1) We develop a new method to solve time-varying matrix

inversion, which differs from zeroing neural dynamics
method.

(2) A series of models based on Lagrange-type finite differ-
ence formulas as well as ZeaD formulas are proposed.

(3) Both cases of derivative information known and un-
known for time-varying matrix are investigated.

II. PROBLEM FORMULATION

The significant point of solving time-varying problems
is real time. For the convenience of problem formulation,
the problem is given in a discrete-time form as follows
[28], [42]–[44]. Given a sequence of matrices C(τj) at
time instances τj ≤ τk (i.e., past and current information
of time stream), we should obtain the discrete-time matrix
inverse Y (τk+1) of C(τk+1) (i.e., future information) on
each computational time interval [τk, τk+1) ⊆ [0, τf] so that

C(τk+1)Y (τk+1)− I = 0, (1)

where C(τk+1) = C((k + 1)ι) ∈ Rn×n is a time-varying
equidistant matrix sequence; and Y (τk+1) ∈ Rn×n is un-
known, which needs to be computed in real-time for each
time interval [τk, τk+1) ⊆ [0, τf]. I is identity matrix; and
0 ∈ Rn×n is the zero matrix. In addition, k = 0, 1, · · ·
denotes the updating index; τf denotes the task duration; and ι
denotes the constant sampling gap of the time-varying matrix
sequence C(τk+1).

III. DEVELOPMENT AND ANALYSES OF MODELS

In this section, we present the development process of our
models. Then, we discuss and compare the proposed models
and conventional models.

A. Lagrange-Type Finite Difference Versus ZeaD

Lagrange-type finite difference formulas are classical ap-
proximation of first-order derivative. They have one-step
ahead form, which is necessary for discretization. However,
when Lagrange-type finite difference formulas are employed
for time-discretization in zeroing neural dynamics method,
they lead to instability of solution. Thus, many researchers
have found some effective time-discretization formulas in
zeroing neural dynamics method. The developed formulas
are called ZeaD. Parts of Lagrange-type finite difference
formulas and ZeaD formulas are shown in Table I for the
convenience of comparisons. First, both kinds of formulas
have one-step-ahead form, which is needed for discretization.
Second, when we utilize zeroing neural dynamics method to
solve time-varying problems, ZeaD formulas lead to stable
solutions, while Lagrange-type finite difference formulas fail
to do it. Third, Lagrange-type finite difference formulas have

higher precision than ZeaD formulas when the same number
of instant is used. For example, the first Lagrange-type
finite difference formula in Table I (i.e., L1) only uses two
instances and has precision of O(ι2). However, the second
ZeaD formula in Table I (i.e., Z2) uses four instances to
achieve O(ι2) precision. Similarly, the third Lagrange-type
finite difference formula in Table I (i.e., L3) only uses five
instances to achieve precision of O(ι4). However, the last
ZeaD formula in Table I (i.e., Z4) uses seven instances
to achieve O(ι4) precision. In this work, we break the
limit of zeroing neural dynamics method and use a new
method to solve time-varying matrix inversion, such that
Lagrange-type finite difference formulas can be employed
for discretization. It means that the proposed models to solve
time-varying matrix inversion have higher precision when
the same number of instant is used compared with ZeaD
formulas.

B. TVMI-K Models

Considering that time-varying matrix inversion (1) is a
problem of time stream and time is continuous in reality,
we investigate the continuous-time form of (1) as follows:

C(τ)Y (τ)− I = 0. (2)

Defining theoretical solution of (2) as Y ∗(τ), we have the
following equation:

C(τ)Y ∗(τ)− I = 0. (3)

Direct derivation of (3) yields

C(τ)Ẏ ∗(τ) + Ċ(τ)Y ∗(τ) = 0. (4)

Equation (4) can be rewritten as

Ẏ ∗(τ) = −C+(τ)Ċ(τ)Y ∗(τ), (5)

where the matrix operator + denotes the inverse of a matrix.
In addition, we know that Y ∗(τ) = C+(τ), and thus,
equation (5) can be rewritten as

Ẏ ∗(τ) = −C+(τ)Ċ(τ)C+(τ). (6)

Then, we can use discretization formulas including
Lagrange-type finite difference and ZeaD formulas to dis-
cretize equation (6). Specifically, using L1 formula in Table
I for discretization, we have

Y ∗(τk+1)− Y ∗(τk−1)

2ι
= −C+(τk)Ċ(τk)C

+(τk), (7)

which is rewritten as

Y ∗(τk+1) = −2ιC+(τk)Ċ(τk)C
+(τk) + Y ∗(τk−1). (8)

We know that Y ∗(τk−1) = C+(τk−1), and thus equation (8)
is rewritten as

Y ∗(τk+1) = −2ιC+(τk)Ċ(τk)C
+(τk) + C+(τk−1). (9)

Finally, the Lagrange-type model based on L1 formula to
solve time-varying matrix inversion (1) is obtained as

Y (τk+1) = −2ιC+(τk)Ċ(τk)C
+(τk) + C+(τk−1). (10)

Note that model (10) to solve time-varying matrix inversion
(1) needs to know the derivative information, i.e., value of
Ċ(τk), and is based on Lagrange-type finite difference (i.e.,

IAENG International Journal of Applied Mathematics, 52:3, IJAM_52_3_13

Volume 52, Issue 3: September 2022

 
______________________________________________________________________________________ 



TABLE I
LAGRANGE-TYPE FINITE DIFFERENCE [40] VERSUS ZEAD FOR APPROXIMATING ẋ(τk) WITH DIFFERENT TRUNCATION ERRORS.

Name Expression Instant number Truncation error

Lagrange

L1 ẋ(τk) =
x(τk+1)−x(τk−1)

2ι
2 O(ι2)

L2 ẋ(τk) =
2x(τk+1)+3x(τk)−6x(τk−1)+x(τk−2)

6ι
4 O(ι3)

L3 ẋ(τk) =
3x(τk+1)+10x(τk)−18x(τk−1)+6x(τk−2)−x(τk−3)

12ι
5 O(ι4)

L4 ẋ(τk) =
12x(τk+1)+65x(τk)−120x(τk−1)+60x(τk−2)−20x(τk−3)+3x(τk−4)

60ι
6 O(ι5)

L5 ẋ(τk) =
10x(τk+1)+77x(τk)−150x(τk−1)+100x(τk−2)−50x(τk−3)+15x(τk−4)−2x(τk−5)

60ι
7 O(ι6)

ZeaD

Z1 ẋ(τk) =
3x(τk+1)−2x(τk)−x(τk−1)

4ι
3 O(ι)

Z2 ẋ(τk) =
2x(τk+1)−3x(τk)+2x(τk−1)−x(τk−2)

2ι
4 O(ι2)

Z3 ẋ(τk) =
8x(τk+1)+x(τk)−6x(τk−1)−5x(τk−2)+2(τk−3)

18ι
5 O(ι3)

Z4 ẋ(τk) =
83x(τk+1)+45x(τk)−84x(τk−1)−82x(τk−2)+27x(τk−3)+21x(τk−4)−10x(τk−5)

216ι
7 O(ι4)

L1 formula). Thus, it is termed as L1-TVMI-K model. When
we use different Lagrange-type finite difference formulas
shown in Table I, more other TVMI-K models with higher
precision can be obtained.

In addition, when we use ZeaD formulas for discretization,
the corresponding models are obtained. For example, when
we use Z2 formula in Table I for discretization, we have

2Y ∗(τk+1)− 3Y ∗(τk) + 2Y ∗(τk−1)− Y ∗(τk−2)

2ι
= −C+(τk)Ċ(τk)C

+(τk),
(11)

which is rewritten as

Y ∗(τk+1) =− ιC+(τk)Ċ(τk)C
+(τk) +

3

2
Y ∗(τk)

− Y ∗(τk−1) +
1

2
Y ∗(τk−2).

(12)

We know that Y ∗(τk) = C+(τk), Y ∗(τk−1) = C+(τk−1)
and Y ∗(τk−2) = C+(τk−2), and thus equation (12) is
rewritten as

Y ∗(τk+1) =− ιC+(τk)Ċ(τk)C
+(τk) +

3

2
C+(τk)

− C+(τk−1) +
1

2
C+(τk−2).

(13)

Finally, the ZeaD-type model based on Z2 formula to solve
time-varying matrix inversion (1) is obtained as

Y (τk+1) =− ιC+(τk)Ċ(τk)C
+(τk) +

3

2
C+(τk)

− C+(τk−1) +
1

2
C+(τk−2).

(14)

It is termed as Z2-TVMI-K model. When we use different
ZeaD formulas shown in Table I, more other TVMI-K models
with higher precision are obtained. The TVMI-K models
based on Lagrange-type finite difference and ZeaD formulas
are listed in Table II.

Theoretical analysis is shown as follows to guarantee the
effectiveness and precision of proposed models.

Theorem 1: If matrix C(τ) in TVMI problem (1) is
nonsingular and has high-order derivatives, residual error
of L1-TVMI-K model (10) to solve this problem is O(ι3),
where residual error is defined as ‖C(τk+1)Y (τk+1) − I‖.

In addition, the orders of residual errors of different TVMI-
K models based on different lagrange-type finite difference
formulas are one-rank higher than the error orders of corre-
sponding formulas.

Proof: When we consider the truncation error during
the derivation process of L1-TVMI-K model (10), equation
(7) is exactly

Y ∗(τk+1)− Y ∗(τk−1)

2ι
+O(ι2) = −C+(τk)Ċ(τk)C

+(τk),

which is rewritten as follows by multiplying both sides by
2ι:

Y ∗(τk+1) =− 2ιC+(τk)Ċ(τk)C
+(τk)

+ Y ∗(τk−1) +O(ι3).
(15)

Then equation (15) is rewritten as

Y ∗(τk+1) =− 2ιC+(τk)Ċ(τk)C
+(τk)

+ C+(τk−1) +O(ι3).
(16)

We know that L1-TVMI-K model (10) is

Y (τk+1) =− 2ιC+(τk)Ċ(τk)C
+(τk) + C+(τk−1).

(17)
Combing (17) and (16) yields

‖Y (τk+1)− Y ∗(τk+1)‖ = ‖O(ι3)‖. (18)

Then, the residual error

‖C(τk+1)Y (τk+1)− I‖
=‖C(τk+1)(Y

∗(τk+1) +O(ι3))− I‖
=‖C(τk+1)Y

∗(τk+1)− I +O(ι3)‖
=‖O(ι3)‖
=O(ι3).

(19)

It is proved that residual error of L1-TVMI-K model (10) to
solve TVMI problem (1) is O(ι3).

In addition, focusing on equation (15), we find that
the truncation error is O(ι3), while the corresponding L1
formula has O(ι2) truncation error. It is just because the
multiplication of both sides by 2ι. Similarly, when we use
L2 formula for discretization, truncation error of L2-TVMI-
K model is O(ι4) because the truncation error of L2 model is
O(ι3). Thus, it is concluded that the orders of residual errors

IAENG International Journal of Applied Mathematics, 52:3, IJAM_52_3_13

Volume 52, Issue 3: September 2022

 
______________________________________________________________________________________ 



TABLE II
DIFFERENT MODELS TO SOLVE TIME-VARYING MATRIX INVERSION (1) USING DIFFERENT DISCRETIZATION FORMULAS INCLUDING LAGRANGE-TYPE

FINITE DIFFERENCE AND ZEAD WITH VALUE OF Ċ(τk) KNOWN.

Discretization Model Truncation error

L1 Y (τk+1) = −2ιC+(τk)Ċ(τk)C
+(τk) + C+(τk−1) O(ι3)

L2 Y (τk+1) = −3ιC+(τk)Ċ(τk)C
+(τk)− 3

2
C+(τk) + 3C+(τk−1)− 1

2
C+(τk−2) O(ι4)

L3 Y (τk+1) = −4ιC+(τk)Ċ(τk)C
+(τk)− 10

3
C+(τk) + 6C+(τk−1)− 2C+(τk−2) +

1
3
C+(τk−3) O(ι5)

L4 Y (τk+1) = −5ιC+(τk)Ċ(τk)C
+(τk)− 65

12
C+(τk) + 10C+(τk−1)− 5C+(τk−2) +

5
3
C+(τk−3)− 1

4
C+(τk−4) O(ι6)

L5 Y (τk+1) = −6ιC+(τk)Ċ(τk)C
+(τk)− 77

10
C+(τk) + 15C+(τk−1)− 10C+(τk−2) + 5C+(τk−3)− 3

2
C+(τk−4) +

1
5
C+(τk−5) O(ι7)

Z1 Y (τk+1) = − 4
3
ιC+(τk)Ċ(τk)C

+(τk) +
2
3
C+(τk) +

1
3
C+(τk−1) O(ι2)

Z2 Y (τk+1) = −ιC+(τk)Ċ(τk)C
+(τk) +

3
2
C+(τk)− C+(τk−1) +

1
2
C+(τk−2) O(ι3)

Z3 Y (τk+1) = − 9
4
ιC+(τk)Ċ(τk)C

+(τk)− 1
8
C+(τk) +

3
4
C+(τk−1) +

5
8
C+(τk−2)− 1

4
C+(τk−3) O(ι4)

Z4 Y (τk+1) = − 216
83
ιC+(τk)Ċ(τk)C

+(τk)− 45
83
C+(τk) +

84
83
C+(τk−1) +

82
83
C+(τk−2)− 27

83
C+(τk−3)− 21

83
C+(τk−4) +

10
83
C+(τk−5) O(ι5)

Fig. 1. Trajectories of four elements of solution matrix Y (τk+1) generated by L1-TVMI-K model as well as theoretical solution paths, i.e., Y ∗(τk+1),
with sampling gap ι = 0.01 s.

of different TVMI-K models based on different lagrange-type
finite difference formulas are one-rank higher than the error
orders of corresponding formulas.

C. TVMI-U Models

Focusing on the aforementioned TVMI-K models, they all
need to know the value of Ċ(τk) for each updating. However,
this information may be unknown in some applications. Thus,
we investigate the case of unknown Ċ(τk) and propose some
TVMI-U models.

Based on previous work [28], we use backward finite
difference formulas to approximate Ċ(τk) because only
current and past information is known during each calculative
step. In addition, we employ different backward formulas for
different models to avoid loss of precision. Specifically, for

L1-TVMI-K model (10) and Z2-TVMI-K model (14), we
employ the following backward finite difference formula to
approximate Ċ(τk):

u̇(τk) =
3u(τk)− 4u(τk−1) + u(τk−2)

2ι
. (20)

It has a truncation error of O(ι2), which avoids the loss
of precision. Specifically, using backward finite difference
formula (20) to approximate Ċ(τk), we have

Ċ(τk) =
3C(τk)− 4C(τk−1) + C(τk−2)

2ι
. (21)

Combining (21) and L1-TVMI-K model (10) yields

Y (τk+1) = C+(τk−1)

− C+(τk)(3C(τk)− 4C(τk−1) + C(τk−2))C
+(τk),

(22)
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(a) (b)

(c) (d)

Fig. 2. Residual errors C(τk+1)Y (τk+1)− I generated by different TVMI-K models with different values of ι. (a) TVMI-K models based on Lagrange
finite difference with ι = 0.1 s. (b) TVMI-K models based on Lagrange finite difference with ι = 0.01 s. (c) TVMI-K models based on ZeaD with
ι = 0.1 s. (d) TVMI-K models based on ZeaD with ι = 0.01 s.

(a) (b)

Fig. 3. Residual errors generated by different ZND models based on conventional zeroing neural dynamics method. (a) L-ZND models based on Lagrange
finite difference. (b) Z-ZND models based on ZeaD.

which is termed as L1-TVMI-U model. Similarly, Combining
(21) and Z2-TVMI-K model (14) yields Z2-TVMI-U model:

Y (τk+1) =− C+(τk)

(
3

2
C(τk)− 2C(τk−1)

+
1

2
C(τk−2)

)
C+(τk) +

3

2
C+(τk)

− C+(τk−1) +
1

2
C+(τk−2).

(23)

For L2-TVMI-K model and Z3-TVMI-K model shown in
Table II, we employ the following backward finite difference

formula to approximate Ċ(τk):

u̇(τk) =
11

6ι
u(τk)−

3

ι
u(τk−1) +

3

2ι
u(τk−2)

− 1

3ι
u(τk−3),

(24)

It has a truncation error of O(ι3), which also avoids the loss
of precision. Pars of TVMI-U models are presented in Table
III.

The following theorem is to guarantee the effectiveness
and precision of proposed TVMI-U models.
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(a) (b)

Fig. 4. Residual errors generated by different TVMI-U models with different values of ι. (a) with ι = 0.1 s. (b) with ι = 0.01 s.

Theorem 2: If matrix C(τ) in TVMI problem (1) is non-
singular and has high-order derivatives, residual error of L1-
TVMI-U model (22) to solve this problem is O(ι3).

Proof: We know that L1-TVMI-U model (22) is based
on L1-TVMI-K model (10) with further approximation of
Ċ(τk). Specifically, we know that backward finite difference
formula (20) has truncation error of O(ι2), and thus equation
(21) is exactly

Ċ(τk) =
3C(τk)− 4C(τk−1) + C(τk−2)

2ι
+O(ι2). (25)

We know that Y ∗(τk+1) = −2ιC+(τk)Ċ(τk)C
+(τk) +

C+(τk−1)+O(ι3) from equation (16). Then, for L1-TVMI-
U model (22) we have

Y (τk+1)− Y ∗(τk+1)

=− 2ιC+(τk)
(3C(τk)− 4C(τk−1) + C(τk−2)

2ι

)
C+(τk)

− (−2ιC+(τk)Ċ(τk)C
+(τk)) +O(ι3)

=− 2ιC+(τk)(
3C(τk)− 4C(τk−1) + C(τk−2)

2ι
− Ċ(τk))

· C+(τk) +O(ι3)

=− 2C+(τk)(O(ι3))C+(τk) +O(ι3)

=O(ι3).

Then, similar to the process of (19), we have that residual
error of L1-TVMI-U model (22) to solve this problem is
O(ι3).

D. Our Method Versus Zeroing Neural Dynamics Method

Based on previous work [10], [27], [28], using zeroing
neural dynamics method to solve TVMI problem (1), we
have the following process. First, we define error function
as E(τ) = Y (τ) − C+(τ). Second, we employ formula
Ė(τ) = −λE(τ) to zero out error function and continuous-
time model is obtained:

Ẏ (τ) = −λ(Y (τ)C(τ)Y (τ)− Y (τ)) + Y (τ)Ċ(τ)Y (τ).
(26)

Finally, we use ZeaD formulas to discretize the continuous-
time model and the final models to solve TVMI problem

(1) are obtained. For example, when we use Z2 formula for
discretization, we have

Y (τk+1) = −Y (τk)(h(C(τk)Y (τk)− I)− ιĊ(τk)Y (τk))

+
3

2
Y (τk)− Y (τk−1) +

1

2
Y (τk−2),

(27)

where h = λι. In this paper, we term these models based
on zeroing neural dynamics method as ZND models. For
example, when L1 formula is employed for discretization,
the model is termed as L1-ZND.

There are some differences between our method and zero-
ing neural dynamics as follows. First, the models generated
by zeroing neural dynamics have the form of iteration and
the current step calculation is based on previous calculated
results. However, our method directly utilizes known in-
formation to calculate each step results and does not use
previous calculated results. Second, our method can use
lagrange-type finite difference while zeroing neural dynamics
method does not. It is because that our method is not be
restricted by 0-stability constraint. This advantage makes our
method has higher precision when we use the same number
instances for discretization. Third, zeroing neural dynamics
method needs a number of steps to converge to theoretical
solution. However, our method directly calculates the results
with higher precision.

IV. SIMULATIONS

In this section, some simulation results are shown to
verify the effectiveness and superiority of our method. The
following time-varying nonsingular matrix is investigated as
example:

C(τk) =

[
sin(0.1τk) + 2 cos(τk)

cos(τk) sin(0.1τk) + 2

]
(28)

As described in problem formulation, current instant is τk,
and at current instant only current and past information can
be utilized for the calculation of inverse matrix. In addition,
before next instant τk+1 comes, the value of Y (τk+1) should
be obtained by calculation.

First, we take L1-TVMI-K model as example to substan-
tiate the effectiveness of proposed models. Specifically, task
duration τf = 20 s and sampling gap is 0.01 s. Results are
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(a) (b)

(c) (d)

Fig. 5. Residual errors C(τk+1)Y (τk+1)− I generated by different TVMI-K models with different values of ι for solving problem (29). (a) TVMI-K
models based on Lagrange finite difference with ι = 0.1 s. (b) TVMI-K models based on Lagrange finite difference with ι = 0.01 s. (c) TVMI-K models
based on ZeaD with ι = 0.1 s. (d) TVMI-K models based on ZeaD with ι = 0.01 s.

shown in Figure 1. This figure displays trajectories of four
elements of solution matrix Y (τk+1) generated by L1-TVMI-
K model as well as theoretical solution paths, i.e., Y ∗(τk+1).
It is observed that the trajectories generated by model overlap
with theoretical ones all the time, which substantiate the
effectiveness of proposed model.

Second, simulations about TVMI-K models are conducted.
Corresponding models include a series of L-TVMI-K mod-
els, which are based on Lagrange-type finite difference,
and a series of Z-TVMI-K models, which are based on
ZeaD formulas. In addition, we take different values of
sampling gap ι to substantiate the precision of different
models. Results are shown in Figure 2. Specifically, Figure
2(a) shows residual errors generated by TVMI-K models
based on Lagrange finite difference (L1/L2/L3/L4/L5-TVMI-
K models) with ι = 0.1 s, in which residual error is
defined as C(τk+1)Y (τk+1)− I . Figure 2(b) shows residual
errors generated by TVMI-K models based on Lagrange
finite difference with ι = 0.01 s. Figure 2(c) shows resid-
ual errors generated by TVMI-K models based on ZeaD
(Z1/Z2/Z3/Z4-TVMI-K models) with ι = 0.1 s. Figure 2(d)
shows residual errors generated by TVMI-K models based
on ZeaD with ι = 0.01 s. It can be observed that all
proposed models perform well. In addition, when sampling
gap is the same, discretization with more instances lead to
higher precision. When sampling gap becomes 0.01 s from

0.1 s, residual errors of L1/L2/L3/L4/L5-TVMI-K models
decrease by 10−3, 10−4, 10−5, 10−6 and 10−7, respectively.
Thus, precisions of L1/L2/L3/L4/L5-TVMI-K models are
O(ι3), O(ι4), O(ι5), O(ι6) and O(ι7), respectively. Simi-
larly, Z1/Z2/Z3/Z4-TVMI-K models have precision of O(ι2),
O(ι3), O(ι4) and O(ι5), respectively.

Third, some simulations about conventional zeroing neural
dynamics method are conducted to substantiate the superi-
ority of our method. Both kinds of discretizations including
lagrange-type finite difference and ZeaD formulas are uti-
lized in zeroing neural dynamics method, the corresponding
results are shown in Figure 3(a) and (b), respectively. It
is observed that L1/L2/L3/L4/L5-ZND models fail to solve
problem (28) and Z1/Z2/Z3/Z4-ZND models perform well.
In addition, initial errors of ZND models are relatively large
and tend to be stable after hundreds steps. It coincides with
aforementioned discussions.

In addition, some simulations about TVMI-U models are
conducted and the corresponding results are shown in Figure
4. From this figure we can observe that TVMI-U models still
perform well without losing precision compared with TVMI-
K models.

In addition, a relatively large time-varying nonsingular
matrix C(τk) ∈ R9×9 is investigated with elements are
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(a) (b)

Fig. 6. Residual errors generated by different ZND models based on conventional zeroing neural dynamics method for solving problem (29). (a) L-ZND
models based on Lagrange finite difference. (b) Z-ZND models based on ZeaD.

TABLE III
DIFFERENT MODELS TO SOLVE TIME-VARYING MATRIX INVERSION (1) USING DIFFERENT DISCRETIZATION FORMULAS INCLUDING LAGRANGE-TYPE

FINITE DIFFERENCE AND ZEAD WITH VALUE OF Ċ(τk) UNKNOWN.

Discretization Model Truncation error

L1
C̃(τk) = 3C(τk)− 4C(τk−1) + C(τk−2)

Y (τk+1) = −C+(τk)C̃(τk)C
+(τk) + C+(τk−1)

O(ι3)

L2
C̃(τk) =

11
2
C(τk)− 9C(τk−1) +

9
2
C(τk−2)− C(τk−3)

Y (τk+1) = −C+(τk)C̃(τk)C
+(τk)− 3

2
C+(τk) + 3C+(τk−1)− 1

2
C+(τk−2)

O(ι4)

Z2
C̃(τk) =

3
2
C(τk)− 2C(τk−1) +

1
2
C(τk−2)

Y (τk+1) = −C+(τk)C̃(τk)C
+(τk) +

3
2
C+(τk)− C+(τk−1) +

1
2
C+(τk−2)

O(ι3)

Z3
C̃(τk) =

33
8
C(τk)− 27

4
C(τk−1) +

27
8
C(τk−2)− 3

4
C(τk−3)

Y (τk+1) = −C+(τk)C̃(τk)C
+(τk)− 1

8
C+(τk) +

3
4
C+(τk−1) +

5
8
C+(τk−2)− 1

4
C+(τk−3)

O(ι4)

shown as

ai,j(τk) =


− sin(0.1(i− j)τk)/(i− j), when i > j

sin(0.1iτk) + 3, when i = j

cos(0.1(j − i)τk)/(j − i), when i < j
(29)

Simulation results are shown in Figures 5 and 6. Sim-
ilar to the above first example, it can be observed that
all proposed models have good performances. In addition,
when sampling gap is the same, discretization with more
instances lead to higher precision. Besides, It is observed that
L1/L2/L3/L4/L5-ZND models fail to solve problem (29) and
Z1/Z2/Z3/Z4-ZND models perform well. In addition, initial
errors of ZND models are relatively large and tend to be
stable after hundreds steps. It coincides with aforementioned
discussions.

We consider an extreme condition with the object matrix
is sometimes-singular. Specifically, we construct the object
matrix

C(τk) =

[
sin(0.01πτk) cos(0.01πτk)
cos(0.01πτk) sin(0.01πτk)

]
, (30)

which is evidently sometimes-singular. Simulation results are
shown in Figures 7. It is observed that TVMI-K models

based on Lagrange finite difference and ZeaD have good
performances and can pass through singularity. However,
ZND models based on Lagrange finite difference diverge at
the beginning. ZND models based on ZeaD can not pass
through singularity although converging at the beginning.
Thus, our models have better performances compared with
conventional models.

V. CONCLUSION

In this work, time-varying matrix inversion has been
solved by a new method instead of classical zeroing neu-
ral dynamics method. A series of models based on not
only ZeaD formulas but also Lagrange-type finite difference
formulas have been proposed. In this method, we directly
decompose the equations about theoretical solutions, and
obtain a direct calculation formula instead of a form of dif-
ferential equation. The proposed models are not constrained
by 0-stability. Not only ZeaD formulas but also Lagrange-
type finite difference formulas are effective to solve time-
varying matrix inversion in our method. Finally, plenty of
numerical experiments have been conducted to substantiate
the effectiveness and superiority of our models.
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(a) (b)

(c) (d)

Fig. 7. Residual errors C(τk+1)Y (τk+1)− I generated by different models for solving problem (30) with ι = 0.01 s. (a) TVMI-K models based on
Lagrange finite difference. (b) TVMI-K models based on ZeaD. (c) ZND models based on Lagrange finite difference. (d) ZND models based on ZeaD.
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