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On the Performance of Four-Node Quadrilateral
Element for Structural Topology Optimization

Carlos Millan-Paramo, Jo3o Elias Abdalla Filho, and Jair de Jesus Arrieta Baldovino

Abstract— The purpose of this work is to evaluate the
performance of a four-node gquadrilateral element for topology
optimization of a two-dimensional linear elastic structure. The
formulation of the element is developed within the framework
of the strain gradient notation with the aim that the analyst can
physically interpret its modeling capabilities and deficiencies.
Therefore, parasitic shear commonly encountered in four-node
quadrilateral elements is identified as caused by spurious terms
which appear in the shear strain expansions. These spurious
terms are simply removed to correct the element model. The
results show that the correct model converges faster than the
element with parasitic shear.

Index Terms— Topology optimization, strain gradient
notation, parasitic shear, finite element method.

. INTRODUCTION

OPOLOGY optimization (TO) seeks to obtain the
optimal material layout within a specific design space
for a given set of loads, constraints and boundary conditions
with the purpose of maamize the performance of the
system. TO 1s a relatively new but rapidly expanding field of
research, with interesting theoretical implications in
mathematics, mechanics, physics, and computer science, but
also important practical applications by the manufacturing
industries (in particular, automotive and aerospace) and will
likely have a significant role in micro and nanctechnologies
[1].

In the last few decades, TO for continucus structures has
been extensively explored. Several optimization methods,
such as Homogenization Method [2], Evolutionary
Structural Optimization (ESO) [3] and Solid Isotropic
Material with Penalization (SIMP) [4] were developed.

In the homogenization method, it is assumed that the
structural domain is completely occupied by a composite
material. The material is inhomogeneous with an adjustable
microstructure that switches between solid and void in the
optimization process. Therefore, in order to shape a new
material distribution i the domain, the material will be
moved from one part of the structural domain to the other.
This new distribution will lead to an optimal material
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distribution that provides the optimal design of a structure.
This method produced promising results encouraging the
investigation of new techniques and approaches in structural
optimization and has been successfully applied in the
optimization of linearly elastic structures [5]-[7]. The
general advantages of the homogenization method are its
precise theoretical basis and good convergence behavior.
However, the use of traditional methods (deterministic
methods) and mathematical programming make it difficult
to reach the global optimum. Recently, homogenization
approaches have fallen into disuse, giving way to the SIMP
approach to TO.

With fimte element analysis, the ESO method was
mnitially proposed, gradually removing inefficient material
until a desired optimal solution is reached. An extended
version of this method is called the bidirectional ESO
{(BESO) method. BESO allows material to be added to the
design domain [8], [9]. As design vanables can be removed
during the optimization process, tuning parameters must be
optimized. ESO/BESO methods are heuristic methods that
are used to find the best solution among the many solutions
generated 1n the optimization process [10]. Recent
applications of this method in the design of advanced
structures and materials are summarized in the work of Xie
[11]. According to Rozvany [1], the disadvantage of ESO is
that it is completely heuristic, so there is no rigorous proof
that the eliminations of elements provide an optimal
solution. Furthermore, ESO generally requires a much larger
number of iterations and can produce a totally non-optimal
solution.

The SIMP method [12] is another widely used topology
optimization method. In this method, the design domain is
discretized into finite elements and a given amount of
material is uniformly distributed in the design domain,
minimizing or maximizing the objective function. The
material density of each element is treated as the design
variable. This can continuously vary from 0 (empty) to 1
(solid) for absence of material and presence of material
Meanwhile, the characteristics of the intermediate densities
are artificially penalized in the objective function. The main
benefit of employing the penalty function is that only
expressions for element deformation and kinetic energies are
needed for sensitivity analysis. In addition, any commercial
finite element package can be used directly in TO problems.
This method has inspired the development of new
methodologies (e.g., [13]-[16]) and it is still used as a base
method to develop new TO methodologies [17]-22].
Despite the many applications of the method and its
simplicity and versatility [23], a disadvantage of SIMP is
that it is not possible to guarantee an optimal global solution
for highly complex and non-convex problems [1]. Also, the
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number of iterations to converge to the optimum can be
large. [24], [25].

Most TO problems are non-convex, that is, within the
solution space there are several local minima, which leads to
different optimal solutions for the same problem. To
counteract this drawback, i this work, the finite element
(four-node quadrilateral) used in the discretization of
structural elements, is formulated using strain gradient
notation (SGN), a physically interpretable notation, which
has been developed by Dow [26]. In the following sections
the TO problem is formulated, the four-node quadrilateral
element is described in the SGN, and the problems and
discussions are presented.

II. PROBLEM FORMULATION

The objective of the optimization problem 1s to find the
optimal material distribution, in terms of the minimization
of the objective function, with a constraint on the total
amount of material [15]. In this work, the modified SIMP
methodology introduced by Andreassen [15] is used. The
design domain is discretized by finite elements and each
element 1s assigned a density x, that determines its modulus
of elasticity E.:

Ee(Xe) = Emin + xle)(EIJ — Emin) (1)

where E° is the stiffness of the material, B, is a very
small stiffness assigned to void regions in order to prevent
the stiffness matrix from becoming singular, and p is a
penalization factor (typically p=3) introduced to ensure
black-and-white solutions [15].

The mathematical formulation of the optimization
problem is as follows:

N
minimize: c(x) = UTKU = Z E. (%o ulkgug
e=1
2
_ VeV =1 @
subject to: Ku=F
0=<x<1

where ¢ 1s the complance, U and F are the global
displacement and force vectors, respectively, K is the global
stiffness matrix, u. is the element displacement vector, ko is
the element stiffness matrix for an element with unit
Young’s modulus, x is the vector of design vanables (i.e,
the element densities), N is the number of elements used to
discretize the design domain, V(x) and Vp are the material
volume and design domain volume, respectively, and f, is
the prescribed volume fraction.

III. FOUR-NODE QUADRILATERAL ELEMENT

SGN 1s a physically interpretable notation that explicitly
relates displacements to kinematic quantities of the
continuum [27]. Such kinematic quantities are rigid body
motions, strains and their derivatives, and are generally
referred to as strain gradients. The relationships between the
displacement components and strain gradients are obtained
through an algebraic procedure in which the physical
contents of the coefficients of the approximation functions

are determined. The procedure is fully described, and the
results are tabulated in Dow [26]. Other references related to
SGN and its applications are [27][36].

Due to the physically interpretable character of the N3G,
the finite element modeling characteristics are evident from
the first steps of the formulation. This allows the
identification of spurious terms that cause the artificial
stiffening inherent in traditional formulations. NSG is
described in this section through the four-node quadrilateral
formulation for plane state analysis. The displacement field
for this element is [26]:

u(x,y) = a; + a;x + azy + a4xy

v(x,¥) = by + b;x + by + byxy @
The two zeroth-order terms, a; and by, can be evaluated
immediately in terms of the displacements of the rigid body,
{(um)o and (v )o. This is achieved by evaluating equations (3)
at the element origin. All terms except the main constant
terms are eliminated because they are functions of x and y.
When this substitution 1s made and the displacements at the
origin are recognized as the displacements of the nigid body,
the principal constants of the displacement polynomials are
[26]:

a; = (ump)o

4

by = (Vin)e @

First-order terms (linear) are evaluated in terms of

rotation and the three components of deformation at the

origin. Rotation around the =z-axis is the rotation-

displacement relation from the small displacement theory of
elasticity [26]:

_1 dv  du 5
b = 215 dy ®)

Similarly, the strain-displacement relations are [26]:

du
Ex=§
v
5y=@ (6)
_au ov
Yo = 5y " ox

Evaluating Equations (5) and (6) at the origin results in
[26]:
1
(rw)o = 2 (by —aj)
(ex)o = 2z
(ey), = b3
(ny)[) =az+ b,

N
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These expressions are solved for the arbitrary coefficients
to give [26]:

az = (8o
b= () v
bs = (&),

Calculating the derivatives e,y and sy, called strain
gradients:

Ay = (EXJY)O

@
b4’ = (EYJK)O

The approximate displacement representations for the
four-node quadrilateral element are [26]:

u(y) = (endo + (eox + (G =1y ¥+ (eag) 2y

V(X, Y) = (Vrb)o + (YTXY + I'I'b)u x+ (Ey)oy + (ny)oxy

When the displacement approximations for the four-node
quadrilateral are substituted into the definitions of strain, the
strain representations contained in this element are [26]:

&x = (8o + (exy) )y
Ey = (EY)O + (sypx)ox
Yxy = (ny)u + (EX.y)ox +(5y,X)0 y

(11)

The use of NSG makes it evident that the shear strain
expression Yy for this element contains two erroneous
flexure terms, (exy)o and (gy5)o. The effect of this error can
be described as follows. When the strain energy is
calculated, these two terms are carried over to the shear
strain component, adding strain energy to the element,
which makes the element excessively rigid [26]. This
modeling error 1s known as parasitic shear [26].

Equation (11) can be written in matrix form as:

{e} = [Tl{e}

eT={(&x & Yu}
{z_}T={(urb)o o (o (edo (g5), (v, (exy)y (o)}
0

100
[Tl = 010
001

M o~

X
y

These erroneous terms are contained in the shear strain
component of Equation (12) by the x and y terms that are
underlined. Parasitic shear can be removed from the element
by removing these two erroneous terms [26].

The next step is to obtain a relationship between the nodal

displacements and the strain gradient variables that governs
the deformations of the element.

{d} = [®]{g}
((Urs)o?
uy [0 om0 ow/2 omyn 0 |y,
v, 01 x5 0 y1 x/2 0 xy (Tep)o
uy 10 -v2 x 0 yv2/2 %oy2 0 || (), 13
val _ 01 x; 0 y; %/2 0 xvy, ) (sy) | ( )
Uy 10 -y3 x3 0 y3/2 x93 O o
:;:: 01 % 0 y3 x/2 0 xys|| ()
vo) (10 ¥ % 0 ve/2 xye 0| |(g),
10 1 x4 0 yq X/2 0 Xy, ()
W\ Eyx 0/

A discrete approximation of the strain energy written with
strain gradient quantities as the ndependent variables, can
be expressed as follow [26]:

o= [ fn 117 [c] mdn] (g}

(14)
1. 1
-2 (J"0)
The strain energy expression in terms of nodal
(10) displacements is:
1 -
U = {d}T[@]"0[@] ™ {d} (15)

The finite element stiffness matrix can be extracted from
Equation (15) according to the principle of minimum
potential energy as:

K] = [@]-TU[®]* (16)

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, the element whose formulation was
described in Section III is applied in the solution of three TO
benchmark problems. All expeniments are run with two
versions of the model, namely: a version containing the
parasitic shear (PS) terms (with-PS) and a version after
elimination of the parasitic shear terms(wout-PS) {corrected
model).

For all examples, unitary modulus of elasticity was
considered; Poisson's ratio v=0.3 and applied forces with
unit values. The simulations are executed using an Intel
Core 17-3630QM system 2.4 GHz with 8 GB RAM. The
results, in terms of the topologies (Top), compliance {c),
number of iterations (NI} and execution time (1) are
presented in Tables I, 1T and 111.

(12) 4. MBE beam

The first example analyzed is a MBB beam. The design
domain and boundary conditions for this are shown in
Figure 1. The load is applied vertically in the upper left
corner and there are symmetrical boundary conditions along
the left edge and the structure is supported horizontally in
the lower right corner. The problem is analyzed using three
different size meshes, namely 75x25, 150x50 and 300x100.
In this problem, a prescribed volume fraction of 0.5 [15] is
adopted, that is, a final volume of 50% of the initial volume.
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Table T shows the topologies, compliance values, number
of iterations and execution time obtained with both
elements. Tn general, it can be seen that the topologies and
compliance values obtained do not show significant
differences. The difference 1s i the speed of convergence.

For example, in the 150x50 mesh, the corrected model
(wout—P3) reaches the optimal value in 169 NI (30.9 s)
while the model with spurious terms (with-PS) needs 362
NI (673 &). The same goes for the 300x100 mesh
refinement (813 s with-PS and 424 .4 s wout-PS)

Fig. 1. MBB beam.

TABLEI
RESULTS COMPARISON FOR THE MBBE BEAM
with—PS wout-PS

uw .

wy

[

7 [c__[23223 23301

= | NI [ 160 107

t(s [ 104 78

b

z Top

uwy

T

% e 235.73 236.78

s [ NI [ 382 169

t(s) | 67.3 309
=

= | Top

=

L]

= |c 23831 239.08

< [NI_] 625 129

t(s) [ 813.6 4242

B. Cantilever beam

Figure 2 shows the design domain and boundary
conditions for the cantilever beam. The beam was
discretized in three types of mesh: 80x50, 160x100 and
320x200. The problem 1s optimized with a prescribed
volume fraction of 0.4 [15]

Fig. 2. Cantilever beam.

Table TI shows the strain energy values, number of
iterations, execution time and topologies obtained. As in the
previous example, the topologies and compliance values do

not show major differences.

The results indicate that wout—P3 model converges faster
than with-PS model. For example, values associated with
the 320x200 mesh show that wout—P3 gets the optimal value
in 497 NI (982.3 s) while with-PS needs 872 NI (1421.4 ).

TABLEII

RESULTS COMPARISON FOR THE CANTILEVER BEAM
with-PS wout—PS

-

@ | Top

-

[r'a]

=

w

< |c 63.07 63.44
NI | 202 165
t(s) [ 17.8 14.7

2

[—}

= Top

(—J

pr=1

]

% [c_ [6476 65.17

= | NI | 590 318
t(s) | 235.1 132.6

=

<t | Top

-

o

“”

Z [ 66.34 66.62

= NI | 872 497
tis) | 14214 982.3

C. Cantilever beam with two load cases

The last problem 1s the cantilever beam with two load
cases (Figure 3). The problem 1is analyzed using three
different size meshes, namely 50x50, 100x100 and 200x200.
In this problem, a prescribed volume fraction of 0.4 [15] 1s
adopted.

A

v

Fig. 3. Cantilever beam with two load cases.

Table IIT presents the values obtained for this problem.
Numerical results indicate that the removal of spurious
terms does not influence compliance values and topologies.
However, it 18 worth mentioning that the removal of
spurious terms leads this methodology (wout-PS) to
converge more quickly. As can be seen, when the problem
becomes more refined, this methodology shows its great
convergence capacity (for 200x200 mesh, 109 NI for
with-P3, 97 NI for wout-P3).

Finally, it can be concluded that the methodology that
involves the corrected elements (wout-P3) is the most
efficient. In the three problems analyzed in this work, this
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methodology always obtained the optimal solution with less
NI. In addition, its ability to solve problems with refined
meshes is evidenced.

TABLE III
RESULTS COMPARISON FOR THE CANTILEVER BEAM WITH TWOQ LOAD CASES
with—PS wout—PS

=

v, | Top

(=]

w;

=

2
¢ 68.17 68.98
NI |71 47
t(s) | 5.2 38

=

S|t

% | o 8

(=1

=

-

-

F

S ¢ 71.37 72.06
NI | 81 65
t(s) [ 182 15.3

g

< | Top

(=]

=

(o]

=

F

=z [ 74.41 75.07
NI 109 97
t(s) | 1907 1298

V. CONCLUSION

In this work, the use of the finite element (four-node

quadrilateral) developed in the field of Strain Gradient
Notation (SGN) was implemented for the first time to solve
topological optimization problems.

Three benchmark problems were performed to show both

the parasitic shear effects and that the corrected model
provides good solutions. The results showed that the
climination of parasitic shear does not influence the
topologies and optimal values of compliance. However, the
difference is noticed in the convergence time. As the mesh
was refined, the problems that were solved with corrected
finite elements (wout-PS), converged to the optimal value in
less time.
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