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Abstract—Reliability is always considered as one of the
most important factors in every system and it is commonly
accepted to investigate reliability by employing reliability anal-
ysis problems. In this case, the need of existence of powerful
reliability analysis methods has resulted in introducing different
methods to solve first-order and higher-order reliability analysis
problems. These methods have also been employed to ensure
failure probability of a system is below an acceptable level.
However, there are still disadvantages such as instability and
inefficiency in some of these methods. The Hasofer - Lind and
Rackwitz - Fiessler (HL-RF) method is still the most popular
method to solve the first-order reliability analysis problems, but
it will be shown in this paper that this method is not stable
enough to solve highly non-linear problems. Also, it is found
that the HL-RF method may show some inefficiency behaviour
even when it converges to the optimum point. In this paper, a
new reliability analysis method is introduced that solves first-
order reliability analysis problems stably and efficiently. This
method is based on the conjugate gradient direction that is
used as a line search algorithm. The new reliability analysis
method is called Conjugate Gradient Direction-Based (CGDB)
method whose performance is compared with the performance
of the existing HL-RF method by solving several numerical
experiments at the end of this paper.

Index Terms—Reliability Analysis, Conjugate Gradient
Method, First-Order Reliability Method, Non-deterministic De-
sign Optimization

I. INTRODUCTION

RELIABILITY theory has widely been applied into
various research and industrial projects, including, but

not limited to, radar systems, electricity networks, teeth X-
ray images, car crash-worthiness, etc., to improve system
safety and design reliability [4], [12], [13], [22]. These the-
ories have also been used in non-deterministic optimization
models to find the optimum solution while taking reliability
factors into account. Applying reliability-related issues in
engineering systems has however resulted in emerging more
complicated mathematical problems. In this case, reliability
analysis methods are of the most popular and powerful
methods to tackle these problems [17].

One of the commonly used non-deterministic optimization
models is the reliability-based design optimization (RBDO).
Among three categories of RBDO problems are the de-
coupled approach, the reliability index approach (RIA) and
the performance measure approach (PMA) [5], [9]. These
approaches are designed based on two types of reliability
analysis problems as first-order direct problems and first-
order inverse problems that can be solved by a number of
iterative methods.
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Furthermore, iterative approaches are applied in a new
algorithm to solve economical problems related to a power
system. A global optimization algorithm is used in this
method that seeks the optimum solution in an iterative
process [18]. In this method, once initial parameters are set,
the current optimum value is updated to check whether it
meets the relevant stopping criteria. If not, a three-phase
sub-process, as mutation, crossover and selection, is applied
before repeating the process of updating the optimum point.

Apart from these approaches, a reliability analysis method
is proposed based on the Voronoi cells. These cells are used
to partition a random-variate space by dividing the space ac-
cording to the nearest neighbour rule. Given (x1, x2, ..., xd)
denote independent random variables, the basic point set is
shown by PU = {uj = (u1,j , u2,j , ..., ud,j), j = 1, 2, ..., N}
where N indicates total number of sampling points and ui,j

is j-th coordinate in i-th dimension (Xu 2018). Moreover,
structural reliability and reliability analysis problems are
investigated by using a multi-parameter correlation problem.
For this purpose, a joint probability density function is first
built among all random variables and then the correlation
between these variables is described. It is reported that the
Copula function applied into the RBDO problems results in
significant improvements [9], [25].

Another interesting research is carried out to forecast wind
speed in short-term where two main frequency sequences
are first found in order to decomposing the data into vari-
ous frequencies. These sub-sequenced frequencies are then
categorized for training, verification, and test purposes [6].
Reliability considerations are also discussed in the literature
where two independent random variables are used to define a
system failure probability. This investigation, which has been
implemented by employing the Weibull distribution, leads to
maximizing the likelihood estimation of parameters of the
Weibull distribution [23].

All the above-mentioned applications show that reliability-
related issues are considered in many researches. However,
there are still shortcomings to solve direct reliability analysis
problems where the Hasofer - Lind and Rackwitz - Fiessler
(HL-RF) method is still the most stable and efficient method.
A new reliability analysis method is introduced in this paper
to solve these problems. Stability and efficiency of this
method is compared with the HL-RF method.

II. FIRST ORDER RELIABILITY METHOD

Non-deterministic characteristics play undeniable roles in
modern designed systems resulting in existence of uncer-
tainty in many problems. Reliability-related issues (in gen-
eral) and reliability analysis problems (in particular) have
attracted significant attention by researchers and engineers
to take these uncertainties into account.
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A system performance function is often used to formulate
an optimization problem as a reliability analysis problem to
deal with these considerations. The performance function
can either be employed in the objective function or in
the constraints, depending on the type of the reliability
analysis problem. A direct reliability analysis problem aims
at minimizing the Euclidian norm of decision variables where
the performance function is used in constraints, whereas
an inverse problem is designed to minimize a performance
function on a circular constraint [11], [14].

Although reliability analysis problems are often formu-
lated in original random space (i.e. X-space), it is widely
accepted to transfer the problem into a new space, which is
the standard normalized random space (U -space), in order to
decrease non-linearity of the problem [14]. For this purpose,
all variables and relevant performance functions need to be
transferred from X-space to U -space that is often done by the
first-order reliability method (FORM). The FORM is based
on the first-order Taylor expansion of the given performance
function [8], [21], [24]:

TFORM : X −→ U

The transformation T is defined based on the distribution
function of design variables. For example, if a design variable
is Normally distributed, then T would be defined as below:

u = T (x) =
x− µ

σ
(1)

where x is the original design variable, u is the standard
normalized design variable, and µ and σ are the statistical
parameters of the design variable x [25].

The FORM is also applied to solve reliability-based design
optimization (RBDO) problems that are generally catego-
rized as single-loop, double-loop, and decoupled problems
defined as below [15]:

Min cost(x1, x2, ..., xn) (2)
s.t. Pf < Φ(−βt)

where a performance function is used to model the proba-
bilistic constraint as Pf that is the system failure probability.
Inner loop of a double-loop RBDO problem includes a reli-
ability analysis problem to ensure the probabilistic constaint
is considered when solving the RBDO problem.

Furthermore, radial-based sampling and Krigning are com-
bined to introduce a specific structural reliability method.
In this method, a search domain is first defined in which
a failure point should be found. It is then aimed at getting
closer to the origin of the random space by updating the limit-
state (failure) point. The last limit state point is ultimately
considered as the most probable point since it is supposed
that no more failure point can be found. Moreover, other
methods such as second-order reliability method (SORM)
and Monte Carlo simulation (MCS) have been applied for
standard normalizing a reliability analysis problem. It has
been reported that these methods are very time-consuming
and rarely can reduce non-linearity of a reliability analysis
problem [5].

Reliability related concepts are also considered when de-
signing renewable energy systems in the last couple of years.
Optimization modelling of these systems are categorized
as low-frequency and high-frequency models. Five different

layers may be used to apply a basic adaptive neuro-fuzzy
inference system (ANFIS) architecture on decomposited
data that is related to a low-frequency model. However, a
multiple-input single-output formulation can be used in a
high-frequency model. In this case, real value estimation is
supposed to be done by the obtained mathematical formula-
tion [6].

In the next section, different reliability analysis problems
and available methods to solve them will be illustrated
briefly.

III. RELIABILITY ANALYSIS

One of the most important factors that is always considered
in system design is safety, which is improved by investigating
uncertainty. For this purpose, reliability analysis problems
are designed to take system uncertainties into account, and
reliability analysis methods are desigend to solve these
problems [2]. Two types of reliability analysis problems
are illustrated in the first subsection below. Then, available
reliability analysis methods to solve these problems are
discussed in the second subsection.

A. Reliability Analysis Problems

Reliability analysis problems are often formulated as a
constrained minimization problem in which a system perfor-
mance function is used. These problems are generally cate-
gorized as first-order direct and first-order inverse problems.

The first-order direct reliability analysis problem is formu-
lated as below [1], [8]:

Min ∥(u1, u2, ..., un)∥ (3)
s.t. GU (u1, u2, ..., un) = 0

where ∥.∥ is the Euclidean norm, u = (u1, u2, ..., un) is the
standard normalized design variable, and GU (u) is the stan-
dard normalized performance function. As discussed earlier,
all variables and the performance function are transformed
by FORM into the standard normalized random space (U -
space) to reduce the problem’s non-linearity.

This problem is displayed in [1] where the optimum
solution is called the most probable failure point (MPFP). A
first-order direct reliability analysis problem aims at finding
the nearest point on the failure surface (i.e. GU (u) = 0) to
the origin of the U -space.

Moreover, the first-order inverse reliability analysis prob-
lem is formulated in the U -space as follows [11]:

Min GU (u1, u2, ..., un) (4)
s.t. ∥(u1, u2, ..., un)∥ = β

where β is the (target) reliability index.
A figure in [1] shows an inverse reliability analysis prob-

lem that is designed to find a point on a circular constraint
(with radius of reliability index β) minimizing the standard
normalized performance function. The optimum solution of
this problem is called the minimum performance target point
(MPTP) that is here displayed by uMPTP .
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B. Reliability Analysis Methods

A first-order direct reliability analysis problem is solved to
find the minimum distance from the origin of the U -space to
the failure surface as a reliability index. The first-order Taylor
series expansion was initially used to introduce a reliability
analysis method in which the steepest descent direction is
employed [1]. In this case, a reliability analysis method was
proposed based on two researches conducted by Hasofer -
Lind and Rackwitz - Fiessler. This method is therefore called
the Hasofer - Lind and Rackwitz - Fiessler (HL-RF) method
[19], [20]. The design point is iteratively updated in this
method as below:

u(k+1) = (u(k).n(k+1))n(k+1) +
GU (u

(k))

∥∇GU (u(k))∥
n(k+1) (5)

where n(k+1) is the steepest descent direction, u(k) is the
current design point, and GU (u

(k)) is the standard normal-
ized performance function value at the current design point.
In this method, the origin of U -space is considered as the
initial design point.

The steepest descent direction is also updated regularly as
follows:

n(k+1) =
∇GU (u

(k))

∥∇GU (u(k))∥
(6)

It can be seen in the literature that the HL - RF method
is still the most popular and efficient method to solve the
first-order direct reliability analysis problems [3], [14].

On the other hand, the existing methods to solve an inverse
reliability analysis problem can be categorized into three
groups as below:

1) Methods based on the steepest descent direction: There
are four different methods in this category that the
hybrid mean value (HMV) method, as a combination
of all other methods in this group, is the most efficient
one to solve a first-order inverse reliability analysis
problem [26].

2) A method based on the conjugate gradient direction:
This method, which is called the conjugate gradient
analysis (CGA) method, is based on the conjugate
gradient direction. It has been reported that this method
is more efficient and stable than the HMV method [11].

3) Polar coordinate-based method: This method is
called unconstrained polar reliability analysis (UPRA)
method that transforms the first-order inverse reliability
analysis problem into an unconstrained problem in the
polar space and then solves it [10].

Many researchers have studied inverse reliability analysis
problems and proposed new methods to enhance their effi-
ciency and stability. However, there is a limited number of
methods (mainly based on the HL-RF method) to solve a
first-order direct reliability analysis problem. A new method
is proposed in this paper to improve performance of these
methods.

IV. CONJUGATE GRADIENT DIRECTION-BASED METHOD

A new reliability analysis method is introduced in this
section to solve the first-order reliability analysis problems,
which are illustrated in Subsection (3.1). As discussed earlier,
the HL-RF method is the most efficient and stable existing
method to solve these problems. However, it is observed and

will be shown in this paper that the HL-RF method is not
stable enough to solve highly non-linear problems. Also, it
will be shown that another disadvantage of this method is
inefficiency in some cases.

In the new method introduced in this paper, the conjugate
gradient direction is employed to update each design point.
So, this method is called the Conjugate Gradient Direction-
Based (CGDB) method. Performance of the CGDB method
is then compared with the performance of the HL-RF method
by solving several numerical experiments.

In the CGDB method, a reliability analysis problem is first
transformed from the original random space (i.e. X-space)
to the standard normalized random space (i.e. U -space). This
transformation is done by employing the first-order reliability
method (FORM).

Once the problem is standard normalized, the origin of
the U -space (i.e. u(0) = (0, 0, ..., 0)) will be considered as
the initial design point in order to start the iterative process.
Then, all design points are updated by the conjugate gradient
direction as a line search algorithm.

The initial design point is updated in the first step by using
the gradient vector of the standard normalized performance
function at the origin of the U -space. In this case, a vector
is defined as below:

α(1) = ∇GU (u
(0))

Then, this vector is used to find a new direction in order
to update the current design point, which is the origin as the
initial design point.

n(1) =
α(1)

∥α(1)∥

As can be seen, in the first iteration, the conjugate gradient
direction is indeed equivalent to the steepest descent direc-
tion. In other words, the first step of this method is similar to
the first step of the HL-RF method because of the similarity
between the conjugate gradient direction and the steepest
descent direction. However, these will not be the same from
the next iteration and so the main difference between these
methods will emerge.

Therefore, a new design point is found by updating the
initial design point as below:

u(1) =
GU (u

(0))

∥∇GU (u(0))∥
n(1)

In the next step, a scalar factor d(1) should be calculated
using the new design point u(1). This scalar factor was zero at
the first step that resulted in the conjugate gradient direction
to be as same as the steepest descent direction. The scalar
factor is obtained as below:

d(1) =
∥∇G(u(1))∥2

∥∇G(u(0))∥2
(7)

Once the above factor d(1) and the current design point
u(1) are found, it is required to obtain a new conjugate
gradient direction, which is not as same as the steepest
descent direction any more.

α(2) = ∇GU (u
(1)) + d(1)α(1) (8)
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and then the direction gets updated as

n(2) =
α(2)

∥α(2)∥
(9)

It is now the time to calculate the next design point. As
u and n are both n-dimensional vectors, their dot product
needs to be found that will then be used as a coefficient in
the update process of the design point. So, a new design
point is computed as below:

u(2) = (u(1).n(2))n(2) +
GU (u

(1))

∥∇GU (u(1))∥
n(2) (10)

These steps should be repeated and a new scalar factor d
should be calculated until convergence. In this method and
based on the reliability analysis problem, the convergence
criterion is defined as follows:

GU (u
(k+1)) = 0 (11)

Then, the most current design point for which the stopping
criterion is met will be considered as the optimum solution.

The conjugate gradient direction-based (CGDB) method
can be summarized as below:

1) Set k = 0 as the iteration counter, u(k) = (0, 0, ..., 0),
α(k) = (0, 0, ..., 0), and d(k) = 0.

2) Calculate α(k+1) = ∇GU (u
(k)) + d(k)α(k)

3) Calculate n(k+1) = α(k+1)

∥α(k+1)∥

4) Calculate u(k+1) = (u(k).n(k+1)+ GU (u(k))
∥∇GU (u(k))∥ )n

(k+1)

5) Check stopping criterion as GU (u
(k+1)) = 0

6) If the stopping criterion holds, then stop; the current
design point is the optimum solution.
Otherwise, set k = k+1, calculate a new scalar factor
as

d(k) =
∥∇G(u(k))∥2

∥∇G(u(k−1))∥2

Then, go back to Step 2.
Figure (1) displays these steps in a flowchart. Performance

of this method will be compared with the HL-RF method in
the next section to check stability and efficiency of the newly
introduced CGDB method against the existing one.

V. NUMERICAL EXPERIMENTS

In this section, several first-order reliability analysis prob-
lems are solved by using the HL-RF method and also the new
conjugate gradient direction-based (CGDB) method proposed
in this paper. It is intended to compare their performance in
order to find the most stable and efficient method to solve
the first-order reliability analysis problems.

In each case, a performance function is needed to formu-
late the relevant reliability analysis problem. This problem
will then be transformed into the standard normal random
space (U -space) by employing the first-order reliability
method (FORM).

Numerical results of each problem is provided in a detailed
table. In the first subsection, a figure is also used to represent
how design points are being updated in each problem.
Dispersion of the design points as well as directions through

Fig. 1. Conjugate Gradient Direction-Based Method

which these points are updated are displayed in these figures.
In this case, if a method diverges, it can be seen in the dot
plots that how an oscilating behavior prevents a method from
convergence by not letting the design points to get closer to
each other.

A. Fixed Initial Design Points

This subsection includes problems with fixed initial design
points and various non-linearity. Different levels of non-
linearity of performance functions are considered in these
problems to investigate potential effect of non-linearity on
the methods’ performance.

Numerical Experiment 1

In the first numerical experiment, the following system
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TABLE I
RESULT SUMMARY OF PROBLEM 1

HL-RF CGDB

Iterations 163 25

(x∗
1, x

∗
2) (6.9426, 2.1723) (6.9547, 2.1676)

β 8.4036 8.4036
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Fig. 2. Design points of the HL-RF method in the X-space - Numerical
Experiment 1

performance function is considered:

G(x1, x2) =
(x1 + x2 − 5)2

30
+

(x1 − x2 − 12)2

120
− 1

where both design variables (x1, x2) are Normally dis-
tributed with statistical parameters as µ = (10, 10)T and
σ = (1, 1)T .

The performance function is then standard normalized by
the first-order reliability method (FORM) based on the below
relationships:

x1 = u1 + 10 & x2 = u2 + 10

Therefore, the relevant first-order direct reliability analysis
problem can be formulated (regarding the Model (3)) as
follows:

Min∥(u1, u2)∥ (12)
s.t.5u2

1 + 5u2
2 + 6u1u2 + 96u1 + 144u2 + 924 = 0

This problem is now solved twice; first by the HL-RF
method, and then by the CGDB method proposed in this
paper. Both methods converge in this problem to find the
optimum point but with different convergence rates and so
various efficiency. The HL-RF method needs 163 iterations
to reach to the optimum point while the CGDB method needs
only 25 iterations to converge and finish the process.

The reliability index, which is supposed to be found in the
probelm by minimizing ∥(u1, u2)∥, is however the same in
both methods that is equal to 8.4036. Despite this similarity
in the minimization process, the CGDB method takes much
shorter time than the HL-RF method for convergence due
to the fewer iterations required. Table I briefs the reulsts
obtained in this problem.

Figures (2) and (4) show how design points move in
the X-space and are updated by each method. Although
the direction arrows of the HL-RF method get updated
sooner than the CGDB method toward the region, where
the optimum point will ultimately be found, the Figure (??)
shows that many updates are required by the HL-RF method
to get closer to the optimum point and finally to find it,
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Fig. 3. Further details of the HL-RF method - Numerical Experiment 1
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Fig. 4. Design points of the CGDB method in the X-space - Numerical
Experiment 1
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Fig. 5. Further details of the CGDB method - Numerical Experiment 1

while the CGDB method finds the optimum point and stops
faster. Figures (3) and (5) are also provided to further clarify
activities of each method in the last couple of iterations.

In both figures, as per the problem specifications, the initial
design point can be seen as (10, 10) that updates towards
around (7, 2) to find the optimum point. The HL-RF figure
shows how intensive the design points are in this area, which
is due to the number of iterations required, to ultimately find
the optimum point that is (6.9426, 2.1723), while it is shown
in the CGDB figure the intensitiy in that area is much less as
one-sixth of the iterations are required to find the optimum
point, which is (6.9547, 2.1676).

Hence, it can be concluded that the new CGDB method is
more efficient than the HL-RF method to solve this problem,
because less iterations as well as shorter time are required
to find the same optimum solution.

Numerical Experiment 2

It is expected to find significant difference between perfor-
mance of the above mentioned reliability analysis methods

IAENG International Journal of Applied Mathematics, 52:3, IJAM_52_3_16

Volume 52, Issue 3: September 2022

 
______________________________________________________________________________________ 



TABLE II
RESULT SUMMARY OF PROBLEM 2

HL-RF CGDB

Iterations NA 53

(x∗
1, x

∗
2) Diverged (2.7274, 3.6143)

β NA 7.3485

Fig. 6. Design points of the HL-RF method in the X-space - Numerical
Experiment 2

when solving problems with highly non-linear performance
function. High non-linearity may even result in instability of
a method. So, a new performance function is used in the
next experiment with the same set of design variables, i.e.
both variables follow the Normal distribution, but with new
standard deviations as x1 ∼ N(10, 2) and x2 ∼ N(10, 2).

G(x1, x2) = x3
1 + x3

2 − 67.5

Given the new standard deviations, the below transformations
are used to standard normalize the problem:

x1 = 2u1 + 10 & x2 = 2u2 + 10

Hence, the below optimization problem needs to be solved:

Min∥(u1, u2)∥ (13)
s.t.8u3

1 + 8u3
2 + 120u2

1 + 120u2
2 +

600u1 + 600u2 + 1932.5 = 0

The CGDB method converges in this problem after 53
iterations and finds the optimum point (2.7274, 3.6143) with
the reliability index (i.e. the minimzed ∥(u1, u2)∥) as 7.3485.
But an instability behavior was noted when the HL-RF
method applied to solve this problem.

The HL-RF method diverges in this problem as it fails
to converge and find the optimum point even after 10,000
iterations. It starts oscillating between (0.6636, 8.3733) and
(9.9481, 5.8725) in the 26-th iteration. and this oscillating
behavior prevents the HL-RF method from convergence.
These findings are summarized in the Table II.

Performance of the reliability analysis methods in this
problem are displayed in the Figures (6) and (7). It is shown
in the Figure (6) that direction arrows go back and forth
between a couple of design points and so fail to find the
optimum point. But the CGDB method produces arrows that
are moving toward the optimum point one after another. It
should be noted that the oscillating arrows of the HL-RF
method do not even get close to the region of the optimum
point that is found by the CGDB method.

Therefore, it can be concluded that the HL-RF method is
divergent and unstable in this problem. On the other hand, if
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Fig. 7. Design points of the CGDB method in the X-space - Numerical
Experiment 2

TABLE III
PERFORMANCE OF BOTH METHODS WITH RANDOMLY GENERATED

INITIAL DESIGN POINTS

Case 1

HL-RF Method CGDB Method

Conv. Rate 616 1000

Iterations 6256 21

TABLE IV
PERFORMANCE OF BOTH METHODS WITH RANDOMLY GENERATED

INITIAL DESIGN POINTS

Case 2

HL-RF Method CGDB Method

Conv. Rate 0 1000

Iterations NA 25

the CGDB method is used to solve this problem, it would be
found stable and efficient enough to reach the optimum point
after 53 iterations with the reliability index as ∥(u1, u2)∥ =
7.3485.

In the next subsection, 1000 initial design points are
randomly generated for each of the above problems. Then,
the HL-RF and CGDB methods are applied to solve the reli-
ability analysis problems to see how these methods perform
when an initial design point is generated randomly in each
case.

B. Randomly Generated Initial Design Points

The reliability analysis problems solved in the previous
subsection are again considered with 1000 different initial
design points, which are generated randomly. The main idea
is to investigate performance of each reliability analysis
method based on different initial design points to neutralize
any impacts of the initial design points on the methods’
performance.

Each problem is solved 2000 times, first 1000 times solved
by the HL-RF method with randomly generated initial design
points and then 1000 times by the CGDB method with the
same randomly generated initial design points. Performance
of the methods are compared based on the obtained results of
these experiments summarized in the Tables (III) and (IV).

For this purpose, the number of times (out of 1000) that
the applied method shows stability (convergence) to solve
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the relevant reliability analysis problem is considered as the
main measure to check stability/performance of each method.
So, the first row of the Tables (III) and (IV) show the number
of convergence cases for each problem out of 1000 times.

The CGDB method is stable in all 2000 cases as it
converges to solve the problem using every single randomly
generated initial design point in both problems. However,
the HL-RF method fails to be stable as it finds the optimum
point in 616 cases (out of 1000) when trying to solve the
first problem, and it diverges in all the 1000 runs of the
second problem where the performance function is a highly
non-linear function.

The required iterations for solving the problems are also
considered for the comparison between the two methods. In
this case, the average number of iterations of the convergence
cases are included in the Table. Regardless of the second
case, where the HL-RF method never converges, a huge
difference is found between performance of these methods
in the first case. It is displayed in the Tables (III) and (IV)
that 6256 iterations are required for the HL-RF method in
average to find the optimum point (in those 616 convegent
cases), while the average number of iterations in the CGDB
method to solve the same 1000 problems is just 21 iterations.

It can be concluded that both the convergence rate (out of
1000) and the average of the required iterations for conver-
gence indicate that the new CGDB method is more stable
and efficient than the existing HL-RF method. Therefore,
problems solved in this subsection once again show that the
CGDB method is more stable and efficient than the HL-RF
method.

VI. CONCLUSION

A new reliability analysis method is introduced in this
paper that is based on the conjugate gradient direction
as a line search algorithm. This method, which is called
the Conjuage Gradient Direction-Based (CGDB) method, is
employed to solve several reliability analysis problems to
check its stability and efficiency. Performance of this method
is compared with the Hasofer and Lind - Rackwitz and
Fiessler (HL-RF) method as the most stable and efficient
existing method.

To compare these methods, the problems are first solved
by initial design points already used in the liteature. Each
problem is solved by both HL-RF and CGDB methods. Then,
rather using these fixed initial design points, 1000 randomly
generated initial design points are employed to solve the
problems by both mentioned methods. As 10,000 iterations
are considered for possible convergence of each method to
solve every problem, up to 10,000,000 iterations performed
for each performance function per each case of randomly
generated initial design points.

Based on the analysis done in this reseach, which are
illustrated in the previous section, it can be concluded that
the new CGDB method is more stable and efficient than
the HL-RF method. When the fixed initial design points are
employed in each problem, the CGDB method is both more
efficient (by requiring fewer number of iterations to find the
optimum point with the same reliability index) and more
stable (as it converges while the HL-RF method diverges)
than the HL-RF method.

Furthermore, the CGDB method shows better performance
than the HL-RF method when 1000 randomly generated
initial design points are used to solve each problem.

Hence, one can result that the newly proposed conjugate
gradient direction-based (CGDB) method is more stable and
efficient than the HL-RF method.

VII. DISCUSSION AND FUTURE WORKS

Reliability related concepts are being used in a variety
of research areas to design more reliable systems. In this
case, reliability analysis problems and their methods play
significant roles for system design improvments in the cur-
rent industrial world.

There is no doubt that more advanced systems need
more advanced reliability models to take as many factors
into consideration as possible. However, this high level of
advancement brings more and more complexity to solve the
problems.

The topic discussed in this paper can be expanded into two
different directions. In a theoretical expansion, this method
can be further improved by employing other reliability re-
lated issues in problems. Also, this method can be applied
into various industrial projects to improve system design with
enhanced reliability in practice. Therefore, our future works
will focus on these two directions.

For theoretically improvement of the new CGDB method
introduced in this paper, it can be considered to apply this
method to solving verh highly nonlinear problems with non-
Gaussian distributed random variables as part of our future
works. Although it may be needed to apply slight amend-
ments to this method, it can also bring more improvements
to the CGDB method enabling it to solving a wider range of
reliability analysis problems.

On the other hand, another important future work will
be based on a focus on renewable energy systems, like
solar panels and wind turbines. A new reliability analysis
model will be introduced for solar panels where a single
diode solar cell will be studied by considering a photocurrent
relationship. The main aim of this model will be to enhance
reliability of single diode solar cells in order to ultimately
provide more sustainable renewable energy systems in the
future.
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