
 

  

Abstract—In order to ensure the safe operation of multi-level 

rail transit composite network, a composite network evaluation 

model was constructed by using complex network theory. This 

model analyzed the connectivity reliability of the composite 

network in response to sudden site failures through the global 

network efficiency and network connectivity. Among them, the 

network connectivity index from the perspective of passengers 

was proposed, the prospect theory is introduced to describe the 

connectivity of the entire composite network, and the 

connectivity measured by the largest connected subgraph is 

compared and analyzed. Matlab2018a software was used to 

simulate the attack process of different strategies, and the 

differences of the unweighted and passenger flow weighted 

composite network in dealing with different attacks were 

compared and analyzed. The connectivity reliability of the 

composite network was analyzed by taking the actual data of a 

municipal railway-subway as an example. The research results 

showed that the unweighted composite network appeared more 

vulnerable. The composite network connectivity from the 

passenger’s point of view was directly proportional to the 

tolerance coefficient. Under different strategy attacks, the 

network connectivity index from the passenger’s point of view 

reflected better composite network connectivity reliability. This 

paper provided a certain reference for analyzing the resilience 

of multi-level rail transit composite network.  

 
Index Terms—Multi-level Rail Transit, Composite Network, 

Tolerance Coefficient, Prospect Theory, Connectivity reliability 

 

I. INTRODUCTION 

n recent years, with the rapid advancement of the 

urbanization process, various types of rail transit have 
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developed rapidly, but there have been “urban diseases” such 

as long travel distances and separation of work and housing 

caused by unbalanced regional development and many other 

factors. As an important infrastructure for constructing a 

reasonable spatial layout of a metropolitan area, the 

development of rail transit directly affects the rationality of 

the development of the metropolitan area. Therefore, how to 

reasonably integrate different rail transit networks is a 

difficult problem at present. Exploring the safety of each rail 

transit network, analyzing the topological characteristics of 

the rail transit network, and quantitatively calculating the 

reliability of each station are of great significance to ensuring 

the stable operation of rail transit.  

Many scholars had studied the network in various fields, 

and the emergency material distribution networks had been 

studied in [2][3]. The bus network had been studied in terms 

of service reliability such as headway reliability and running 

time reliability, but there was a lack of system-level research 

based on network topology in [4][5][6][7]. Therefore, many 

scholars had done a lot of research on the topology of rail 

transit network by using complex network theory. First, the 

method of measuring the degree of damage to the network 

after being attacked was proposed in [8], which created a 

precedent for subsequent research. 

[9][10][11][12][13][14][15] studied the characteristics and 

elasticity of subway networks. By proposing a structural 

evaluation method based on system elasticity, a topological 

structural elasticity evaluation model of regional rail transit 

network was constructed in [16]. The topological 

characteristics and robustness of the railway express freight 

network were studied in [17] by considering the line level. 

[18] studied the vulnerability of the subway network from the 

perspective of associated infrastructure. Based on the 

improved network efficiency formula, the anti-destruction 

degree of the network under the simulated attack of 10 typical 

cities was analyzed in [19]. The invulnerability of urban rail 

networks in six developed cities in the world was analyzed 

from the perspective of network science in [20]. The 

vulnerability of high-speed railway networks in different 

countries was compared and analyzed in [21]. 

In view of the importance of complex network nodes, 

many scholars studied the important nodes in the network in 

[22] [23] [24] [25] [26] [27] by establishing spatial weighted 

degree model, comprehensive evaluation model of degree 

and intermediate number and key node identification method 

combining economic value and demand. Personnel 

deployment was studied in traffic emergency networks in 

[28][29]. The above literatures had made contributions to the 
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research on the characteristics of rail transit network 

topology and the importance of complex network nodes. 

However, the actual weighted networks were rarely 

considered in above literatures. 

In view of the shortcomings of the above literature, a rail 

transit network model based on passenger flow weighting 

was constructed by analyzing the effects of passenger flow 

proportional coefficient and node efficiency on stations in 

[30][31]. By considering the influence of OD flow 

distribution in the transportation network, a method for 

cascading failure analysis of subway network based on 

weighted coupled image lattice model was proposed by 

taking Beijing subway as an example in [32]. Different from 

the weight of passenger flow in the above literature, the air 

transport weighted network and road transport weighted 

network model were constructed by taking the route 

frequency and the number of departure trains as the side 

weights in [33][34][35]. Unfortunately, all of the above 

literatures took single-level network model as the research 

object, which failed to reflect the interaction relationship and 

comprehensive diversity among networks.  

In view of the shortcomings of the above-mentioned 

single-level network model, a multi-level composite network 

model was constructed by considering the subway-bus 

multi-mode and multi-level topology network, and the 

cascading failure process of the network under emergencies 

was simulated and analyzed in [36][37][38]. The quantitative 

determination rule and process method of coupled stations 

based on ArcGIS were proposed, and the subway-bus 

composite network model was constructed based on this in 

[39]. A vulnerability assessment model based on the loss of 

average travel time was established by considering the 

connecting effect of bus on passenger flow under the scenario 

of station failure in [40]. It was worth mentioning that [41] 

constructed a three-level superimposition urban multi-mode 

transportation network model of car network, ground bus 

network and rail transit network by considering passenger 

flow and running time. Further than the above literatures, the 

city agglomeration composite transport network model was 

constructed by superposition with the number of departures, 

number of trains, flight frequency and flight frequency as the 

weight of the edge of road transport network, rail transport 

network, air transport network and waterway transport 

network in [42]. Although the complexity of multi-level 

networks was considered in the above literatures, traditional 

evaluation indexes such as maximum connected subgraph 

and global network efficiency were adopted. However, [43] 

used the number of tolerable paths between stations to 

measure the connectivity reliability between stations and the 

connectivity of the entire network, providing a new idea for 

measuring the connectivity reliability of the network.  

The above literatures studied the reliability of network 

connectivity under random and deliberate attacks by 

constructing unweighted networks and weighted composite 

networks in various ways. However, there was almost no 

research on connectivity reliability of multi-level rail transit 

composite network in existing literatures. The existing 

literatures rarely considered the weighted composite network 

model, and did not consider the edge weight of the network 

from the actual situation. In the existing literatures, the 

measurement of network connectivity reliability was mainly 

based on the traditional network efficiency and maximum 

connectivity subgraph, while the measurement of composite 

network connectivity reliability was not carried out from the 

perspective of passengers.  

In view of the above shortcomings, this paper will use the 

Space-L method to construct a multi-level rail transit 

composite network model, and compare and analyze the 

connection reliability of the unweighted composite network 

and the passenger flow weighted composite network to deal 

with random attacks and deliberate attacks. From the 

perspective of passengers, the prospect theory is introduced 

to describe the evaluation indexes of network connectivity 

reliability, so as to analyze the composite network 

connectivity reliability under different evaluation indexes. A 

comparative analysis of network connectivity from the 

perspective of passengers and traditional network 

connectivity measured by maximum connectivity will be 

carried out. 

The rest of this paper is summarized as follows: Section Ⅱ 

constructs multi-level rail transit composite network model. 

The bounded rational behavior analysis of passenger travel is 

in Section Ⅲ. The composite network connectivity reliability 

measure index is in Section Ⅳ. The example analysis of the 

basic attributes of the composite network in a city in Section 

Ⅴ. The connectivity reliability analysis of the composite 

network is in Section Ⅵ. Finally, the conclusion of this paper 

is in Section Ⅶ. 

II. COMPOSITE NETWORK MODEL CONSTRUCTION 

A. Model Assumptions 

Hypothesis 1: The difference in train direction, departure 

frequency, and traffic routes between the two stations are not 

considered. 

Hypothesis 2: The shortest travel time of passengers shall 

be the minimum travel time of all passengers. 

B. Unauthorized Network Model Construction 

Based on the physical structure of the actual network, the 

stations in the multi-level rail transit network are abstracted 

as the nodes of the composite network, and the sections 

between stations are mapped to the edges between nodes. The 

Space-L method is used to establish a fully connected 

topology model composed of stations and lines in a 

multi-level rail transit network.  

Based on the above description, the multi-level rail transit 

unweighted composite network model is constructed as 

shown in (1). Among them, the composite network includes 

the national railway main line sub-network, the inter-city 

railway sub-network, the municipal railway sub-network and 

the urban rail transit sub-network. The sites and lines of the 

four-level network are merged by means of superposition. 

1 ( , )G V E=                                   (1) 

Where, V represents the network node set in the unweighted 

composite network G1, whose set is 

V={v1,v2,…,vi,…,vj,…,vN}. N represents the total number of 

network nodes. E represents the network edge set in the 

unweighted composite network G1, whose set is 

E={e1,e2,…,eM}. M represents the number of road segments 

between pairs of stations that each sub-network line travels. 
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C. Passenger Flow Weighted Network Model Construction 

The multi-level rail transit weighted composite network 

model is constructed in (2). 

2 ( , , )G V E W=                               (2) 

Among them, W represents the passenger flow weight set of 

the network connection, and its set is W={Ws,t|s,t∈V}. The 

OD passenger flow matrix between the stations of each line is 

allocated according to the shortest path. The weight matrix of 

composite network is obtained by counting the passenger 

flow of each side of the network. 

III. ANALYSIS OF BOUNDED RATIONAL BEHAVIOR OF 

PASSENGER TRAVEL 

In the actual travel process, passengers are often bounded 

rationality. The tolerance coefficient  was used to determine 

which connectivity paths passengers would use in [39]. The 

passenger’s tolerance coefficient for travel time is proposed 

in the paper, and the passenger’s tolerance coefficient for 

travel is defined as a reference point. When the ratio of the 

actual travel time of the passenger to the shortest travel time 

is not less than the travel tolerance coefficient, the passenger 

is satisfied from the node, that is, the passenger is profitable. 

On the contrary, the passenger will lose from this node, and 

the passenger is more sensitive to the loss than the profit. 

Therefore, the overall tolerance value function of passengers 

traveling from station vi is as follows. 

( ) , 0
( )

( ) , 0

i i

i

i i

A A
H v

A A





   
= 

− −  

                 (3) 

Where, α and β are the sensitivity coefficients of gain and loss 

respectively, 0 , 1   . In general, α=β=0.88.   is the 

loss avoidance coefficient, and 1  . In general, =2.25 .
iA  

represents the deviation value of the actual relative travel 

time of passengers compared to the reference point, which 

can be expressed by (4). 

1

N

i ij

j

A t A


=

 = −                             (4) 

Where, N   is the set of sites without node vi. tij represents 

the actual relative travel time of passengers starting from 

node vi, and g short

ij ij ijt t t= . g

ijt  represents the travel time of 

passengers on the g path from node vi to node vj. short

ijt  

represents the minimum travel time from node vi to node vj. A 

represents the travel endurance coefficient of passengers, 

which can be set according to specific conditions.  

The overall tolerance value function curve of passengers 

travelling from station vi is shown in Fig. 1. 

Risk appetite

Risk aversion

H(vi)

tij A

tij

tij＜A

 
Fig.1  Value function graph 

The weight function of passengers’ overall tolerance to 

travel from station vi is shown in (5). The weight function 

reflects that decision-makers tend to attach importance to low 

probability events while ignoring high probability events. 
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Where, ( )p  is the perceived probability of passengers 

choosing a certain route from the node. p is the actual 

probability that passengers choose a certain route to travel 

from the node.   is the perceived probability coefficient of 

earnings.   is the probability coefficient of loss perception. 

In general, =0.61 , =0.69 . The values of   and   

determine the curvature of the weight function. The weight 

function curve is shown in Fig. 2. Passengers generally have 

the characteristics of overestimating small probabilities and 

underestimating large probabilities in the decision-making 

process. 

p

w(p)

0 10.5

The probability of the ideal

Overestimation of 

small probability Underestimate the 

medium to large 

probability

 
Fig.2  Weight function curve 

 

IV. COMPOSITE NETWORK CONNECTIVITY RELIABILITY 

MEASUREMENT INDEX 

The global efficiency of the composite network and the 

connectivity of the composite network are taken as the 

dynamic evaluation index of the overall connectivity 

reliability of the composite network. The static basic 

properties and specific dynamic evaluation indexes of the 

composite network are as follows. 

A. Composite Network Static Basic Properties 

A.1. Degree and Degree Distribution of Nodes 

The degree ki of an unweighted composite network node vi 

is defined as the number of edges connected to the node. The 

greater the degree of a node, the more “important” the node is 

in a sense. The average value of the degree ki of all nodes 

represents the average degree of the network, which is 

defined as <k>, and its calculation is shown in (6). The degree 

distribution P(k) represents the proportion of nodes whose 

degree value is exactly k in all nodes. 

1

1 N

i

i

k k
N =

  =                                (6) 

The point strength Si of the weighted composite network 

node vi is defined as the sum of the edge weights associated 

with it, which is calculated as the following formula (7). The 

average point strength of the network is defined as the 

average value of Si. 
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i

i ij

j N

S W


=                                 (7) 

Where, Ni represents the set of neighbor points of node vi. Wij 

represents the weight of the edge connecting nodes vi and vj. 

 

A.2. Average Path Length 

The distance dij between nodes vi and vj in the unweighted 

composite network is defined as the number of edges on the 

shortest path connecting these two nodes. The maximum 

value of the distance between any two nodes in the composite 

network is the diameter D of the network, which is calculated 

as the following (8). 

1
= max ij

i j N
D d

  

                          (8) 

The average value of dij is called the average path length L 

of the composite network, which is calculated as the 

following (9). 

2
1

1
= ij

i j NN

L d
C   

                           (9) 

The shortest distance w

ijd  between two nodes vi and vj in 

the weighted composite network is defined as the weighted 

sum of edge weights on the shortest path connecting these 

two nodes. The average value of the shortest path length is 

called the average path length Lw of the weighted network, 

which is calculated as the following (10). 

2

( 1)

w w

ij

i j

L d
N N 

=
−

                     (10) 

A.3. Clustering Coefficient 

In the unweighted composite network, the ratio of the 

actual number of edges Ai between the ki neighbor nodes of 

node vi and the total possible number of edges is called the 

clustering coefficient Ci of node vi, which is calculated as the 

following formula (11). 

2

i

i

i

k

A
C

C
=                                 (11) 

The clustering coefficient C of the entire network is the 

average value of the clustering coefficients Ci of all nodes vi, 

which is calculated as the following formula (12). 

1

1 N

i

i

C C
N =

=                             (12) 

The clustering coefficient of the weighted composite 

network is defined in (13). 
1

3

, ,

2
( )

( 1)

w

i ij jh hi

j h V j hi i

C w w w
k k  

  =
−

          (13) 

Where, max{ }ij ij ijw w w =  is the normalized weight. 

B. Global Efficiency of Composite Network 

Based on the definition of the distance between adjacent 

nodes, the global efficiency EL and ELw of the unweighted 

and weighted composite network are as follows (14) and (15) 

respectively. 

1 1
=

( 1) i j ij

EL
N N d−

                    (14) 

1 1
=

( 1)
w w

i j ij

EL
N N d−

                  (15) 

 

C. Composite Network Connectivity 

C.1. Maximum Connectivity of CompositeNetwork 

The changes of complex network performance caused by 

the removal of network sites or edges are essentially related 

to the phenomenon of lattice seepage in [44]. For the general 

complex network, this phenomenon corresponds to the 

appearance of the maximum connected component of the 

network, and its disappearance is related to the vulnerability 

of the complex network. With the continuous advancement of 

the simulation attack process, the maximum connected 

component of the network will gradually become smaller, 

that is, the network operation coverage will gradually become 

smaller.  

The overall connectivity of the composite network is an 

important index to measure its connectivity reliability when it 

is subjected to continuous attacks. The maximum 

connectivity measure can better describe the connectivity of 

each node in the network. The maximum connected subgraph 

is defined as the subgraph in which all nodes in the network 

are connected with the least number of edges. The ratio of the 

number of nodes in the maximum connected subgraph to the 

number of all nodes in the network is the maximum 

connectivity SL. Therefore, the following (16) represents the 

maximum connectivity of the composite network. 

sn
SL

N
=                                     (16) 

Where, ns represents the number of nodes in the maximum 

connected subgraph. The greater the maximum connectivity, 

the higher the connectivity between network nodes and the 

stronger the connectivity reliability of the network. 

 

C.2. Network Connectivity from the Passenger Perspective 

The higher the overall tolerance of passengers to travel 

time, the stronger the connectivity of the composite network. 

Therefore, the overall tolerance of passengers for travel time 

can be used to measure the connectivity of the composite 

network. The prospect theory is introduced to describe the 

passenger’s overall tolerance of travel time. 

According to the analysis of the bounded rationality of 

passenger travel in the second section, the overall tolerance 

function of passengers traveling from station vi can be 

obtained as the comprehensive prospect value of prospect 

theory, as shown in the following (17). 

( ) ( ) ( )i if v H v p=                          (17) 

The connectivity Fi of the station is characterized by the 

overall tolerance of passengers traveling from station vi, 

which is the following (18). Thus, the composite network 

connectivity F from the perspective of passengers can be 

obtained as shown in (19). Where, Mf represents the 

normalization coefficient of connectivity. 

1

( ) /
N

i i f

i

F f v M
=

=                          (18) 

1

N

i

i

f

F

F
N M

==



                             (19) 
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V. AN EXAMPLE ANALYSIS OF BASIC ATTRIBUTES OF 

COMPOSITE NETWORK IN A CITY 

A. The Example Data 

It is known that there are 2 lines and 27 stations in the 

municipal railway sub-network of a certain city. There are 14 

lines and 282 stations in the subway sub-network. There are 

16 lines and 309 stations in the municipal railway-subway 

composite network of the city. All stations are numbered 

according to the line sequence, and stations with two or more 

lines passing through are numbered only once. The topology 

mapping of a municipal railway-subway composite network 

is shown in Fig. 3. 

 

Ordinary station

Interchange stationSubway line

Municipal Railway  
Fig.3  Topology mapping of a municipal railway-subway composite network 

 

B. Analysis of Static Basic Properties of Composite Network 

The calculation of the basic evaluation index of the 

composite network is shown in Table Ⅰ. 
TABLE Ⅰ 

  BASIC EVALUATION INDEX OF COMPOSITE NETWORK 

Index Unweighted network Weighted network 

Number of nodes(N) 309 

Number of edges(M) 350 

The network diameter(D) 40 44 
Average degree/Point 

strength(<k>/S) 
2.2654 3.4493 

Average path length(L) 14.4383 20.1602 

Clustering coefficient(C) 0.0016 0.00078 

Global Efficiency of 
Composite Network(EL) 

0.10 0.12 

 

As can be seen from Table Ⅰ, there are 350 connecting 

edges between stations in the city’s composite network. If the 

cross-section passenger flow weighting is not considered, the 

average degree of each station is 2.2654, which means that 

each station has 2.2654 adjacent stations on average. It 

indicates that only one rail transit line passes through most of 

the stations in the composite network, and there are relatively 

few intersections between the lines. The average path length 

is 14.4383 and the network diameter is 40, that is, 14.438 

stations are needed to reach any two stations in the composite 

network on average, and the longest connecting edge needs to 

pass 40 stations to reach it. It shows that the average line 

length of the composite network is relatively short, and the 

composite network has good accessibility. The clustering 

coefficient of the entire network is 0.0016, which indicates 

that the connections between the city’s composite network 

stations are not close. The fitting relationship between node 

degree and cumulative probability is shown in Fig. 4 below. 

 
Fig.4  Fitting diagram of node degree and cumulative probability 

 

It can be seen from Fig. 4 that the degree value has an 

approximately linear relationship with the cumulative 

probability. It shows that the composite network is a 

scale-free network, which has the characteristics of low 

degree of most nodes, but a small number of nodes with high 

degree. The degree distribution is shown in Table Ⅱ. 

 
TABLE Ⅱ 

  DEGREE DISTRIBUTION OF UNWEIGHTED COMPOSITE NETWORK 

k 1 2 3 4 5 6 

P(k) 
20

309

 240

309

 7

309

 34

309

 5

309

 3

309

 

 

If the cross-section passenger flow weighting is considered, 

the average point strength of each station of the composite 

network is 3.4493, that is, the adjacent stations of each station 

have an average daily cross-section passenger flow of 34,493 

people. It shows that the passenger flow balance of the 

composite network based on the cross-section passenger flow 

weight is relatively good, and there is no congestion. The 

average path length is 20.1602 and the network diameter is 44, 

that is, 20.1602 stations are needed to reach any two stations 

in the composite network on average in the case of passenger 

flow weighting, and the longest connecting edge needs to 

pass 44 stations to reach it. It shows that the average line 

length of the composite network is relatively long when the 

weight of passenger flow is considered, which also accords 

with the situation of large passenger flow that may occur in 

actual travel. The clustering coefficient of the entire network 

is 0.00078, which indicates that the connections between the 

city’s composite network stations are not close. 
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VI. CONNECTIVITY RELIABILITY ANALYSIS OF COMPOSITE 

NETWORK IN A CITY 

A. Attack Strategy 

Random attack and deliberate attack are used to study the 

connectivity reliability of the composite network. The 

specific attack strategy is as follows. 

(1) Attack the nodes in the composite network randomly, 

so that the nodes and corresponding connecting edges fail 

simultaneously. 

(2) Attack the composite network nodes according to the 

ordering of the node degree (point strength ordering), that is, 

deliberately attacking the node, so that the failed node and the 

corresponding connection edge are invalidated at the same 

time. 

B. Comparative Analysis of Global Efficiency of Composite 

Networks under Different Attack Strategies 

Based on the OD swiping data provided by AFC system in 

a certain day, the global network efficiency of the municipal 

railway-subway composite network under the two attack 

strategies is analyzed. 

Since random attacks have strong uncertainties, we take 

the average global efficiency of the composite network under 

100 random attacks. The global efficiency change diagram of 

the unweighted composite network under the two attack 

strategies is shown in Fig. 5. 

Random attack

Deliberate attack

 
Fig.5  The global efficiency change diagram of the unweighted composite 
network 

 

As can be seen from Fig. 5, for the unweighted composite 

network, the global efficiency of the composite network 

decreases with the increase of the number of failed nodes. 

The global efficiency of composite network decreases faster 

when deliberate attack is adopted. When the number of failed 

nodes is about 10, the global efficiency of the composite 

network has been reduced to half of that without failure. It 

shows that the degree of nodes in the unweighted network 

reflects the importance of nodes. When the number of failed 

nodes is less than 123 (40%), deliberate attack has a great 

impact on the global efficiency of the composite network, 

and then affects the connectivity reliability of the composite 

network. The reason is that the early stage of the deliberate 

attack makes the node with a large degree of failure, which is 

highly offensive to the network. When the number of failed 

nodes exceeds 123, the global efficiency of the composite 

network drops below 0.02, and the composite network is 

close to collapse. At this time, random attack has a great 

impact on the global efficiency of the composite network, 

and then affects the connectivity reliability of the composite 

network. The reason is that only the stations with the smallest 

degree are left after deliberate attack, while the random attack 

still retains a few important nodes with larger degrees.  

The global efficiency change diagram of the weighted 

composite network under the two attack strategies is shown 

in Fig. 6 below. 

As can be seen from Fig. 6, for the unweighted composite 

network, the global efficiency of the composite network 

decreases with the increase of the number of failed nodes. In 

the case of considering the weight of passenger flow, 

regardless of the number of failed nodes, deliberate attack has 

a greater impact on the global efficiency of the composite 

network, which in turn affects the connectivity reliability of 

the composite network. It shows that under the deliberate 

attack strategy, the point strength reflecting the sum of the 

associated weights of nodes has a greater impact on the 

passenger flow weighted composite network. 

Random attack

Deliberate attack

 
Fig.6  The global efficiency change diagram of the weighted composite 

network 

 

By comparing Fig. 5 and Fig. 6, it can be seen that in the 

face of random attack, the composite network based on 

passenger flow weighting shows stronger connectivity 

reliability than the unweighted composite network. The 

initial value of the global efficiency of the composite network 

considering the weight of passenger flow is higher than the 

initial value of the global efficiency of the unweighted 

composite network. It shows that the passenger flow 

strengthens the communication between the stations and 

makes the whole composite network more closely connected. 

Under the two attack strategies, the global efficiency of the 

unweighted composite network decreases faster than the 

global efficiency of the weighted composite network. It 

shows that in actual operation, the ability of the composite 

network that considers the weight of passenger flow to 

respond to attack is stronger than that of an unweighted 

composite network that only considers the topology, that is, 

the unweighted composite network is more vulnerable. 

C. Comparative Analysis of Connectivity of Composite 

Networks under Different Attack Strategies 

C.1. Maximum Connectivity of Composite Networks under 

Different Attack Strategies 

Based on the municipal railway-subway composite 

network structure shown in Fig. 3, the maximum connectivity 

changes of the composite network under the two strategies 

are analyzed as shown in Fig. 7. 

IAENG International Journal of Applied Mathematics, 52:3, IJAM_52_3_17

Volume 52, Issue 3: September 2022

 
______________________________________________________________________________________ 



 

Since random attacks have strong uncertainties, we take 

the maximum connectivity averages of the composite 

network under 100 random attacks. 

Random attack

Deliberate attack

 
Fig.7  The maximum connectivity change diagram of the composite network 

 

As can be seen from Fig. 7, the maximum connectivity of 

the composite network decreases with the increase of the 

number of failed nodes. The maximum connectivity of 

composite network decreases faster when deliberate attack is 

adopted. When the number of failed nodes is about 13, the 

maximum connectivity of the composite network has been 

reduced to half of that without failure. It shows that the 

failure of a node with a larger degree value will seriously 

affect the maximum connectivity of the composite network, 

and then affect the connectivity reliability of the composite 

network. When the number of failed nodes is 35 (11%), the 

maximum connectivity decreases to 0.023, and the composite 

network is close to collapse. 

When the number of failed nodes is less than 123 (40%), 

deliberate attack has a great impact on the maximum 

connectivity of the composite network, and then affects the 

connectivity reliability of the composite network. The reason 

is that the early stage of the deliberate attack makes the node 

with a large degree of failure, which is highly offensive to the 

network. When the number of failed nodes exceeds 123, the 

maximum connectivity of the composite network drops 

below 0.02, and the composite network is close to collapse. 

At this time, random attack has a great impact on the 

maximum connectivity of the composite network, and then 

affects the connectivity reliability of the composite network. 

The reason is that only the stations with the smallest degree 

are left after deliberate attack, while the random attack still 

retains a few important nodes with larger degrees. 

 

C.2. Connectivity from the Perspective of Passengers under 

Different Attack Strategies 

According to the shortest travel time between any two 

stations under normal operation conditions and the actual 

travel time of passengers obtained according to AFC data, the 

comprehensive prospect value of passengers’ overall 

tolerance to travel paths starting from a certain station under 

different tolerance coefficients is calculated, that is, the 

connectivity of each station. Thus, the connectivity of each 

station and the connectivity of the entire network under 

different tolerance coefficients are shown in Fig. 8 and Fig. 9. 

It is known that Mf=1000. 

 
Fig.8   The composite network connectivity under different tolerance 

coefficients 

 

As shown in Fig. 8, the connectivity of the composite 

network increases with the increase of the tolerance 

coefficient. The reason is that when the actual travel time that 

passengers can tolerate is greater than the shortest travel time, 

the greater the comprehensive prospect value of tolerability, 

the greater the connectivity of the composite network, and the 

stronger the connectivity reliability of the composite network. 

It shows that the connections between the stations are closer. 

 

 

A1

A3

A2

A4

A5
A6

 
Fig.9  The connectivity of stations under different tolerance coefficients 
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In Fig. 9, A1 indicates that the tolerance coefficient is 2.2, 

A2 indicates that the tolerance coefficient is 2.0, A3 indicates 

that the tolerance coefficient is 1.8, A4 indicates that the 

tolerance coefficient is 1.6, A5 indicates that the tolerance 

coefficient is 1.4, and A6 indicates that the tolerance 

coefficient is 1.2.  

It can be seen from Fig. 9 that the tolerance coefficient has 

a greater impact on station connectivity, and the greater the 

tolerance coefficient, the greater the connectivity of each 

station. Meanwhile, the stations with the strongest (weakest) 

connectivity are the strongest (weakest) under different 

tolerance coefficients. The connectivity of stations numbered 

283-309 is less affected by the tolerance coefficient, because 

these nodes are municipal railway stations, and the actual 

travel time of passengers is not much different from the 

shortest travel time, so that the station connectivity is less 

affected by the tolerance coefficient. 

The connectivity changes of the composite network under 

the two attack strategies are shown in Fig. 10. 

 
Fig.10  The connectivity change diagram of the composite network 

 

It can be seen from Fig. 10 that the greater the number of 

failed nodes, the weaker the connectivity of the composite 

network. Fig. 10, Fig. 5, and Fig. 6 generally show the same 

evolution law, indicating that the connectivity of the 

composite network described from the perspective of 

passengers has a similar network connectivity reliability 

measurement function to the global efficiency of the 

composite network. However, under deliberate attack, the 

connectivity of the composite network from the passenger 

perspective decreases more slowly than the global efficiency 

of the network, and the greater the number of failed nodes 

required to cause the network to collapse. Solving the global 

efficiency of the network requires calculating the shortest 

distance between all stations, which leads to more 

time-consuming calculations. Therefore, it is reasonable to 

propose the connectivity from the passenger perspective as a 

measure of the connectivity reliability of the composite 

network in the paper.  

By comparing Fig. 7 and Fig. 10, it can be seen that when 

dealing with the attack of the two strategies, the composite 

network connectivity of passenger perspective decreases at a 

slower rate than the maximum connectivity as the number of 

failed nodes increases. It shows that the connectivity 

measurement method from the passenger perspective 

proposed in this paper has better connectivity reliability than 

the maximum connectivity. 

D.  Sensitivity Analysis of the Prospect Theory 

It shows the impact of changes in the gain sensitivity 

coefficient α and the loss sensitivity coefficient β on the 

connectivity of the composite network in Fig. 11. 

 
Fig.11  Graph of the effect of α and β on the connectivity of the composite 

network 

 

It can be seen from Fig. 11 that when α remains unchanged, 

the connectivity of the composite network increases with the 

increase of β. When β is constant, with the increase of α, the 

connectivity of the composite network also increases, and the 

increase degree is greater. It shows that passengers are more 

sensitive to the loss of travel, thus reflecting the changes in 

the connectivity of the composite network. 

It shows the impact of changes in the gain sensitivity 

coefficient α and the tolerance coefficient A on the 

connectivity of the composite network in Fig. 12. 

 
Fig.12  Graph of the effect of α and A on the connectivity of the composite 

network 

 

It can be seen from Fig. 12 that when α is constant, the 

connectivity of the composite network increases first and 

then decreases with the increase of A. When A is 1.7, the 

composite network connectivity is maximum. When A is 

constant, with the increase of α, the connectivity of the 

composite network also increases, but the degree of increase 

is not obvious. It shows that under the influence of the gain 

sensitivity coefficient α, when the actual travel time of 

passengers is 1.7 times the shortest travel time, the overall 

connectivity of the composite network is the best. 

It shows the impact of changes in the loss sensitivity 

coefficient β and the tolerance coefficient A on the 

connectivity of the composite network in Fig. 13. 
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Fig.13  Graph of the effect of β and A on the connectivity of the composite 

network 

 

It can be seen from Fig. 13 that when β is constant, the 

connectivity of the composite network increases first and 

then decreases with the increase of A. When A is 1.75, the 

composite network connectivity is maximum. When A is 

constant, the composite network connectivity is almost 

constant with the increase of β. It shows that under the 

influence of the loss sensitivity coefficient β, when the actual 

travel time of passengers is 1.75 times the shortest travel time, 

the overall connectivity of the composite network is the best. 

In conclusion, the tolerance coefficient A plays a decisive 

role in the connectivity of the composite networks. 

 

E.  Identification of Important Stations in Composite Network 

After attacking the nodes of the unweighted composite 

network and the passenger flow weighted composite network, 

the nodes that have a greater impact on the global network 

efficiency and network connectivity are listed. It shows the 

changes in the global efficiency index of the multi-level rail 

transit composite network node after being attacked  in Table 

Ⅲ. 

It can be seen from Table Ⅲ that the No. 16 station, the No. 

32 station and the No. 47 station have a higher degree of 

importance in the multi-level rail transit unweighted 

composite network, and they are important transfer stations 

for the city’s urban rail transit sub-network lines. The No. 36 

station and the No. 113 station are the important stations 

connecting the urban rail transit sub-network and the 

municipal railway sub-network, and their failure has caused 

great damage to the entire composite network. 

 
TABLE Ⅲ 

CHANGES IN THE EFFICIENCY MEASUREMENT INDEX OF THE ATTACKED 

NETWORK OF COMPOSITE NETWORK NODES 

Numbers of nodes 

attacked in turn 
EL 

The rate of change 

of EL /% 
k S 

16 0.09224 - 6 24.52 
32 0.08513 7.7 6 7.79 

47 0.08292 2.6 6 36.65 
3 0.07805 5.87 5 14.29 

13 0.07492 4.01 5 25.7 

36 0.06726 10.23 5 3.44 
90 0.06415 4.62 5 14.83 

113 0.05779 9.92 5 7.86 

4 0.04631 19.85 4 11.25 

 

From the perspective of the global efficiency change rate 

of the network, the global efficiency change rate of the 

network is larger when all nodes with degrees of 5 and 6 fail. 

It means that the failure of a node with a larger degree is 

likely to make the entire composite network on the verge of 

collapse. Therefore, it is necessary to perform key 

maintenance on the sites listed in Table Ⅲ. The point strength 

value of a station with a larger degree value is not the largest, 

indicating that the actual passenger flow peak does not appear 

at the transfer station with the largest degree value, which is 

consistent with the actual travel situation of passengers. 

It shows the changes in the connectivity index of the 

multi-level rail transit composite network node after being 

attacked  in Table Ⅳ. 
TABLE Ⅳ 

CHANGES IN THE CONNECTIVITY MEASUREMENT INDEX OF THE ATTACKED 

NETWORK OF COMPOSITE NETWORK NODES 

Numbers of 

nodes attacked 

in turn  

SL 

The rate of 

change of 

SL /% 
F 

The rate of 

change of 

F /% 
k 

16 0.9968 - 0.4320 - 6 

32 0.9191 7.79 0.4274 1.06 6 

47 0.9159 0.35 0.4271 0.06 6 
3 0.9061 1.06 0.4259 0.3 5 

13 0.9029 0.36 0.4257 0.05 5 
36 0.8220 8.96 0.4219 0.88 5 

90 0.8188 0.39 0.4205 0.33 5 

113 0.7929 3.16 0.4176 0.69 5 

4 0.7896 0.41 0.4172 0.1 4 

 

It can be seen from Table Ⅳ that for nodes with a larger 

degree value, the change rate of connectivity of the 

composite network and the maximum connectivity of the 

composite network from the perspective of passengers are 

non-monotonic and fluctuate. By comparing the change rate 

of SL and F when the nodes are attacked by deliberate attack 

in turn, it can be found that the change rate of F is smaller 

than that of SL with each additional deliberate attack. It is 

proved again that the passenger perspective connectivity 

measurement method proposed in this paper has better 

connectivity reliability than the maximum connectivity when 

evaluating the composite network response to attacks. 

Ⅶ.  CONCLUSION 

By using complex network theory and introducing 

prospect theory, a multi-level rail transit composite network 

connectivity reliability evaluation model is constructed in the 

paper. Taking the actual data of the municipal 

railway-subway as an example, the connectivity reliability of 

multi-level rail transit composite network is analyzed. The 

following conclusions can be obtained. 

(1) In order to reflect the characteristics of passenger travel, 

considering the bounded rationality of passenger travel, the 

tolerance coefficient is proposed to describe the relative 

travel time of passengers. It is reasonable and effective to 

introduce the prospect theory to measure the connectivity of 

the composite network, so as to construct a multi-level rail 

transit composite network connectivity reliability evaluation 

model. 

(2) When dealing with different strategy attacks, the 

composite network that considers passenger flow weighting 

is more stable than the unweighted network that only 

considers the topology. That is, the unweighted composite 

network has weaker connectivity reliability than the 

passenger flow weighted network. 
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(3) The tolerance coefficient has a great influence on the 

connectivity of stations, and the connectivity of stations 

increases with the increase of the tolerance coefficient. 

However, when the tolerance coefficient exceeds a certain 

value, passengers will certainly be unable to bear too long 

travel time, and the connectivity of the station will be 

reduced. 

(4) The connectivity of the composite network from the 

passenger perspective requires more failed nodes than the 

global efficiency of the network to collapse the composite 

network and consumes less computing time. When 

measuring connectivity, the composite network connectivity 

from the passenger perspective is better than the maximum 

connectivity. Therefore, the network connectivity from the 

perspective of passengers proposed in the paper can be used 

as the measurement index to measure the connectivity 

reliability of composite network in practical engineering 

research. 

(5) Through the analysis of important sites identification, it 

is found that the failure of nodes with large degree value is 

easy to make the whole composite network on the verge of 

collapse. Therefore, important site maintenance is required. 

The disadvantage is that this paper assumes the tolerance 

coefficient value, and the tolerance coefficient after actual 

investigation is more meaningful for analyzing the 

connectivity reliability of composite network. Future 

research may consider the actual investigation of passenger 

tolerance coefficient. At the same time, the focus of future 

research can be taken into account such factors as upstream 

and downstream routes and departure frequency, so as to 

make the research more practical. 
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