
 

 

Abstract—This paper discusses the Cholesky decomposition 

in the symmetrized max-plus algebra. By using a link between 

the conventional algebra and the symmetrized max-plus 

algebra, we show the existence of the Cholesky decomposition 

of a matrix over the symmetrized max-plus algebra. A matrix 

has the Cholesky decomposition if it is symmetric and has 

principal leading submatrices whose determinant are positive. 

The results can be used to determine the solution of linear 

balance systems. 

 
Index Terms—symmetrized-max-plus-algebra, Cholesky-

decomposition, balance-linear-systems, link 

 

I. INTRODUCTION 

AX-plus algebra is the set        *  + where 

the basic operation is “max” (maximum) as addition 

and “plus” (usual addition) as multiplication, where   

is the set of all real numbers. Every non zero element has no 

an inverse under addition operation. It is the main difference 

between the max-plus algebra and conventional algebra. 

Consequently, it is difficult to form matrices decompositions 

in     , e.g the Cholesky decomposition.   

 The symmetrization  process can be done to solve the 

inverse problem in     . The result of the symmetrization 

process is called the symmetrized max-plus algebra and 

denoted by   [3]. Furthermore,      can be viewed as the 

class of positive or zero in  . By adopting the principle of 

extending the set of all natural numbers to the set of all 

integers to obtain inverse elements in  , we can obtain the 

elements called minus elements as inverse-like elements in 

 .  

 There are two mappings between the symmetrized max-

plus algebra and conventional algebra. That will be used as 

tools to solve some problems in  , including the    and 

singular value decomposition [2]. Schutter and Moor in [2] 

also showed that solving both decompositions by employing 

both mappings is easier than that without using both 

mappings as discussed in [1]. 
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 In [2], both mappings are used as a link between   and 

conventional algebra. By using the link, in order to get the 

decompositions in  , we first determine in conventional 

algebra a decomposition associated with a decomposition in 

 , and then we take it back to   as the decomposition we 

desire. The    and singular value decompositions obtained 

may be useful in discrete event systems.  

 In this paper, we determine the Cholesky decomposition 

of a matrix in   by using the link. Since      can be viewed 

as the class of positive or zero elements in  , the Cholesky 

decomposition in      can be viewed as the Cholesky 

decomposition in  . By using this method, as in 

conventional algebra, a computation to solve the linear 

balance systems       for   that can be factorized as a 

Cholesky decomposition is simpler than that using the 

cofactor and generalized inverse methods as discussed in [3] 

and [4], respectively.  

 The paper is organized in 6 sections. Section 1 explains 

the topic under study. Section 2 discusses the Cholesky 

decomposition in conventional algebra. Section 3 and 4 

discuss the symmetrized max-plus algebra and a link 

between the symmetrized max-plus algebra and 

conventional algebra, respectively. The main result will be 

discussed in Section 5 and 6, namely the existence of the 

Cholesky decomposition in   and its application to linear 

balance systems, respectively.  

II. THE CHOLESKY DECOMPOSITION IN 

CONVENTIONAL ALGEBRA 

 In conventional algebra, matrix decomposition plays a 

very important role. The Cholesky decomposition and other 

decomposition are important matrix computations, because 

it is often difficult to do this computations explicitly. A 

symmetric matrix       
 is said to be positive-definite if 

      , for every     
.    

Definition 1. [6] For a positive-definite symmetric matrix  

      , there is a unique lower triangular matrix 

       whose diagonal entries are positive such that 

     . The factorization       is called the Cholesky 

decomposition.  

Let   0
   

   
1. The Cholesky decomposition of   is  

  [ √  

 √ √ 
] [√

  √ 

 √ 
]. The Cholesky decomposition 

plays an important role in solving systems of linear 

equation. Given a system of linear equations      where 

      is the Cholesky decomposition of  . The solution 

of the system of linear equations, can be determined using 

the following steps: (i) determining the solution of the 

system of linear equations     , and (ii) determining the 
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solution of the system of linear equations      . By 

doing so, the computation process is easier and simpler.  

III. THE SYMMETRIZED MAX-PLUS ALGEBRA 

 In this section, we discuss max-plus algebra and 

symmetrized max-plus algebra referring to [3] and [2]-[3], 

respectively. Let   be the set of all real numbers and 

       *  +. The operations on       are defined as  

       *   +  
        

where    *    +    and   (  )     for all 

        . For example,        *   +    and 

         .  

 The mathematical system (        ) is called the max-

plus algebra, where the additive identity element (zero 

element) is      and the multiplicative identity element 

(unity element) is    . Furthermore,      is an 

idempotent commutative semi ring.  

 Every non zero element in max-plus algebra has no an 

additive inverse. Thus, in max-plus algebra, a 

symmetrization process is needed to solve the problem. This 

process is carried out similarly to the process of expanding 

the set of all natural numbers into the set all of integers. The 

symmetrization process in max-plus algebra is carried out to 

obtain minus elements as inverse-like elements. 

 Let             . The operations on     are defined 

as  

(   )  (   )  (       ) 

(   )  (   )  (               ) 

for all (   ) (   )    . The zero element is (   ), the 

unity element is (   ) and the zero element is an absorbent 

under the multiplication. The mathematical system of 
(      ) is an idempotent commutative semi ring and 

called the algebra of pairs.  

Definition 2. [3] Let   (   )    . 

1. absolute value of   is | |      

2. minus of   is    (   ) 

3. balance of   is      (  )  (| |  | | ).  

Theorem 3. [3] For all        then 

1.    (  )  (  )  

2.      (   )  

3.  (  )     

4.  (   )  (  )  (  )  

5.  (   )  (  )   .  

 In conventional algebra,       for all    , but for 

all     ,        (   ), except for   (   ). 

Thus, it is necessary to define a new relation to replace the 

relation  . 

Definition 4. [3] Let   (   )   (   )    . The 

balance relation (denoted by  ) in    is defined as     if 

and only if          

The balance relation is reflexive and symmetric but not 

transitive, thus, it is not an equivalence relation. For 

example, (   ) (   ) and (   ) (   ), but (   ) (   ). 

Therefore, it is not possible to define the quotient set of    

under the ralation  . New relation must be defined to solve 

this problem. 

Definition 5. [3] Let   (   )   (   )    . The 

relation   in    is defined as  

       if only if   {
(   ) (   )               

(   )  (   )              
 

 For all            (   ) except for   (   ). We 

have that   is an equivalence relation, thus, it is possible to 

define the quotient set of    under the relation  . There are 

three kinds of equivalence classes generated by   namely: 

(    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  *(   )    |   + called max-positive class, 

(    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  *(   )    |   + called max-negative class, 

(   )̅̅ ̅̅ ̅̅ ̅̅  *(   )    + called balanced class. 

Next, (   )̅̅ ̅̅ ̅̅ ̅ is called max-zero class and the quotient set of 

   under the relation   denoted by 
  

 ⁄   .  

 The mathematical system of (     ) is an idempotent 

commutative semiring, where the zero element is  ̅  (   )̅̅ ̅̅ ̅̅ ̅ 

and the unity element is  ̅  (   )̅̅ ̅̅ ̅̅ ̅. Furthermore,   is called 

the symmetrized max-plus algebra. Hereafter, the class of 

(    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and (   )̅̅ ̅̅ ̅̅ ̅̅  are written as  ,    and  

   only, respectively. The set of all max-positive or zero, 

max-negative or zero and balanced classes are denoted by 

  ,    and   , respectively. Meanwhile, the set of all 

signed element is denoted by         . Note that 

           ,          {(   )̅̅ ̅̅ ̅̅ ̅} and    
  

      which is the set of all elements that have 

multiplicative inverse.  

Theorem 6. [2] Let         . 

1. if     then   (  )     

2.  if     then   (  )     

3.  if     then   (  )     

For example,   (  )    ,   (  )    and 

  (  )    . 

Theorem 7. [2]  

1. For all        ,          if and only if         

2. For all       , if     then     

Theorem 8. (Weak Substitution) [3] For all         

and     , if      and       then      . 

 The operations on a matrix over   can be performed as 

that on a matrix in conventional algebra. For example, if 

  0
   
   1 and   0

   
  

1, then     0
   
   1, 

  0
   
   1  0

   
   1 and     0

   
    1. The 

zero matrix in      is , - where       for           

and            The identity matrix is , -       where 

      for     and       for    . The balance of two 

matrices is given in the following definition. 

Definition 9. [2] For all         ,       if and only if 

           for           and          . 

Let   0
   
   1,   [

   

(  )  
] and   0

   
  

1. 

Since           for         then      . Meanwhile, since 

          then    .   

IV. A LINK BETWEEN THE SYMMETRIZED MAX-

PLUS ALGEBRA AND CONVENTIONAL ALGEBRA  

 In this section, we discuss a link between the symmetrized 

max-plus algebra and conventional algebra referring to [2]. 

This link is used to solve problems in the symmetrized max-

plus algebra through solving in conventional algebra. The 
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link consists of two mappings as explained in Definition 10 

and  11.  

Definition 10. [2] A mapping   with domain of definition 

       
  is defined as 

 (     )  {

| |               

 | | | |           

  | |            

 

where          and     
 . 

Let   and   are functions. The function   is asymtotically 

equivalent to   in the neighborhood of   denoted by    

   .  

Definition 11. [2] Let  ( )     | |   in the neighbourhood 

of  . The reverse function   is defined as 

 ( )  {
| |                

 | |                
 

For example,   (     )      ,  (      )       and 

 (      )      for all     
 . Note that,  ( (     ))  

 ,  ( (      ))     and  ( (      ))      . If 

real valued-functions   and   are defined by  ( )       

and  ( )         , respectively, then  ( )   ( )  
    ,     and  ( )   ( )   . 

Theorem 12. [2] For all          

1. If       then there are             such that  

 (      )   (      )    (      ),       

2. If  there are             such that  

 (      )   (      )    (      )        
 then         

3. If       then there are              such that  

 (      )   (      )   (      ),      
  

4. If there are             such that 

 (      )   (      )    (      )     
  

  then         

Theorem 13. [2] For all       are matrix over   

1. If       then there are           such that 

 (      )   (      )    (      ),     

2. If there are          such that  

 (      )   (      )    (      ),      

 then         

3. If       then there are          such that 

 (      )   (      )    (      ),      

4. If there are          such that  

 (      )   (      )    (      ),      

  then         

The entries of a matrix over the symmetrized max-plus 

algebra will be expressed as the sum or series of exponential 

forms. Thus, we give definition of the kind of functions and 

their properties.  

Definition 14. [2] Let    be the set of real functions that are 

analytic and can be written as a (possibly infinite, but 

absolutely convergent) sum of exponentials in a 

neighborhood of   : 

   *     |         
  such that ,    )     

and  satisfies analytic in ,   ) and either  

       ( )  ∑    
    

   ,                 

for all    and            or 

       ( )  ∑    
    

    ,              

                    and where the series 

converges absolutely for every    +. 
 

Theorem 15. [2] Every function      is asymptotically 

equivalent to an exponential in neighborhood of     
      then ( )    

    ,     

 

Theorem 16. [2] If   and   belong to    then   ,    , 

   ,   ,    and | | also belong to    for any     and 

any    . Furthermore, if there is a real number   such 

that  ( )    for all     then the functions 
 

 
 and 

 

 
  

restricted to ,   ) also belong to   . If there is a real 

number   such that  ( )    for all     then the 

function √  restricted to ,   ) also belongs to   .  

V. THE EXISTENCE OF THE CHOLESKY 

DECOMPOSITION OF MATRIX OVER THE 

SYMMETRIZED MAX-PLUS ALGEBRA 

The main results of this paper are discussed in Section 5 

dan 6. In Section 5, we show the existence of the Cholesky 

decomposition in the symmetrized max-plus algebra by 

using the link between the symmetrized max-plus algebra 

and conventional algebra by employing a function class in 

   as in [2] and the conventional Cholesky decomposition as 

in [5]-[6]. In Section 6, we show the application of the 

Cholesky decomposition to the linear balance systems.  

Theorem 17. If        with    ( (       ))     for 

          then there are unit lower triangular matrices 

    (  )    and       (          )  (  )    

such that            

Proof. If there is an entry that is not a signed element in 

      , then we define  ̂  (  )    as  

 ̂   {
                  

     |   |                     
 

for all            . If  ̂          where  ̂ is a 

signed matrix, then           . Thus, we assume that 

  is a signed matrix.  

Since    ( (       ))     for            , then 

the   -decomposition of   is guaranteed to be exist [7]. 

Thus, there are a unity lower triangular matrix   (  )    

and an upper triangular matrix   (  )    such that 

         

  Let  ̃   (     ) with     
   ,     *    + for all 

           . Entries of  ̃ i.e  ̃  ( )      
|   | 

 
are 

belong to   . According to the steps in obtaining the    

decomposition, we have  ̃( )   ̃( ) ̃( ), for     
 ,  

which is the path of   -decomposition of  ̃.  

 Let  ̃( )      . ̃ ( )    ̃ ( )/ where  ̃ ( )   ̃  ( ) 

for        . Since  ̃ ( )   ̃  ( ) then    . ̃( )/   . 

If  ̃( )   ̃( ) ̃( )  then  ̃( )   ̃( )   ̃( ) and 

 ̃( )  is a unit upper triangular matrix. Thus,  ̃( )  
 ̃( ) ̃( )   ̃( ) ̃( ) ̃( )  for     

  is the path of 

     decomposition of  ̃.   
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If    ( ̃)     ( ̃) and     ( ̃ ) then 

           where     (  )    are unity lower 

triangular matricesand   (  )    is a diagonal matrix.   

 

Theorem 18. If        is a symmetric matrix with 

   ( (       ))     for           and the      

decomposition of   is            then    . 

Proof. Let  ̃( )   ̃( ) ̃( ) ̃( ) , for     
 , is the path 

of      decomposition of  ̃. Note that  ̃( ) is a unit 

lower triangular matrix, implying    . ̃( )/    and 

 ̃( ) ̃( ) ̃( )    ̃( )   ̃( ) ̃( ). The matrices on the 

left and right hand side of the last equation are symmetric, 

lower triangular and diagonal, respectively.   

 Since  ̃( ) is a diagonal matrix then  ̃( )   ̃( ) is also a 

diagonal matrix. Since the product of  ̃( )   ̃( ) is a unit 

lower triangular matrix,  ̃( )   ̃( ) must be a identity 

matrix. Thus,  ̃( )    ̃( ) ̃( ) ̃( )     ̃( ) ̃( ) ̃( )  is 

the path of      decomposition of  ̃, for     
 . Let 

   ( ̃) and    ( ̃) then we have            

where   (  )    is a unity lower triangular matrix and 

  (  )    is a diagonal matrix.    

 Suppose   0
  
  

1 is a symmetric matrix with 

   ( (       ))    . If    0
  
  

1 then  ̃    ̃ 
  

   

0
  

    
1 and  ̃    ̃  ̃   [ 

    

         ] where  ̃  

 ̃ ̃. Since  ̃ is a unity triangular matrix whose entries 

belong to   , then inverse of  ̃ is guaranteed to be exist. It 

yields  ̃   ̃( ̃  )
 

  ̃( ̃  )
 

 0
   
         1 where 

 ̃( ̃  )
 
is a diagonal matrix and  ̃    ̃  , for        

Therefore,  ̃   ̃ ̃ ̃  where  ̃  0
   
         1 

 0 
    

     1,     . Let    ( ̃) and    ( ̃). Then 

  0
  
  

1 and   0
  
   

1 where        

0
  
   1  0

  
  

1    . 

 

Theorem 19. (The Cholesky Decomposition in  )  

If        is a symmetric matrix with    ( (       ))  

   * + for          , then there is a lower triangular 

matrix   (  )    whose diagonal entries        * + 
for          , such that          

Proof. By Theorem 18, since   is a symmetric matrix and 

   ( (       ))     * + for          , then there 

are a unity lower triangular matrix   (  )    and a 

diagonal matrix       (          )  (  )    such 

that           . We assume that   is a signed matrix.  

 Let  ̃   (     ) with     
   ,       for all 

          . The entries in  ̃ are  ̃  ( )      
     for all 

    
 , where     *    + and     |   |       for all 

           . According to the steps in obtaining the 

     decomposition, we get  ̃( )   ̃( ) ̃( ) ̃( ) , for 

    
 , which is the path of the     decomposition of  ̃. 

Note that  ̃( ) is a symmetric matrix with 

   ( (       ))    for           and  ̃( ) is a unity 

lower triangular matrix. Thus, the value of diagonal entries 

of  ̃( ) must be positive.  

 Let   ̃( )   ̃( ) ̃ ( ) with  ̃ ( ) is a diagonal matrix 

whose diagonal entries are the square roots of the diagonal 

entries of  ̃( ). Thus, the diagonal entries of  ̃ ( ) is also 

positive. Note that  ̃( ) is a unity lower triangular matrix 

and  ̃ ( ) is a diagonal matrix whose diagonal entries are 

positive. Thus,  ̃( ) is a lower triangular matrix whose 

diagonal entries are positive. It yields  

 ̃( )   ̃( ) ̃( ) ̃( )  . ̃( ) ̃ ( )/ . ̃( ) ̃ ( )/
 

, 

for     
 . If  ̃( )  . ̃( ) ̃ ( )/ then  ̃( )   ̃( ) ̃( )  

is the path of the Cholesky decomposition of  ̃( ). Let 

   ( ̃). We have          where   (  )    is a 

lower triangular matrix and        * + for   
         .   

 It is difficult to determine the Cholesky decomposition of 

a matrix over      in the      sense, because there is no 

additive inverse for every element in     , except for the 

zero element. If the Cholesky decomposition in      is 

carried out in  , then the problem concerning the absence of 

the additive inverse in      can be solved by using the 

minus operator. Since      is a proper subset of   then 

(    )
    is also a proper subset of     . Thus, the 

Cholesky decomposition of a matrix over      is a special 

case of Theorem 19, and can be determined by a process in 

  through the link as defined in Definition 10 and 11.  

Corollary 20 (The Cholesky Decomposition in     )  

If   (    )
         is a symmetric matrix with 

   ( (       ))     * + for           then there 

is a lower triangular matrix   (  )    whose diagonal 

entries        * +            such that          

Proof. The proof of this theorem is analogous to that of 

Theorem 19.   

 Let   0
  
  

1  (    )
         is a symmetric 

matrix with    ( (       ))     * + for      . If 

   0
  
  

1 then  ̃( )   (      )  0      

      1, for 

    
 . Since  ̃   ̃   ̃( ) ̃ 

  we have  ̃   ̃ 
  

 

0
  
   

1,  ̃   ̃  ̃  [ 
    

         ], where  ̃   ̃ ̃. 

Note that  ̃ is a unity lower triangular matrix. Thus, inverse 

of  ̃ is guaranteed to be exist and  ̃   ̃( ̃  )
 

  ̃( ̃  )
 

 

0
   
         1   ̃. Since  ̃  0

   
         1 then 

 ̃ 0
   
    1,    . The path of      decomposition of 

 ̃ is  ̃   ̃ ̃ ̃  with  ̃  0
  
   

1.   

 Since  ̃  [√
   

 √       
], we have  ̃   ̃ ̃   

[
√   

  √  √       
] which is a lower triangular matrix 

whose diagonal entries are positive. Thus, the path of the 

Cholesky decomposition of  ̃ is  ̃   ̃ ̃  with  ̃  

[
√   

  √  √       
]  [ 

 

 
  

 
 

 
  

 

 
 
],    . Let    ( ̃). 

IAENG International Journal of Applied Mathematics, 52:3, IJAM_52_3_18

Volume 52, Issue 3: September 2022

 
______________________________________________________________________________________ 



 

We have   [

 

 
 

 

 

 

 

], where      0
  
  

1        . 

The cholesky decomposition of 0
  
  

1  (    )
    can be 

determined in terms of  .  

 Let   0
  
   1       with     0

  
  

1   . The 

Cholesky decomposition of    is          with   

[

 

 
 

 

 

 

 

]. 

VI. APPLICATION OF THE CHOLESKY 

DECOMPOSITION IN THE LINEAR BALANCE 

SYSTEMS 

 The linear balance systems in   plays a similar role to the 

system of linear equations in conventional algebra. The 

linear balance system in   can be also used to solve a 
system of linear equations in      which can not be 
solved in     .  
 Suppose that       is a linear balance systems in the 

symmetrized max-plus algebra, where the Cholesky 

decomposition of   can be determined. In this Section, we 

show that the use of using the Cholesky decomposition is 

simpler than that of cofactor and generalized inverse 

methods as in [3]-[4], respectively to compute the solution 

for the linear balance systems      .  

Theorem 21. [3] Let       with    ( )     * +, 
     and    ( )    (  ) . Then there is a unique 

solution of       and it satisfies 

    (   ( )   )     ( )   

Theorem 22. [4] Let       . If   is any matrix satisfying 

       , then       has a solution if and only if 

       , in which case the most general solution is 

      (      )    

where   is arbitrary. 

Algorithm 23. Let the linear balance systems       

where        is a symmetric matrix and 

   ( (       ))     * + for          . If the 

Cholesky decomposition of   is          then the 

solution of the linear balance systems       can be 

solved by taking the following steps: 

1.  Solving the linear balance systems        , where   

is a lower triangular matrix. For   (  ) , supposing 

    . 

2. Solving the linear balance systems          , where 

   is an upper triangular matrix. Supposing       . 

3. If     (  ) , then for all   with      is a solution.  

 If     (  )   then      is a solution. 

Let       is a linear balance systems where the 

Cholesky decomposition of   can be determined. By using 

Algorithm 23, the computation to determine solution of the 

linear balance systems becomes easier and simpler than that 

by using Theorem 21 and Theorem 22. Since   is a a lower 

triangular matrix, it only requires a back weak-substitution 

process to solve the solution of the linear balance systems.  

 Let 0
  
  

1  0
  

  
1  0

 
  

1 is a linear balance system. 

Note that the Cholesky decomposition of 0
  
  

1 is 

0
  
  

1       with   [

 

 
 

 

 

 

 

]. By using Algorithm 23, 

the solution of [

 

 
 

 

 

 

 

]  0
  

  
1  0

 
  

1 is    
 

 
. Then, by 

doing a back weak-substitution,     
 

 
. Furthermore, the 

solution of [

 

 

 

 

 
 

 

]  0
  

  
1  [

 

 

 
 

 

] is       . Then, by 

doing a back weak-substitution, we have     . Note that 

   0
 

   
1  (  ) . Thus, every   that satisties 

  0
 

   
1 is solution of the linear balance systems 

0
  
  

1  0
  

  
1  0

 
  

1. 

 Let       is a linear equation systems in the max-

plus algebra, where the Cholesky decomposition of   can be 

determined in        . Often times, we can not 
determine the solution of the linear equation systems 

      in the max-plus algebra. Then, we can view the 
linear equation systems       in      as the linear 
balance systems        in  .  

VII. CONCLUSION 

 The existence of Cholesky decomposition of matrices 

over the symmetrized max-plus algebra can be determined 

by using a link between conventional algebra and the 

symmetrized max-plus algebra. This is a class of functions 

that are analytic and can be written as sums or series of 

exponentials in neighborhood of  . The Cholesky 

decomposition of matrices over the max-plus algebra can be 

determined as a special case of the Cholesky decomposition 

in the symmetrized max-plus algebra. The Cholesky 

decomposition can be used to simplify the computations in 

determining the solution of the linear balance systems. This 

is a consequence of the form of matrix in the Cholesky 

decomposition which is a triangular matrix.  
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