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The Cholesky Decomposition of Matrices over
the Symmetrized Max-Plus Algebra

Suroto, Diah Junia Eksi Palupi, and Ari Suparwanto

Abstract—This paper discusses the Cholesky decomposition
in the symmetrized max-plus algebra. By using a link between
the conventional algebra and the symmetrized max-plus
algebra, we show the existence of the Cholesky decomposition
of a matrix over the symmetrized max-plus algebra. A matrix
has the Cholesky decomposition if it is symmetric and has
principal leading submatrices whose determinant are positive.
The results can be used to determine the solution of linear
balance systems.

Index Terms—symmetrized-max-plus-algebra,
decomposition, balance-linear-systems, link

Cholesky-

I. INTRODUCTION

AX-plus algebra is the set Ry,x = R U {—o} where

the basic operation is “max” (maximum) as addition

and “plus” (usual addition) as multiplication, where R
is the set of all real numbers. Every non zero element has no
an inverse under addition operation. It is the main difference
between the max-plus algebra and conventional algebra.
Consequently, it is difficult to form matrices decompositions
in Rp,ax, €.9 the Cholesky decomposition.

The symmetrization process can be done to solve the
inverse problem in Ry,.x. The result of the symmetrization
process is called the symmetrized max-plus algebra and
denoted by S [3]. Furthermore, R,,.x can be viewed as the
class of positive or zero in S. By adopting the principle of
extending the set of all natural numbers to the set of all
integers to obtain inverse elements in Z, we can obtain the
elements called minus elements as inverse-like elements in
S.

There are two mappings between the symmetrized max-
plus algebra and conventional algebra. That will be used as
tools to solve some problems in S, including the QR and
singular value decomposition [2]. Schutter and Moor in [2]
also showed that solving both decompositions by employing
both mappings is easier than that without using both
mappings as discussed in [1].
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In [2], both mappings are used as a link between S and
conventional algebra. By using the link, in order to get the
decompositions in S, we first determine in conventional
algebra a decomposition associated with a decomposition in
S, and then we take it back to S as the decomposition we
desire. The QR and singular value decompositions obtained
may be useful in discrete event systems.

In this paper, we determine the Cholesky decomposition
of a matrix in S by using the link. Since R, can be viewed
as the class of positive or zero elements in S, the Cholesky
decomposition in R,,, can be viewed as the Cholesky
decomposition in S. By using this method, as in
conventional algebra, a computation to solve the linear
balance systems A ® xVb for A that can be factorized as a
Cholesky decomposition is simpler than that using the
cofactor and generalized inverse methods as discussed in [3]
and [4], respectively.

The paper is organized in 6 sections. Section 1 explains
the topic under study. Section 2 discusses the Cholesky
decomposition in conventional algebra. Section 3 and 4
discuss the symmetrized max-plus algebra and a link
between the symmetrized max-plus algebra and
conventional algebra, respectively. The main result will be
discussed in Section 5 and 6, namely the existence of the
Cholesky decomposition in § and its application to linear
balance systems, respectively.

Il. THE CHOLESKY DECOMPOSITION IN
CONVENTIONAL ALGEBRA

In conventional algebra, matrix decomposition plays a
very important role. The Cholesky decomposition and other
decomposition are important matrix computations, because
it is often difficult to do this computations explicitly. A
symmetric matrix A € R™" is said to be positive-definite if
xTAx > 0, for every x € R™.

Definition 1. [6] For a positive-definite symmetric matrix
A e R™™, there is a unique lower triangular matrix
G € R™™ whose diagonal entries are positive such that
A = GGT. The factorization A = GGT is called the Cholesky
decomposition.

Let A = [_22 _52] The Cholesky decomposition of A is

NV ] [«/Z —ﬁ] .
A= [ . The Cholesky decomposition
vz villo 3 y decomp

plays an important role in solving systems of linear
equation. Given a system of linear equations Ax = b where
A = GGT is the Cholesky decomposition of A. The solution
of the system of linear equations, can be determined using
the following steps: (i) determining the solution of the
system of linear equations Gy = b, and (ii) determining the
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solution of the system of linear equations G'x = y. By
doing so, the computation process is easier and simpler.

1. THE SYMMETRIZED MAX-PLUS ALGEBRA

In this section, we discuss max-plus algebra and
symmetrized max-plus algebra referring to [3] and [2]-[3],
respectively. Let R be the set of all real numbers and
Rpax = R U {—o0}. The operations on R, are defined as

a @ b = max{a, b}
a@®@b=a+b
where max{a,—o}=a and a+ (—w)=—ofor all
a,b € Ry.x. For example, 2@ 1 =max{2,1} =2 and
2Q1=2+4+1=3.

The mathematical system (R,.x,P,&) is called the max-
plus algebra, where the additive identity element (zero
element) is € = —co and the multiplicative identity element
(unity element) is e =0. Furthermore, R, ., IS an
idempotent commutative semi ring.

Every non zero element in max-plus algebra has no an
additive  inverse. Thus, in max-plus algebra, a
symmetrization process is needed to solve the problem. This
process is carried out similarly to the process of expanding
the set of all natural numbers into the set all of integers. The
symmetrization process in max-plus algebra is carried out to
obtain minus elements as inverse-like elements.

Let Pc & R .x X Ry.x. The operations on P. are defined
as

(@)@ (cd)=(@®cbdd)
@h)®(c,d)=(aQcO®bPR®da®dDbQc)
for all (a,b),(c,d) € P;. The zero element is (&, &), the
unity element is (0, £) and the zero element is an absorbent
under the multiplication. The mathematical system of
(P;,®,Q) is an idempotent commutative semi ring and

called the algebra of pairs.

Definition 2. [3] Letu = (a, b) € P;.

1. absolute value of uis [ulg =a @ b
2.minusofuis®u = (b,a)

3.balance of uisu' = u @ (O u) = (lulg, lulg).

Theorem 3. [3] For all u, v € P then
lLu'=©uw =)

2u@Qv =wQ®v)
3.6(6uw)=u
4bowdv)=u)d©v)
50uwu®v)=(0u) .

In conventional algebra, x —x = 0 for all x € R, but for
all ueP, uBu=u"#(§E&), except for u=(§€).
Thus, it is necessary to define a new relation to replace the
relation =.

Definition 4. [3] Let u=(a,b),v=(c,d)€ P;. The
balance relation (denoted by V) in P: is defined as uVv if
andonlyif a@d=b&¢c

The balance relation is reflexive and symmetric but not
transitive, thus, it is not an equivalence relation. For
example, (4,3)V(4,4) and (4,4)V(3,4), but (4,3)¥(3,4).
Therefore, it is not possible to define the quotient set of P
under the ralation V. New relation must be defined to solve
this problem.

Definition 5. [3] Let u=(a,b),v = (c,d) € Ps.
relation B in P¢ is defined as

The

(a,b)V(c,d), if a+=bandc #d
(a,b) = (¢,d), ifa=borc=d

Forallu € P, u© uB (&, E) except foru = (€, €). We
have that B is an equivalence relation, thus, it is possible to
define the quotient set of P; under the relation B. There are
three kinds of equivalence classes generated by B namely:

(w, —0) = {(w, x) € Pc|x < w} called max-positive class,
(—oo,w) = {(x,w) € P¢|x < w} called max-negative class,
(w,w) = {(w,w) € P} called balanced class.

Next, (€, ) is called max-zero class and the quotient set of

P under the relation B denoted by Pf/B “S.

The mathematical system of (S,®,&) is an idempotent
commutative semiring, where the zero element is € = (€, €)
and the unity element is € = (0, £). Furthermore, S is called
the symmetrized max-plus algebra. Hereafter, the class of
(w, —), (—oo,w) and (w,w) are written as w, © w and
w* only, respectively. The set of all max-positive or zero,
max-negative or zero and balanced classes are denoted by
$®, §© and S°, respectively. Meanwhile, the set of all
signed element is denoted by SY =S$® US®. Note that
SPuUSPuUS =S, SPNSOns ={(E&E} and SY=
SY\S® which is the set of all elements that have
multiplicative inverse.

wB v if only if {

Theorem 6. [2] Let x,y € Ry ax-
Lifx>ythenx® (By) =x

2. ifx<ythenx® (By) =6y
3. ifx=ythenx® (By) =x"

For example, 2@ (63) =63,

3B (O3)=3".

Theorem 7. [2]
1.Foralla,b,ceS, a©&cVbifandonlyifaVb @ c
2.Foralla,b €SY,ifaVvbthena = b

Theorem 8. (Weak Substitution) [3] For all a,b,c €S
andx € §Y, if xVa and ¢ ® xVb then ¢ ® aVb.

3d(62)=3 and

The operations on a matrix over S can be performed as
that on a matrix in conventional algebra. For example, if

_[2 o1 _©e2 3 e
A—Lg ]and:—e[s ]thenAEBeBLL—[%
4®[8 ] [ ]andA®B [5, 6,].The
zero matrlx in ™M is [8] where £;; = Efori=1.2,..,m
and j = 1,2, ...,n. The identity matrix is [e] € $™*™ where

e;j=efori=jande; =& fori=j The balance of two
matrices is given in the following definition.

Definition 9. [2] For all A,B € S™*", AV B if and only if
aij v bl} fori = 1,2, e, m andj = 1,2, e n

Let A= [2 9,1] B = [( 6)" 2]and C—[z 91]

Since a;; V b;; for i,j = 1,2 then AV B. Meanwhile, since
a,, ¥ C;, then A¥C.

IV. ALINKBETWEEN THE SYMMETRIZED MAX-
PLUS ALGEBRA AND CONVENTIONAL ALGEBRA

In this section, we discuss a link between the symmetrized
max-plus algebra and conventional algebra referring to [2].
This link is used to solve problems in the symmetrized max-
plus algebra through solving in conventional algebra. The
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link consists of two mappings as explained in Definition 10
and 11.

Definition 10. [2] A mapping F with domain of definition
S X Ry X R is defined as
lule®, if a € S®
F(a,u,s) =3 —|ule!”®s,if a € $©
,ue"l'@S ,ifaes’
where a € S, € Ry and s € R¢.

Let f and g are functions. The function f is asymtotically
equivalent to g in the neighborhood of c denoted by ~g

X — O,

Definition 11. [2] Let f(s) ~ ve!®®s in the neighbourhood
of 0. The reverse function R is defined as

lalg ,if v positive
© lalg ,if v negative

For example, F(2,1,5) =e?*, F(©21,s) =—e?*and
F(2°,1,5) = e?for all s € R§. Note that, R(F(2,1,s)) =
2, R(F(©21,5)=62and R(F(2",1,5))=2=2". If
real valued-functions f and g are defined by f(s) = 4e%s
and g(s) = 4e® + e®, respectively, then f(s) ~ g(s) ~
4e%5, s » oo and R(f) = R(g) = 2.

Theorem 12. [2] For all a,b,c € S
1. If a @ b = c then there are ug, up, e € R, such that
T(a,,ua,s) +~(F(b'.ub's) ~ T(C,‘U.C,S), S = @
2. If there are pg, pp, 1 € Ry such that
T(a,,ua,s) +~(F(b'.ub's) ~ T(C,‘U.C,S), S =@
thena @ b Vc
3. Ifa ® b = c then there are g, up, 4. € R, such that
F(a,tq,s) X F(b, piy, ) = F(c,Ue,S), S € RG
4. If there are ug,, up, U, € R, such that
F(a, piq,s) X F(b, iy, s) = F(c,Ue,S), 5 € RF
thena @ bVc

Theorem 13. [2] For all 4, B, C are matrix over S
1.1f A@ B = C then there are M,, Mg, M. such that
F(A,My,s) + F(B,Mg,s) ~F(C,M¢,s),s > ©
2. If there are My, Mg, M such that
F(A,My,s) + F(B,Mg,s) ~F(C,M,s),s >
thenA@ BVC
3.1f A ® B = C then there are M,, Mg, M such that
F(A,My,s) X F(B,Mg,s) ~F(C,M¢,s),s -
4. If there are M, Mg, M such that
F(A,My,s) X F(B,Mg,s) ~F(C,M.,s),s > o
thenAQ BV C

() =

The entries of a matrix over the symmetrized max-plus
algebra will be expressed as the sum or series of exponential
forms. Thus, we give definition of the kind of functions and
their properties.

Definition 14. [2] Let S, be the set of real functions that are
analytic and can be written as a (possibly infinite, but
absolutely convergent) sum of exponentials in a
neighborhood of oo :
Se={ffA>RIAC R 3IK € R} such that [K,0) < A
and fsatisfies analytic in [K, o) and either
Vx = K, f(x) =Y, a;e%", neEN,a; € Ry, a; € R
forall ianday > a; > -+ > a, or
Vx 2 K, f(x) =X, a;e® , a; ERy, q; ER,

a; > a;q,lim,a; =& and where the series

converges absolutely for every x > K}.

Theorem 15. [2] Every function f € S, is asymptotically
equivalent to an exponential in neighborhood of oo :
f €S, then (x)~age®* ,x -

Theorem 16. [2] If f and g belong to S, then pf, f + g,
f—g, fg, f* and |f| also belong to S, for any p € R and
any [ € N. Furthermore, if there is a real number P such

that f(x) # 0 for all x > P then the functions % and %

restricted to [P, ) also belong to S,. If there is a real
number Q such that f(x) >0 for all x > Q then the

function ,/f restricted to [Q, o) also belongs to S,.

V. THE EXISTENCE OF THE CHOLESKY
DECOMPOSITION OF MATRIX OVER THE
SYMMETRIZED MAX-PLUS ALGEBRA

The main results of this paper are discussed in Section 5
dan 6. In Section 5, we show the existence of the Cholesky
decomposition in the symmetrized max-plus algebra by
using the link between the symmetrized max-plus algebra
and conventional algebra by employing a function class in
S, as in [2] and the conventional Cholesky decomposition as
in [5]-[6]. In Section 6, we show the application of the
Cholesky decomposition to the linear balance systems.

Theorem 17. If A € S™™ with det(A(1:k,1:k)) ¥ & for
k = 1,2,...,n then there are unit lower triangular matrices
LM e (SY)™™ and D = diag(d,,dy, ..., d,) € (§V)™™
suchthat AVL ® D ® MT

Proof. If there is an entry that is not a signed element in
A € S then we define 4 € (S$¥)™" as

a;j, if a;; signed
a;; = { |aij|@ ,if a;; non signed
for all i,j =1,2,..,n. If AVL® D ® M" where 4 is a

signed matrix, then AVL ® D ® MT. Thus, we assume that
A is a signed matrix.

Since det(A(1:k,1:k)) ¥ € for k = 1,2,...,n — 1, then
the LU-decomposition of A is guaranteed to be exist [7].
Thus, there are a unity lower triangular matrix L € (§¥)™"
and an upper triangular matrix U € ($Y)™" such that
AVLQQU

Let A = F(4,M,) with M € R}, m;; € {—1,1} for all

i,j=12,..,n Entries of 4 ie a;(s) =m,-]-e|a”|®sare
belong to S.. According to the steps in obtaining the LU
decomposition, we have A(s) = L(s)U(s), for s € R},
which is the path of LU-decomposition of A.

Let D(s) = diag (d; (s), ..., d,(s) ) where d;(s) = 1 (s)
for i = 1,...,n. Since d;(s) = 1i;;(s) then det (5(5)) # 0.
If T(s) =D(s)M(s)T then M(s)T = D(s)"'U(s) and
M(s)T is a unit upper triangular matrix. Thus, A(s) =

L(s)U(s) = L(s)D(s)M(s)T for s € R§ is the path of
LDMT decomposition of A.

Volume 52, Issue 3: September 2022



TAENG International Journal of Applied Mathematics, 52:3, [JAM 52 3 18

If L=R(L), D=RMD) and MT =R(M") then
AVLQ®DQ® MT where L,M € (SV)™™" are unity lower
triangular matricesand D € (S¥)™™ is a diagonal matrix. m

Theorem 18. If A€ S™™ is a symmetric matrix with
det(A(1:k, 1:k)) ¥ € for k=12,..,n and the LDMT
decompositionof AiSAVL ® D ® MT thenL = M.

Proof. Let A(s) = L(s)D(s)M(s)T, for s € Ry, is the path
of LDMT decomposition of A. Note that M(s) is a unit
lower triangular matrix, implying det (M(s)) #0 and
M(s)A(s)M(s)™T = M(s)"*L(s)D(s). The matrices on the
left and right hand side of the last equation are symmetric,
lower triangular and diagonal, respectively.

Since D(s) is a diagonal matrix then M (s)~*L(s) is also a
diagonal matrix. Since the product of M(s)~*L(s) is a unit
lower triangular matrix, M(s)~*L(s) must be a identity
matrix. Thus, A(s) = M(s)D(s)M(s)" = L(s)D(s)L(s)7 is
the path of LDLT decomposition of A, for s € R{. Let
L=R(L) and D = R(D) then we have AVLQ® D Q® L"
where L € (S¥)™™ is a unity lower triangular matrix and
D € (SY)™™ is a diagonal matrix. m

Suppose A=L1L is a symmetric matrix with

det(A(1:1,1: D) ¥ €. If M, = 1] then I = i1, " =

[ﬁs 0] and T = M,A [0 ]whereA—

LU. Since L is a unity trlangular matrix whose entries
belong to S, then inverse of L is guaranteed to be exist. It

yields I1A(L) = 0(1)" = [eos

7s+ 5s

7S+ 55] where

U(E‘l)Tis a diagonal matrix and d; = @, for i =1,2

i FRIT = _ e’ 0
Therefore, A =LDL" where D= [0 75 4 eSS]
~[ 75], s > oo, Let L = R(L) and D = R(D). Then
— T —
L= [3 0] and D = [8 o 7] where LIDRL

1 4701 4] _
b 7170y sl=2-
Theorem 19. (The Cholesky Decomposition in S)

If A € S™™ is a symmetric matrix with det(A(1:k,1:k)) €
§® —{&} for k = 1,2, ...,n, then there is a lower triangular
matrix B € (S¥V)™" whose diagonal entries b; € S® — {£}
fori =1,2,...,n,suchthat AVB ® BT

Proof. By Theorem 18, since A is a symmetric matrix and
det(A(1:k,1:k)) € S® — {£} for k = 1,2, ..., n, then there
are a unity lower triangular matrix L € (§Y)™™" and a
diagonal matrix D = diag(d,, d,, ..., d,) € (S¥)™™ such
that AVL ® D ® LT. We assume that A is a signed matrix.

Let A=F(4,N,) with NeRP" n;=1 for all
i,j =1,2,...n. The entries in A4 are @;;(s) = y;;eU° for all
s € R§, where y;; € {-1,1} and ¢;; = |CU|€B € Ryyax for all
i,j =12,..,n. According to the steps in obtaining the
LDLT decomposition, we get A(s) = L(s)D(s)L(s)7, for
s € R}, which is the path of the LDL"decomposition of A.
Note that A(s) is a symmetric matrix with
det(A(1:k,1:k)) > 0 for k = 1,2,...,n and L(s) is a unity

lower triangular matrix. Thus, the value of diagonal entries
of D(s) must be positive.

Let B(s) = L(s)D'(s) with D’(s) is a diagonal matrix
whose diagonal entries are the square roots of the diagonal
entries of D(s). Thus, the diagonal entries of D’(s) is also
positive. Note that L(s) is a unity lower triangular matrix
and D'(s) is a diagonal matrix whose diagonal entries are
positive. Thus, B(s) is a lower triangular matrix whose
diagonal entries are positive. It yields

i) = LODELE) = (I)D'®) (L)) |
for s € RY. If B(s) = (L(s)D'(s) ) then A(s) = B(s)B(s)"
is the path of the Cholesky decomposition of A(s). Let
B = R(B). We have AVB ® BT where B € ($V)™" is a

lower triangular matrix and b; € S® — {€} for i=
1,2,...,n.m

It is difficult to determine the Cholesky decomposition of
a matrix over R, in the R, sense, because there is no
additive inverse for every element in ., except for the
zero element. If the Cholesky decomposition in Rp.x IS
carried out in S, then the problem concerning the absence of
the additive inverse in R, can be solved by using the
minus operator. Since Ryax iS @ proper subset of S then
(Rppa)™™ is also a proper subset of $™*™. Thus, the
Cholesky decomposition of a matrix over R, IS a special
case of Theorem 19, and can be determined by a process in
S through the link as defined in Definition 10 and 11.

Corollary 20 (The Cholesky Decomposition in R,ax)

If A€ (Rpa)™™ c S$™™ is a symmetric matrix with
det(A(1:k,1:k)) € S® — {€} for k = 1,2,...,n then there
is a lower triangular matrix B € (SV)™" whose diagonal
entries b; € S® — {€},i = 1,2, ...,nsuchthat AVB ® BT

Proof. The proof of this theorem is analogous to that of
Theorem 19. m

Let A= B é € (Rpa)™™ € ™™ is a symmetric
matrix with det(A(1:k,1:k)) € S® —{&} for k = 1,2. If

1 1 - es eZs
M=) | ten ) =F@AMys) =[5 ] for
sERY. Since M, =1,— Vel we have L=, '=

1 01 ~5_ 7 5_[e° e?s i T
s 1) U=ihi= [0 oty gss| where A=LD.
Note that L is a unity lower triangular matrix. Thus, inverse
of L is guaranteed to be exist and L~ 4(I)" = U(Z‘l)T

[0 _ezso+ 653] =D. Since D = [eos 35 be 55] then
D~

[0 55|t S 7 The path of LDL™ decomposition of

AisA=1D LTWich=[els i

. ~ \es ] ~ -~
Since D' = [ we have B =LD'=
0 VeS — e35
| Ves 0 _ which is a lower triangular matrix
_eS1/es 1/eSS — 635_

whose diagonal entries are positive. Thus, the path of the
Cholesky decomposition of A is A= BBT with B =

Ves 0 | [ez 0 ]
~ ,s > oo, Let B =R(B).
_es\/; 1/eSS _ 635_ ez egs ( )
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We have B = , wWhere B®BT=[; é = AVA.

NWN |-

Nl 0

The cholesky decomposition of [; é € (Rpax)™™ can be
determined in terms of S.

Let P:[; :,]esnxn with PVB §]=A. The

Cholesky decomposition of P is PVB ® BT with B =
&

NIWN R
N |

VI. APPLICATION OF THE CHOLESKY
DECOMPOSITION IN THE LINEAR BALANCE
SYSTEMS

The linear balance systems in S plays a similar role to the
system of linear equations in conventional algebra. The
linear balance system in S can be also used to solve a
system of linear equations in R, which can not be
solved in Ry ,x-

Suppose that A @ xVb is a linear balance systems in the
symmetrized max-plus algebra, where the Cholesky
decomposition of A can be determined. In this Section, we
show that the use of using the Cholesky decomposition is
simpler than that of cofactor and generalized inverse
methods as in [3]-[4], respectively to compute the solution
for the linear balance systems A @ xVb.

Theorem 21. [3] Let A € S™"with det(4) € S —{€},
b € S™ and cof(4)T ® b € ($V)™. Then there is a unique
solution of A ® xVb and it satisfies

x V (cof(A)T @ b)T ® det(4)™ !

Theorem 22. [4] Let A € S™™. If X is any matrix satisfying

AR X Q AVA, then A ® xVb has a solution if and only if

A ® X @ bVb, in which case the most general solution is
x=XQbD (I, OXRBA)®h

where h is arbitrary.

Algorithm 23. Let the linear balance systems A ® xVb

where A €S™™ is a symmetric matrix and

det(A(1:k,1:k)) € S® —{€} for k=12,..,n. If the

Cholesky decomposition of 4 is AVB ® BT then the

solution of the linear balance systems A @ xVb can be

solved by taking the following steps:

1. Solving the linear balance systems B @ y V b, where B
is a lower triangular matrix. For y € (S§¥)", supposing
yVyo.

2. Solving the linear balance systems BT &® x V y,, where
BT is an upper triangular matrix. Supposing xVx, .

3. If x4 € (S§Y)", then for all x with xVx, is a solution.

If x, & (SY)™, then x = x, is a solution.

Let A®xVb is a linear balance systems where the
Cholesky decomposition of A can be determined. By using
Algorithm 23, the computation to determine solution of the
linear balance systems becomes easier and simpler than that
by using Theorem 21 and Theorem 22. Since B is a a lower
triangular matrix, it only requires a back weak-substitution
process to solve the solution of the linear balance systems.

Let B EZ;] X [Z]V[egl] is a linear balance system.

Note that the Cholesky decomposition of B é is
&

% é] VB ® BT with B = . By using Algorithm 23,

NlWN R
N | u

&

the solution of | ® [;;]V[egl] is ylvg. Then, by

NIWN |-

2
doing a back weak-substitution, y,V © 2 Furthermore, the
1 5
2 ! 2
®[0]7| 3
2 el
e 2
doing a back weak-substitution, we have x;V2. Note that

| w

solution of is x,V & —1. Then, by

NN

_[ 2 vy2 -
xo—[e _1]€(§)- Thus, every x that satisties

xV [62—1] is solution of the linear balance systems
1 2 X1 3
L ellvlsy]

Let AQ x = b is a linear equation systems in the max-
plus algebra, where the Cholesky decomposition of A can be
determined in Ry, € S. Often times, we can not
determine the solution of the linear equation systems
A @ x = b in the max-plus algebra. Then, we can view the

linear equation systems A @ x = b in Ry, as the linear
balance systems A @ xV b in S.

VII. CONCLUSION

The existence of Cholesky decomposition of matrices
over the symmetrized max-plus algebra can be determined
by using a link between conventional algebra and the
symmetrized max-plus algebra. This is a class of functions
that are analytic and can be written as sums or series of
exponentials in neighborhood of oo. The Cholesky
decomposition of matrices over the max-plus algebra can be
determined as a special case of the Cholesky decomposition
in the symmetrized max-plus algebra. The Cholesky
decomposition can be used to simplify the computations in
determining the solution of the linear balance systems. This
is a consequence of the form of matrix in the Cholesky
decomposition which is a triangular matrix.
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