
 

 
Abstract—Recently, one of the solutions to the inventory 

problem is the construction of an approximated inventory 
model, which can be used to derive closed-form optimal 
solutions. However, this method fails to provide a reasonable 
explanation for the derivation of the key steps to obtain an 
approximated formula for the exponential function. The 
purpose of our study is threefold. First, we refer to an 
exponential function upper bound to patch the motivation gap. 
Second, we provide two other proofs for the upper bound of the 
exponential function or a lower bound of the negative 
exponential function. Third, we cite a recently published paper 
that directly applies the Taylor’s series expansion of the 
exponential function to obtain the desired approximated 
inventory model. Consequently, our discussions will help 
researchers realize these kind of inventory models. 

 
Index Terms—Inventory model, Compounding, Economic 

ordering quantity, Taylor’s series expansion 

 

I. INTRODUCTION 

alışkan [1] developed a new inventory model with (i) 
setup cost, (ii) estimated holding cost, and (iii) the 
monetary value of the inventory with compounding 

interest. He first computed the interest for one replenishment, 
which will then generate interests for the remaining duration 
of the year. He considered partial cycles and then constructed 
a new inventory model. Çalışkan [2] wrote the second paper 
that investigates this new inventory model with compounding 
interest. A trend to develop approximated solutions for 
inventory models has recently emerged. For example, 
Çalışkan [3] studied the approximated inventory model 
proposed by Widyadana et al. [4] through a simple derivation 
to avoid applying the cost-difference comparison method 
developed by Wee et al. [5]. Çalışkan [6] also examined the 
approximated inventory model proposed by Chung and Ting 
[7] and then obtained a new approximated optimal solution. 
Moreover, Çalışkan [8] considered Ghare and Schrader [9] 
and Widyadana et al. [4] by using a different approach to find 
the optimal replenishment cycle length with a nested radical 
expression and a closed-form solution for cubic polynomial 
in an arccosine formation. 

Moreover, Çalışkan [8] developed an approximated 
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solution. Based on the above discussions, these kinds of 
inventory models are hot research topics in recent years. 
Hence, in this paper, we will provide two improvements for 
Çalışkan [2] to help practitioners realize this important paper 
proposed by Çalışkan [2]. 

II. NOTATION AND ASSUMPTIONS 

To be compatible with Çalışkan [2], we adopted the same 
notation and assumption as that of Çalışkan [2]. 
Notation 

D is the constant demand per year. 
S is the setup cost per replenishment. 
T is the duration for one replenishment. 
Iሺtሻis the inventory level, with Iሺ0ሻ ൌ Q and IሺTሻ ൌ 0. 
Q is the ordering quantity per replenishment with Qൌ DT. 
c is the purchasing cost per item. 
i is the holding cost that is expressed as a fraction of c per 
year and then the holding cost is ic. 
r is the annual interest rate. 
 

Assumptions 
The average holding cost is estimated as the average of the 

maximum inventory level, Iሺ0ሻ ൌ Q , and the ending 
inventory level, IሺTሻ ൌ 0, to imply the total holding cost is 

ic ୕

ଶ
T and the average holding cost is ic

୕

ଶ
. 

The lead time is neglected.  

The average setup cost is 
ୗ


ൌ

ୈୗ

୕
. 

The average purchasing cost with compounding is shown 

as cሺe୰ െ 1ሻ ቂ
୕

ଵିୣష౨్ ీ⁄ െ
ୈ

୰
ቃ  that was discussed in Çalışkan 

[1]. 

III. REVIEW OF ÇALIŞKAN [2] 

    We cite from Çalışkan [2], "Considering continuous 
compounding of interest at an annual rate of r, Çalışkan [1] 
formulated the annual average total cost per year as follows. 

TCሺQሻ ൌ
ୈୗ

୕
 ic

୕

ଶ
 cሺe୰ െ 1ሻ ቂ

୕

ଵିୣష౨్ ీ⁄ െ
ୈ

୰
ቃ.     (C1) 

Taking the first derivative of (C1) results in the following. 
d

dQ
TCሺQሻ ൌ

െDS
Qଶ 

ic
2

 cሺe୰ െ 1ሻ 

ൈ 
ଵିୣష౨్ ీ⁄ ିሺ୰୕ ୈ⁄ ሻୣష౨్ ీ⁄

൫ଵିୣష౨్ ీ⁄ ൯
మ ൨.              (C2)" 
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(C1) indicates that it is Equation (1) of Çalışkan [2]. In 

Çalışkan [2], he claims that solving for 
ୢ

ୢ୕
TCሺQሻ ൌ 0 based 

on (C2), however, a closed-form solution cannot be derived 
for this. 

Hence, he tried to find a new inventory system to 
approximate his inventory model of (C1), and then the 
closed-form optimal solution can be derived for his new 
inventory system. 

We cite from Çalışkan [2], "The Taylor series expansion 
for the exponential function is as follows. 

e୶ ൌ 1  x 
୶మ

ଶ!


୶య

ଷ!


୶ర

ସ!
 ⋯.                   (C4)" 

We further cite from Çalışkan [2], "The following 
approximation is quite accurate for small values of x. 

e୶ ൎ 1  x 
୶మ

ଶି୶
ൌ

ଶି୶

ଶି୶


ଶ୶ି୶మ

ଶି୶


୶మ

ଶି୶
ൌ

ଶା୶

ଶି୶
.    (C5)" 

Substituting (C5) in (C1), we obtain the following. 

TCሺQሻ ൌ
ୈୗ

୕
 ic

୕

ଶ
 cሺe୰ െ 1ሻ ቈ

୕

ଵି
మషሺ౨్ ీ⁄ ሻ
మశሺ౨్ ీ⁄ ሻ

െ
ୈ

୰
, 

TCሺQሻ ൌ
ୈୗ

୕
 ic

୕

ଶ
 cሺe୰ െ 1ሻ ቂ

ଶୈା୰୕

ଶ୰
െ

ୈ

୰
ቃ,      (C6) 

TCሺQሻ ൌ
ୈୗ

୕
 cሾi  ሺe୰ െ 1ሻሿ ୕

ଶ
. 

The optimal solution to (C6) is obvious and it is the same as 
the one derived in Çalışkan [1]. 

Q∗ ൌ ට
ଶୈୗ

ୡሾ୧ାሺୣ౨ିଵሻሿ
.                         (C7)" 

IV. OUR COMMENTS FOR ÇALIŞKAN [2] 

Çalışkan [2] did not provide us with any preparation for his 
computation of (C5). Based on (C4), researchers can recall 
the well-known approximated formula, 

e୶ ൎ 1  x 
୶మ

ଶ
.                          (4.1) 

However, in (C5), Çalışkan [2] directly mentioned that 

e୶ ൎ 1  x 
୶మ

ଶି୶
,                         (4.2) 

without any motivation to help readers. Çalışkan [2] should 

provide a motivation for readers why he changed from 
୶మ

ଶ
 to 

୶మ

ଶି୶
. In the following, we will try to provide some reasonable 

motivations for the solution procedure proposed by Çalışkan 
[2]. We cite Proposition 1 of Chung [10], 
"Proposition 1. 

(a) Let gሺxሻ ൌ e୶ െ 1 െ x െ
୶మ

ଶ
 for x  0. Then gሺxሻ  0 for 

x  0. 

(b) e୶ ൏
ଶା୶

ଶି୶
 for 2  𝑥  0." 

Based on Proposition 1, (b) of Chung [10], researchers can 

consider 
ଶା୶

ଶି୶
 as an approximation for e୶ . Consequently, 

researchers can evaluate that 

e୶ െ 1 െ x ൎ
ଶା୶

ଶି୶
െ 1 െ x ൌ

୶మ

ଶି୶
.                   (4.3) 

Based on the above discussion, we provide a reasonable 

motivation why Çalışkan [2] assumed that e୶ ൎ 1  x 
୶మ

ଶି୶
. 

For completeness, we recall that there are two other sources 

for the approximation of e୶ ൎ
ଶା୶

ଶି୶
. 

We cite from Wan and Chu [11], "LEMMA 1. xeି୶ 
2eି୶  x െ 2  0, for x  0. 
Proof. See appendix." 
and we also cite from Wan and Chu [11], 
"PROOF OF THE LEMMA 1. Recall the Remark 1 of 
Rachamadugu [12]. He considered the Taylor series of 

rTሺ1  e୰ሻ  2ሺ1 െ e୰ሻ ൌ ∑ ୬ିଶ

୬!
∞
୬ୀଶ ሺe୰ሻ୬ then rTሺ1 

e୰ሻ  2ሺ1 െ e୰ሻ  0.  
On the other hand, from Theorem 2(f) of Chung and Lin 

[13], they derived a very sophisticated procedure. First, they 

constructed a decreasing function, 
ଵ

୶
െ

ଵ

ୣ౮ିଵ
 to verify that 0 ൏

ଵ

୶
െ

ଵ

ୣ౮ିଵ
൏

ଵ

ଶ
. By 

ଵ

୶
െ

ଵ

ୣ౮ିଵ
൏

ଵ

ଶ
, then eି୶ 

ଶି୶

ଶା୶
. 

Here, we offer simple proof. Let pሺxሻ ൌ ሺ2  xሻeି୶ െ 2 

x . For x  0 , since pሺ0ሻ ൌ 0  and 
ୢ

ୢ୶
pሺxሻ ൌ eି୶ሺe୶ െ 1 െ

xሻ  0, we derive pሺxሻ  0." 
 
Therefore, based on various principles, three different 

proofs were provided by Chung and Lin [13], Wan and Chu 
[11], and Chung [10] to find an upper bound of e୶ or a lower 
bound for eି୶ that can be treated as the possible sources for 

e୶ ൎ
ଶା୶

ଶି୶
. 

We recall that Rachamadugu [12] studied an inventory 
model with net present value. He tried to prove the objective 
function is convex such that the zero of the first derivative is 
the optimal minimum solution. The objective function of 
Rachamadugu [12] is expressed as, 

ANNሺTሻ ൌ ୗ୰

ଵିୣష౨ 
୦ୈ

୰

ୣష౨ିଵା୰

ଵିୣష౨ 
ୈ୮୰

ଵିୣష౨,        (4.4) 

and then he derived that 
dଶ

dTଶ ANNሺTሻ ൌ
Srଷeି୰ሺ1  eି୰ሻ

ሺ1 െ eି୰ሻଷ  

ୈሺ୦ା୮୰ሻ

൫ଵିୣష౨൯
య ሾሺ2  rTሻeି୰ െ 2  rTሿ.    (4.5) 

It is well known that 1 െ eି୰  0 , for T  0 . Hence, 
Rachamadugu [12] had verified that 

ሺ2  rTሻeି୰ െ 2  rT  0,               (4.6) 
for T  0, to support his assertion of convexity. We can 
claim that the appearance of Equation (4.6) in Rachamadugu 
[12] is the most natural way to provide a lower bound for the 
negative exponential function. 

Based on our citations, we provide three possible sources 
that researchers used a lower bound of eି୶, as 

eି୶ 
ଶି୶

ଶା୶
,                             (4.7) 

or an upper bound of e୶, as 
ଶା୶

ଶି୶
 e୶,                             (4.8) 

to present a reasonable motivation for the substitution  

e୶ ൎ
ଶା୶

ଶି୶
.                            (4.9) 

 
Next, we will provide an alternative approach without 

referring to Proposition 1, (b) of Chung [10], or Lemma 1 of 
Wan and Chu [11]. 
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We concentrate on the term "
୕

ଵିୣష౨్ ీ⁄ െ
ୈ

୰
" of (C1) and then 

we evaluate that 
୕

ଵିୣష౨్ ీ⁄ െ
ୈ

୰
ൌ ቀ

ୈ

୰
ቁ

ୣష౨్ ీ⁄ ିଵା୰୕ ୈ⁄

ଵିୣష౨్ ీ⁄ .                 (4.10) 

We apply the well-known result of Taylor’s series expansion 
of the exponential function, that is, (C4), to directly imply 
that 

eି୶ െ 1  x ൎ
୶మ

ଶ
,                          (4.11) 

and 
1 െ eି୶ ൎ x.                            (4.12) 

Based on Equation (4.11), we know that 

eି୰୕ ୈ⁄ െ 1  rQ D⁄ ൎ
ሺ୰୕ ୈ⁄ ሻమ

ଶ
,                    (4.13) 

and owing to Equation (4.12), we derive that 

1 െ eି୰୕ ୈ⁄ ൎ rQ D⁄ .                        (4.14) 
We plug Equations (4.13) and (4.14) into Equation (4.10), 
then 

୕

ଵିୣష౨్ ీ⁄ െ
ୈ

୰
ൌ ቀ

ୈ

୰
ቁ

ሺ୰୕ ୈ⁄ ሻమ ଶ⁄

୰୕ ୈ⁄
ൌ

୕

ଶ
.                (4.15) 

If we plug our results of Equation (4.15) into (C1), then we 
can imply the same results as derived by Çalışkan [2] in (C6) 

without referring to the interesting substitution, e୶ ൎ
ଶା୶

ଶି୶
, of 

(C5). 
 

Based on our above derivation, we point out that by 
applying the well-known Taylor’s series expansion of the 
exponential function, the desired approximated inventory 
system can be obtained without using the sophisticated 
derivation of (C5). 

At last, there are several related papers: Hou et al. [14], 
Gaithuru et al. [15], Akafan et al. [16], Arwatchananukul et al. 
[17], Susanti et al. [18], Bindu et al. [19], and Wu et al. [20] 
that are worthy to mention. 

V. NUMERICAL EXAMPLES 

    In Çalışkan [2], he did not provide numerical examples to 
illustrate his discussions. We refer to Çalışkan [21] to find 
data for parameters: c ൌ 10, D ∈ ሼ500, 10000ሽ, S ൌ 50, r ∈
ሼ0.25, 0.20, 0.15, 0.10, 0.05ሽ , and we assume i ൌ 0.05 . 
Hence, for D ൌ 500, we list the results in the next Table 1. 
From Table 1, we observe when D ൌ 500  that Q∗  have a 
negative relationship with the annual interest rate, r, and 
TCሺQ∗ሻ have a positive relationship with the annual interest 
rate, r. 
 

Table 1. With D ൌ 500, and variation of r. 
r 0.05 0.10 0.15 0.20 0.25 

Q∗ 222.20 179.51 153.63 135.73 122.35
TCሺQ∗ሻ 225.023 278.54 325.45 368.38 408.67

 
For D ൌ 10000, we list the results in the next Table 2. 
 

Table 2. With D ൌ 10000, and variation of r. 
r 0.05 0.10 0.15 0.20 0.25 

Q∗ 993.70 802.78 687.07 607.01 547.16
TCሺQ∗ሻ 1006.34 1245.68 1455.45 1647.43 1827.64

 

From Table 2, we notice when D ൌ 10000 that Q∗ have a 
negative relationship with the annual interest rate, r, and 
TCሺQ∗ሻ have a positive relationship with the annual interest 
rate, r. 

VI. ANOTHER RELATED PROBLEM 

A colleague, Professor Robert Lin raised an open question: 
How did researchers use algebraic methods to solve the 
following minimum problem? 
To find the minimum value and minimum point of  

୦ା୵

୬ାଵ
x୬ାଵ െ wx  w ቀ

୵

୦ା୵
ቁ

ଵ ୬⁄
,           (6.1) 

for 0x  , by algebraic methods.  
Hence, we assume our objective function, denoted as fሺxሻ 
such that we define our goal, 

fሺxሻ ൌ
୦ା୵

୬ାଵ
x୬ାଵ െ wx  w ቀ

୵

୦ା୵
ቁ

ଵ ୬⁄
.      (6.2) 

We assume that a point, say a , attains the minimum, then we 
compute fሺxሻ െ fሺaሻ  to imply that 

       1 1

1
n nh w

f x f a x a w x a
n

 
    



   x a g x  ,                     (6.3) 

with an auxiliary function, 

gሺxሻ ൌ
୦ା୵

୬ାଵ
ሺx୬  x୬ିଵa  ⋯  a୬ିଵx  a୬ሻ.     (6.4) 

From the fact that the objective function fሺxሻ is a polynomial 
and fሺxሻ െ fሺaሻ is also a polynomial in the variable x, such 
that we replace x by ሺx െ aሻ  a rewriting the polynomial in 
the new variable ሺx െ aሻ, and then we obtain 

fሺxሻ െ fሺaሻ ൌ 
a  aଵሺx െ aሻ  ∑ a୩ሺx െ aሻ୩୬ାଵ

୩ୀଶ .           (6.5) 
In the following, we will try to prove two goals for the 
coefficient of the constant term and the coefficient of the 
linear term: a ൌ 0 and aଵ ൌ 0. 
If we plug x ൌ a into Equation (6.5), and then we derive that  

0 ൌ a,                                (6.6) 
to show that our first goal, a ൌ 0, is verified. 
Next, we assume that  

∑ |a୩|୬ାଵ
୩ୀଶ ൌ M.                          (6.7) 

We will divide our proof for the second goal into the 
following three cases: (i) aଵ  0, (ii) aଵ ൏ 0, and (iii) aଵ ൌ
0. 
 
For Case (i), with aଵ  0, we will choose a special point, 
denoted as xଵ that satisfies 

xଵ ൌ a െ P,                          (6.8) 
where 

P ൌ min ቄ1,
ୟభ

ଵା
ቅ.                    (6.9) 

Based on Equation (6.9), we know that  
|xଵ െ a|୩  |xଵ െ a|ଶ,               (6.10) 

for k ൌ 2,3, … , n  1. 
We evaluate fሺxଵሻ െ fሺaሻ to derive that 

fሺxଵሻ െ fሺaሻ ൌ aଵሺxଵ െ aሻ   a୩ሺxଵ െ aሻ୩

୬ାଵ

୩ୀଶ

 

 aଵሺxଵ െ aሻ  |a୩|ሺ|xଵ െ a|ሻ୩

୬ାଵ

୩ୀଶ

 

 aଵሺxଵ െ aሻ  |a୩|ሺ|xଵ െ a|ሻଶ

୬ାଵ

୩ୀଶ

 

 aଵሺxଵ െ aሻ  Mሺxଵ െ aሻଶ 
ൌ ሺxଵ െ aሻሾaଵ  Mሺxଵ െ aሻሿ 
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ൌ െPሾaଵ  MሺെPሻሿ 

൏ ሺെPሻ ቂaଵ  Mሺെ
aଵ

1  M
ሻቃ 

ൌ ሺെPሻaଵ
ଵ

ଵା
൏ 0.                      (6.11) 

The finding of Equation (6.11) is violated our assumption 
that a is designed as the minimum point. Hence, Case (i) does 
not exist. 
 
For Case (ii), with aଵ ൏ 0, we will select a special point, 
denoted as xଶ that satisfies 

xଶ ൌ a  Q,                     (6.12) 
where 

Q ൌ min ቄ1,
ିୟభ

ଵା
ቅ.               (6.13) 

Based on Equation (6.13), we still derive the following result 
as Equation (6.10) that  

|xଵ െ a|୩  |xଵ െ a|ଶ,             (6.14) 
for k ൌ 2,3, … , n  1. 
We compute fሺxଶሻ െ fሺaሻ to derive that 

fሺxଶሻ െ fሺaሻ ൌ aଵሺxଶ െ aሻ   a୩ሺxଶ െ aሻ୩

୬ାଵ

୩ୀଶ

 

 aଵሺxଶ െ aሻ  |a୩|ሺ|xଶ െ a|ሻ୩

୬ାଵ

୩ୀଶ

 

 aଵሺxଶ െ aሻ  |a୩|ሺ|xଶ െ a|ሻଶ

୬ାଵ

୩ୀଶ

 

 aଵሺxଶ െ aሻ  Mሺxଶ െ aሻଶ 
ൌ ሺxଶ െ aሻሾaଵ  Mሺxଶ െ aሻሿ 

ൌ Qሾaଵ  MQሿ 

൏ 𝑄 ቂaଵ  Mሺ
െaଵ

1  M
ሻቃ 

ൌ Qaଵ
ଵ

ଵା
൏ 0.                        (6.15) 

The result of Equation (6.15) is against our assumption that a 
is designed as the minimum point. Hence, Case (ii) does not 
exist. 
 
From Cases (i) and (ii) both do not exist, we prove our second 
goal, aଵ ൌ 0. 
 
After we verify that a ൌ 0  and aଵ ൌ 0 , we can rewrite 
Equation (6.5) as  

fሺxሻ െ fሺaሻ ൌ  a୩ሺx െ aሻ୩

୬ାଵ

୩ୀଶ

 

ൌ ሺx െ aሻଶpሺxሻ,                       (6.16) 
where 

pሺxሻ ൌ ∑ a୩ሺx െ aሻ୩ିଶ୬ାଵ
୩ୀଶ .            (6.17) 

Now we compare Equations (6.3) and (6.16) to find that g(x) 
must contain a factor of (x-a) such that we know gሺaሻ ൌ 0. 
Therefore, using Equation (6.4), it follows that the minimum 
point is derived as 

a ൌ ቀ
୵

୦ା୵
ቁ

ଵ ୬⁄
,                     (6.18) 

and then we recall Equation (6.4) to imply that 

pሺxሻ ൌ
ሺ୶ሻ

୶ିୟ
.                            (6.19) 

Using Equation (6.19), we take a long division to derive 
another more exact expression of p(x) as 

pሺxሻ ൌ
୦ା୵

୬ାଵ
∑ ሺk  1ሻ ቀ

୵

୦ା୵
ቁ

୩ ୬⁄
୬ିଵ
୩ୀ x୬ିଵି୩.    (6.20) 

From Equation (6.20), we know that  p x  is a positive 

function for the domain 0x   to ensure our solution of 

Equation (6.18) is the minimum point. For completeness, we 
compute the minimum value, 

f ൬ቀ
୵

୦ା୵
ቁ

ଵ ୬⁄
൰ ൌ

୵

୬ାଵ
ቀ

୵

୦ା୵
ቁ

ଵ ୬⁄
.        (6.21) 

VII. THE SIMPLE METHOD OF ÇALIŞKAN [3] 

In this section, we will follow the simple method proposed by 
Çalışkan [3] to solve the minimum problem of Equation 
(6.2).  
We assume x∗ is the minimum solution for fሺxሻ of Equation 
(6.2), and then two new expressions, xା and xି, with 

xା ൌ x∗  ∆x,                               (7.1) 
and 

xି ൌ x∗ െ ∆x,                              (7.2) 
where ∆x is a small positive number. 
We follow the solution procedure of Çalışkan [3] to compute 
fሺxାሻ െ fሺx∗ሻ and fሺxିሻ െ fሺx∗ሻ , owing to fሺx∗ሻ  is the 
minimum value such that we know that 

fሺxାሻ െ fሺx∗ሻ  0,                           (7.3) 
and 

fሺxିሻ െ fሺx∗ሻ  0.                           (7.4) 
Based on Equation (6.2), we write down the detailed 
expression of Equations (7.3) and (7.4) as 

୦ା୵

୬ାଵ
ሺxା

୬ାଵ െ ሺx∗ሻ୬ାଵሻ െ wሺxା െ x∗ሻ  0,        (7.5) 

and 
୦ା୵

୬ାଵ
ሺxି

୬ାଵ െ ሺx∗ሻ୬ାଵሻ െ wሺxି െ x∗ሻ  0.        (7.6) 

We divide Equation (7.5) by xା െ x∗ to imply that 
୦ା୵

୬ାଵ
∑ xା

୬ି୩୬
୩ୀ ሺx∗ሻ୩  w,                  (7.7) 

because of xା െ x∗  0. 
 
Remark. We must point out that in Çalışkan [3], he claimed 
that "can further be simplified as follows:" without explicitly 
informing the readers that he divided his computation by 
Qା െ Q∗ that is xା െ x∗ in this paper. 
 
We divide Equation (7.6) by xି െ x∗ to imply that 

୦ା୵

୬ାଵ
∑ xି

୬ି୩୬
୩ୀ ሺx∗ሻ୩  w,                  (7.8) 

because of xି െ x∗ ൏ 0. 
 
Remark. We must point out that in Çalışkan [3], he claimed 
that "A similar analysis on ... will result in the following:" 
without explicitly informing the readers that he divided his 
computation by Qି െ Q∗ that is xି െ x∗ in this paper. 
 
We follow the solution procedure of Çalışkan [3] to take the 
limit ∆x → 0 such that  

xା → x∗,                                  (7.9) 
and 

xି → x∗.                                 (7.10) 
Based on Equation (7.9), we simplify Equation (7.7) as 

ሺh  wሻሺx∗ሻ୬  w.                  (7.11) 
Similarly, applying Equation (7.10), we simplify Equation 
(7.8) as follows 

ሺh  wሻሺx∗ሻ୬  w.                  (7.12) 
We combine the results of Equations (7.11) and (7.12) to find 
that 

ሺh  wሻሺx∗ሻ୬ ൌ w,                  (7.13) 
and then further simplify the finding of Equation (7.13) to 
show that 

x∗ ൌ ቀ
୵

୦ା୵
ቁ

ଵ ୬⁄
,                     (7.14) 
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which is the same result of Equation (6.18) as we derived by 
algebraic methods. 

VIII. EXAMINED BY AN ANALYTICAL APPROACH 

Based on Equation (6.2), we demonstrate that applying 
analytical methods to derive the minimum point and 
minimum value as follows, 

ୢ

ୢ୶
fሺxሻ ൌ ሺh  wሻx୬ െ w,           (8.1) 

and 
ୢమ

ୢ୶మ fሺxሻ ൌ nሺh  wሻx୬ିଵ.           (8.2) 

From Equations (8.1) and (8.2) we know that the objective 
function is convex, and then we obtain that the minimum 

point denoted as x∗, by solving 
ୢ

ୢ୶
fሺxሻ ൌ 0 to derive that 

x∗ ൌ ቀ
୵

୦ା୵
ቁ

ଵ ୬⁄
,                   (8.3) 

that is the identical result of Equation (6.18) which we 
obtained by algebraic methods. The second derivative of f(x) 
is positive to imply the solution of the first derivative is 
indeed the minimum solution. 

IX. OUR COMMENTS FOR SECTION VII 

In Section VII, we follow the "simple method" proposed by 
Çalışkan [3] to find the minimum point. To help readers 
realize the computations in Section VII, we rewrite our 
mimic procedure in an abstract expression as follows. 
First, we assume that x∗ is the minimum solution, and then 
compute 

fሺxାሻ െ fሺx∗ሻ  0,                          (9.1) 
and 

fሺxିሻ െ fሺx∗ሻ  0.                           (9.2) 
Second, we evaluate 

ሺ୶శሻିሺ୶∗ሻ

୶శି୶∗  0,                             (9.3) 

and 
ሺ୶షሻିሺ୶∗ሻ

୶షି୶∗  0.                             (9.4) 

Third, we take the limit as ∆x → 0, then 

lim
∆୶→

ሺ୶శሻିሺ୶∗ሻ

୶శି୶∗  0,                          (9.5) 

and 

lim
∆୶→

ሺ୶షሻିሺ୶∗ሻ

୶షି୶∗  0.                           (9.6) 

 
On the other hand, we recall that the definition of derivative 
for fሺxሻ at x∗ is expressed as 

ୢ

ୢ୶
ሺat x∗ሻ ൌ lim

∆୶→

ሺ୶ሻିሺ୶∗ሻ

୶ି୶∗ .                    (9.7) 

Next, we solve the zeros for the first derivative to yield that 
ୢ

ୢ୶
ሺat x∗ሻ ൌ 0,                              (9.8) 

that is 

lim
∆୶→

ሺ୶ሻିሺ୶∗ሻ

୶ି୶∗ ൌ 0.                           (9.9) 

 
Now, we compare Equations (9.5), (9.6), and (9.9) to find 
that Equation (9.5) is the right-hand limit of Equation (9.9) 
and Equation (9.6) is the left-hand limit of Equation (9.9). 
Hence, we provide a reasonable explanation for the simple 
method proposed by Çalışkan [3] why this approach can 
obtain the optimal solution because the simple method 
proposed by Çalışkan [3] is a complicated version of the 
calculus. 
Hence, we can advise researchers that do not follow the 
research technique proposed by Çalışkan [3] to write down 

the solution procedure of calculus with the zeros for the first 
derivative in a right-hand and left-hand limits process which 
is not a new approach, but a well-known method in its 
complex version. 
 

X. APPLICATION OF OUR APPROACH 

In this section, we will demonstrate that our approach can be 
applied to study other inventory models. 

A.  REVIEW OF WEE ET AL. [5] 

  We will first recall the solution process of Wee et al. [5], 
then review the criticism proposed by Çalışkan [23], and then 
our improvements for Wee et al. [5] and Çalışkan [23]. 
To be consistent with the expressions in this paper, we use the 
same notation as Çalışkan [2] to discuss the inventory model 
and solution procedure in Wee et al. [5] and criticism of 
Çalışkan [23]. 
For the first model in Wee et al. [5], there are no shortages 
such that the optimal replenishment policy is to balance the 
setup cost and the holding cost. 
For a fixed planning horizon, T, Wee et al. [5] uniformly 
partition it into n parts, and then the ordering quantity, Q୬, 
that satisfies 

nQ୬ ൌ DT.                            (10.1) 
The setup cost is S and the inventory level is Iሺtሻ ൌ Q୬ െ Dt, 
for 0  t  Q୬ D⁄ . 
The total holding cost for one replenishment is evaluated as 

ic  ሺQ୬ െ Dtሻ୕ ୈ⁄

 dt ൌ
୧ୡ

ଶୈ
Q୬

ଶ .                    (10.2) 

The total cost for one replenishment is 

S 
୧ୡ

ଶୈ
Q୬

ଶ .                           (10.3) 

The duration period for one replenishment is Q୬ D⁄ , and then 
the average cost is derived by Wee et al. [5] as 

ቀS 
୧ୡ

ଶୈ
Q୬

ଶ ቁ Q୬ D⁄ ൌ
ୗୈ

୕


୧ୡ

ଶ
ൗ Q୬.                  (10.4) 

In Wee et al. [5], they denoted as 

Cሺi, Tሻ ൌ
ୗୈ

୕


୧ୡ

ଶ
Q୬,                       (10.5) 

for i ൌ n െ 1, n, n  1. 
Wee et al. [5] applied the "cost-difference comparisons" 
proposed by Minner [24] to assume n is the optimal partition 
number for this given finite planning horizon, T, and then  

Cሺn െ 1, Tሻ  Cሺn, Tሻ,                       (10.6) 
and 

Cሺn  1, Tሻ  Cሺn, Tሻ,                       (10.7) 
Wee et al. [5] simplified Equations (9.6) and (9.7) to yield 
that 

ଶୈୗ

୧ୡ
 Q୬ିଵQ୬,                         (10.8) 

and 

Q୬ାଵQ୬ 
ଶୈୗ

୧ୡ
.                         (10.9) 

Wee et al. [5] mentioned that if the planning horizon T and 
the optimal partition number n both went to infinite, then 

lim
୬→∞

୕షభ

୕
ൌ lim

୬→∞

୬

୬ିଵ
ൌ 1  and lim

୬→∞

୕శభ

୕
ൌ lim

୬→∞

୬

୬ାଵ
ൌ 1  to 

imply that Q୬ିଵ ൌ Q୬ ൌ Q୬ାଵ . By observing Equations 
(10.8) and (10.9), then the optimal ordering quantity 

converges to the economic ordering quantity ට
ଶୈୗ

୧ୡ
. 
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B.  IMPROVMENTS OF ÇALIŞKAN [23] 

  Next, we provide a brief review of Çalışkan [23]. We recall 
that Çalışkan [23] improved Wee et al. [5] on the following 
three issues: 
(i) Çalışkan [23] presented a detailed derivation to show how 

did Wee et al. [5] obtain Equations (10.8) and (10.9) from 
Equations (10.6) and (10.7). 

(ii) Çalışkan [23] tried to explain how to show that Q୬ 

converges to ඥ2DS ic⁄ . 
(iii) Using Jensen's inequality (Jensen [25]), Çalışkan [23] 

proved that the inventory model of Equation (10.5) is 
convex. 

 
Owing to Equation (10.1), researchers knew that Q୬∗ିଵ ൌ
DT ሺn∗ െ 1ሻ⁄ , Q୬∗ ൌ DT n∗⁄ , and Q୬∗ାଵ ൌ DT ሺn∗  1ሻ⁄  
such that 

Q୬∗ିଵ  Q୬∗  Q୬∗ାଵ.                   (10.10) 
Çalışkan [23] computed that 

Cሺn െ 1, Tሻ െ Cሺn, Tሻ ൌ ቀ
ୗୈ

୕∗షభ


୧ୡ

ଶ
Q୬∗ିଵቁ െ ቀ

ୗୈ

୕∗


୧ୡ

ଶ
Q୬∗ቁ  

ൌ
ୗୈ

୕∗షభ୕∗
ሺQ୬∗ െ Q୬∗ିଵሻ 

୧ୡ

ଶ
ሺQ୬∗ିଵ െ Q୬∗ሻ  0.  (10.11) 

Çalışkan [23] divided Equation (9.11) by Q୬∗ିଵ െ Q୬∗  to 
yield Equation (9.8). 
Similarly, Çalışkan [23] computed that 

Cሺn∗  1, Tሻ െ Cሺn∗, Tሻ 

ൌ ቀ
ୗୈ

୕∗శభ


୧ୡ

ଶ
Q୬∗ାଵቁ െ ቀ

ୗୈ

୕∗


୧ୡ

ଶ
Q୬∗ቁ  

ൌ
ୗୈ

୕∗షభ୕∗
ሺQ୬∗ െ Q୬∗ାଵሻ 

୧ୡ

ଶ
ሺQ୬∗ାଵ െ Q୬∗ሻ  0. (10.12) 

Çalışkan [23] divided Equation (10.12) by Q୬∗ାଵ െ Q୬∗ to 
yield Equation (9.9). 
 
Çalışkan [23] rewrote Equations (9.8) and (9.9) as follows, 

ଶୈୗ

୧ୡ
 ቀ

୬∗

୬∗ିଵ
ቁ Q୬∗

ଶ ,                         (10.13) 

and 

ቀ
୬∗

୬∗ାଵ
ቁ Q୬∗

ଶ 
ଶୈୗ

୧ୡ
.                         (10.14) 

Çalışkan [23] combined Equations (10.13) and (10.14) to 
show that 

ቀ
୬∗

୬∗ାଵ
ቁ Q୬∗

ଶ 
ଶୈୗ

୧ୡ
 ቀ

୬∗

୬∗ିଵ
ቁ Q୬∗

ଶ .                   (10.15) 

Çalışkan [23] took the limit of n∗ → ∞ to evaluate that 

lim
୬∗→∞

ቀ
୬∗

୬∗ାଵ
ቁ Q୬∗

ଶ 
ଶୈୗ

୧ୡ
 lim

୬∗→∞
ቀ

୬∗

୬∗ିଵ
ቁ Q୬∗

ଶ ,  (10.16) 

and then Çalışkan [23] wrote that 

Q୬∗
ଶ ൌ

ଶୈୗ

୧ୡ
,                           (10.17) 

and then Çalışkan [23] showed that 

Q୬∗ ൌ ටଶୈୗ

୧ୡ
.                         (10.18) 

Later, we will point out that the discussion for issue (ii) 
contained severe questionable results. 
 
For issue (iii), we recall the Jensen's inequality that fሺtሻ is a 
convex function if and only if fሺαa  ሺ1 െ αሻbሻ  αfሺaሻ 
ሺ1 െ αሻfሺbሻ, for a ് b, where a and b are any two points in 
the domain of fሺtሻ and for any 𝛼, with 0 ൏ 𝛼 ൏ 1. 
For completeness, we recall the proof in Çalışkan [23] to 
verify the convexity through Jensen's inequality. With 0 ൏
𝛼 ൏ 1, and Q୬

ୟ ് Q୬
ୠ , he computed  

αCሺQ୬
ୟ ሻ  ሺ1 െ αሻC൫Q୬

ୠ൯ െ C൫αQ୬
ୟ  ሺ1 െ αሻQ୬

ୠ൯ 

ൌ α ቀ
ୗୈ

୕
 

୧ୡ

ଶ
Q୬

ୟ ቁ  ሺ1 െ αሻ ቀ
ୗୈ

୕
ౘ 

୧ୡ

ଶ
Q୬

ୠቁ  

െ
ୗୈ

α୕
 ାሺଵିαሻ୕

ౘ െ
୧ୡ

ଶ
ൣαQ୬

ୟ  ሺ1 െ αሻQ୬
ୠ൧, 

ൌ α
ୗୈ

୕
  ሺ1 െ αሻ ୗୈ

୕
ౘ െ

ୗୈ

α୕
 ାሺଵିαሻ୕

ౘ, 

ൌ
ୗୈΩ

୕
 ୕

ౘ൫α୕
 ାሺଵିαሻ୕

ౘ൯
 ,                       (10.19) 

where Ω is an abbreviation to stand for 
Ω ൌ αQ୬

ୠ൫αQ୬
ୟ  ሺ1 െ αሻQ୬

ୠ൯  ሺ1 െ αሻQ୬
ୟ ൫αQ୬

ୟ 
ሺ1 െ αሻQ୬

ୠ൯ െ Q୬
ୟ Q୬

ୠ .               (10.20) 
Çalışkan [23] further simplified the expression of Ω  in 
Equation (10.20) as 

Ω ൌ αሺ1 െ αሻ൫Q୬
ୟ െ Q୬

ୠ൯
ଶ
.                    (10.21)  

Based on Equations (10.19) and (10.21), Çalışkan [23] 
claimed that  

αCሺQ୬
ୟ ሻ  ሺ1 െ αሻC൫Q୬

ୠ൯ െ C൫αQ୬
ୟ  ሺ1 െ αሻQ୬

ୠ൯  0.       
(10.22) 

Hence, by the Jensen's inequality, Çalışkan [23] presented a 
patchwork for Wee et al. [5] to verify the objective function 
of this inventory model is a convex function. 

C.  OUR COMMENTS FOR ÇALIŞKAN [23] 

  We agree that Çalışkan [23] provided a detailed derivation 
for ordinary readers on how researchers can obtain Equations 
(10.8) and (10.9) from Equations (10.6) and (10.7). 
 
However, there are severe questionable findings in the 
derivations proposed by Çalışkan [23] that are related to the 
issue (ii). 
We recall Equation (10.16) and then Çalışkan [23] shows that 

ቂ lim
୬∗→∞

ቀ
୬∗

୬∗ାଵ
ቁቃ Q୬∗

ଶ 
ଶୈୗ

୧ୡ
 ቂ lim

୬∗→∞
ቀ

୬∗

୬∗ିଵ
ቁቃ Q୬∗

ଶ , (10.23) 

and then owing to lim
୬∗→∞

ቀ
୬∗

୬∗ାଵ
ቁ ൌ 1 , and lim

୬∗→∞
ቀ

୬∗

୬∗ିଵ
ቁ ൌ 1 , 

Çalışkan [23] derived that 

Q୬∗
ଶ 

ଶୈୗ

୧ୡ
 Q୬∗

ଶ .                         (10.24) 

Based on Equation (10.24), Çalışkan [23] found that Q୬∗
ଶ ൌ

ଶୈୗ

୧ୡ
 as Equation (10.17). 

We must point out that Çalışkan [23] overlooked to consider 
the following problem: 

lim
୬∗→∞

Q୬∗
ଶ ൌ?.                        (10.25) 

Çalışkan [23] should prove that the sequence ൫Q୬∗
ଶ ൯ or the 

sequence ሺQ୬∗ሻ is convergent, and then denoted as 
lim
୬→∞

Q୬∗ ൌ Q∞.                        (10.26) 

Consequently, researchers obtain that 

Q∞
ଶ ൌ

ଶୈୗ

୧ୡ
,                           (10.27) 

and then the desired result of the optimal solution,  

Q∞ ൌ ටଶୈୗ

୧ୡ
,                         (10.28) 

appears. 
However, how did researchers prove the convergence of the 
sequence ሺQ୬∗ሻ that will be a serious open question for future 
practitioners. Therefore, we can claim that the patchwork 
proposed by Çalışkan [23] related to the issue (ii) is 
incomplete. 
 
We agree that Çalışkan [23] applied Jensen's inequality to 
show the objective function is convex. However, we can 
provide a simple improvement. 
We directly compute 

ୢ

ୢ୕
CሺQ୬ሻ ൌ

ୢ

ୢ୕
ቀ

ୗୈ

୕


୧ୡ

ଶ
Q୬ቁ,               (10.29) 

to imply that 
ୢ

ୢ୕
CሺQ୬ሻ ൌ

ିୗୈ

୕
మ ,                        (10.30) 
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and then 
ୢమ

ୢ୕
మ CሺQ୬ሻ ൌ

ଶୗୈ

୕
య  0.                      (10.31) 

From the second derivation of CሺQ୬ሻ is positive, we know 
that the objective function is convex. Our above discussion is 
straight and many researchers may claim it is too simple that 
should be written in a research paper. Hence, we can 
conclude that the third improvement of the issue (iii) related 
to the convexity of the objective function is redundant. 

D.  REVIEW OF MINNER [24] 

  Minner [24] is the source paper to develop the 
"cost-difference comparisons" approach. Minner [24] 
considered the replenishment interval, T n⁄ , for a finite 
planning horizon, T and then uniformly partitioned into n 
equal parts. On the other hand, Wee et al. [5] followed 
Minner [24]. Wee et al. [5] considered the ordering quantity, 
DT n⁄ , such that Q୬ ൌ DT n⁄ . 
Based on Equation (9.5), Wee et al. [5] partitioned the finite 
planning horizon, T, into n equal parts, with nQ୬ ൌ DT . 
Hence, there are two sequences in Wee et al. [5]. The first 
sequence is the partition number, ሺnሻ, and the second one is 
the ordering quantity, ሺQ୬ሻ. 
Wee et al. [5] tried to minimize the average cost for the first 
replenishment cycle, ሾ0, T n⁄ ሿ. We recall Minner [24] that try 
to minimize the total cost for the entire planning horizon, 
ሾ0, Tሿ. Hence, the objective function in Minner [24] will be 
expressed as 

n ቀS 
୧ୡ

ଶୈ
Q୬

ଶ ቁ.                        (10.32) 

Owing to Q୬ ൌ DT n⁄ , Equation (10.32) is rewritten as 

Cሺn, Tሻ ൌ nS 
୧ୡୈ

ଶ୬
Tଶ.                  (10.33) 

Consequently, for a given T, the optimal corresponding 
partition number is denoted as n∗ሺTሻ, Minner [24] applied the 
"cost-difference comparisons" to compute  

Cሺn∗ െ 1, Tሻ  Cሺn∗, Tሻ,                  (10.34) 
and 

Cሺn∗  1, Tሻ  Cሺn∗, Tሻ,                  (10.35) 
and then Minner [24] showed that  

୧ୡୈ

ଶୗ
Tଶ  n∗ሺn∗ െ 1ሻ,                    (10.36) 

and 

n∗ሺn∗  1ሻ 
୧ୡୈ

ଶୗ
Tଶ.                     (10.37) 

Minner [24] combined Equations (10.36) and (10.37) to show 
that 

ට ଶୗ

୧ୡୈ
ට୬∗ିଵ

୬∗ 


୬∗ሺሻ
 ට ଶୗ

୧ୡୈ
ට୬∗ାଵ

୬∗ .              (10.38) 

Minner [24] mentioned that let the horizon length T (and 
n∗ሺTሻ) tend to infinity, then 

lim
୬∗→ஶ

ට୬∗ିଵ

୬∗ ൌ lim
୬∗→ஶ

ට୬∗ାଵ

୬∗ ൌ 1.          (10.39) 

Minner [24] obtained the optimal cycle length converges to 

the economic order interval EOI ൌ ඥ2S icD⁄  as the lower and 
the upper bound converge, and the optimal lot size is  

EOQ ൌ DሺEOIሻ ൌ ඥ2DS ic⁄ .                        (10.40) 

E.  OUR IMPROVEMENT FOR MINNER [24] 

  For a given finite planning horizon, T, the optimal partition 
number is denoted by n∗ሺTሻ. We provide our revisions for 
Minner [24] in the following. 
We amend Equations (10.36), (10.37), and (10.38) as 
follows, 

୧ୡୈ

ଶୗ
Tଶ  ሾn∗ሺTሻሿሺn∗ሺTሻ െ 1ሻ,                (10. 41) 

ሾn∗ሺTሻሿሺn∗ሺTሻ  1ሻ 
୧ୡୈ

ଶୗ
Tଶ,                (10. 42) 

and 

ට ଶୗ

୧ୡୈ
ට

୬∗ሺሻିଵ

୬∗ሺሻ




୬∗ሺሻ
 ට ଶୗ

୧ୡୈ
ට

୬∗ሺሻାଵ

୬∗ሺሻ
.              (10.43) 

Based on Equation (10.43), we show that taking the limit of 
n∗ → ∞ in Equation (10.39) proposed by Minner [24] is 
improper. 
We claim that Minner [24] should inform the readers that he 
construct a new function, denoted as n∗: ሺ0, ∞ሻ → ሼ1,2, … ሽ 
with n∗: T → n∗ሺTሻ that satisfies  

Cሺn∗ሺTሻ െ 1, Tሻ  Cሺn∗ሺTሻ, Tሻ,               (10.44) 
and 

Cሺn∗ሺTሻ  1, Tሻ  Cሺn∗ሺTሻ, Tሻ.               (10.45) 
Then, Equations (10.41), (10.42), and (10.43) are derived. 
Based on Equation (10.42), we know that 

lim
→∞

n∗ሺTሻ ൌ ∞.                       (10.46) 

Consequently, we derive that 

lim
→∞

ට
୬∗ሺሻିଵ

୬∗ሺሻ
ൌ lim

→∞
ට

୬∗ሺሻାଵ

୬∗ሺሻ
ൌ 1.          (10.47) 

We compute the limit of T → ∞ for Equation (10.43) and 
apply Equation (10.46) to obtain that 

ට ଶୗ

୧ୡୈ
 lim

→∞



୬∗ሺሻ
 ට ଶୗ

୧ୡୈ
.                  (10.48) 

According to Equation (10.48), then  

lim
→∞



୬∗ሺሻ
ൌ ට ଶୗ

୧ୡୈ
,                     (10.49) 

the desired economic order interval EOI appears. 
 
Based on our above discussions, we show that Çalışkan [23] 
did not provide a valuable patchwork for Wee et al. [5], 
because the core problem why did the sequence ሺQ୬ሻ 
converge is not solved. Moreover, through Jensen's 
inequality, Çalışkan [23] provided a lengthy enhancement for 
the convexity of the objective function. However, this 
enhancement can be easily derived by the second derivative. 

F.  DIRECTION FOR FUTURE RESEARCH 

  In this section, we point out that Wee et al. [5] contained 
questionable findings, and then Çalışkan [23] did not provide 
a sufficient improvement. Moreover, we present revisions for 
Minner [24].  
In Minner [24], he offered an open question to apply the 
"cost-difference comparisons" approach to solve inventory 
models with linear and fixed backorders. We can predict that 
this open question will be a hot research problem for future 
researchers. 
 

XI. CONCLUSION 

In this study, we provide reasonable motivation for an 
interesting approximation employed by Çalışkan [2] using 
three possible sources. Moreover, we show that researchers 
can directly apply Taylor’s series expansion of the 
exponential function to obtain their desired approximated 
inventory model without recalling the interesting 
approximation of Çalışkan [2]. Our paper is a significant 
clarification of Çalışkan’s work [2]. 
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Moreover, we provide a positive answer to an open 
question proposed by Professor Lin by three different 
approaches: (i) Algebraic methods, (ii) A simple method 
proposed by Çalışkan [3], and (iii) An analytical method. We 
observe that algebraic methods are fundamental but lengthy 
because addition, subtraction, multiplication, and division are 
the only allowable tools for pure algebraic methods. On the 
other hand, we demonstrate how to follow the simple method 
proposed by Çalışkan [3] to solve this minimum problem. 
Additionally, we illustrate how to apply calculus to solve the 
same minimum problem. We also point out that the simple 
method proposed by Çalışkan [3] is a complicated version of 
calculus that is not a useful approach to solving minimum 
problems. At last, we apply our analytic approach to study a 
related problem that have examined by Minner [24], Wee et 
al. [5], and Çalışkan [23]. We point out that Çalışkan [23] did 
not presented sufficient improvements for Wee et al. [5], and 
then we offer revisions for Minner [24] to recognize their 
research issues. Our discussions will help researchers realize 
these kind of inventory models. 
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