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Abstract—Circular rock stratum is inevitably encountered in 

underground mining engineering, resulting in waste of 

resources and dynamic instability. Based on the elastic theory of 

curved beam and finite difference computation, a displacement 

function is proposed in polar coordinates to solve two partial 

differential equations with the boundary conditions in elastic, 

isotropic and homogeneous rock. A semi-analytical solution of 

elastic stress in circular rock stratum is obtained according to 

the governing equation and stress components in the form of 

displacement function. In addition, the variations of stress 

distribution with different influencing factors are analyzed, 

which is helpful to a better understanding of the stability of 

circular stratum after coal extractions. Moreover, this 

semi-analytical elastic stress solution is applied to the fold 

structure in No.2502 mining area. Last but not the least, the 

dangerous positions in the process of coal extractions are 

pointed out for the safety and better construction in coal mine 

engineering. 

 

Index Terms—Circular rock stratum, Displacement function, 

Elastic mechanics, Elastic stress solution 

I. INTRODUCTION 

oal resources have always been and will be the main 

energy for a long time in China, accounting for about 

70% of the disposable energy structure [1]–[2]. However, a 

considerable part of coal resources exist in continuous 

circular rock strata, which are threatened by dynamic 

instability during the coal extractions. The common 

characteristics of circular rock stratum are the existence of 

curvature and horizontal tectonic stress in the stratum, which 

will at least lead to elastic deformation during the coal mining. 

Different from the horizontal layered stratum, understanding 

the elastic stress distribution in circular stratum after coal 

extractions is great significant to the underground mining 

engineering. Although the visual stress solution of circular 

rock stratum can be obtained by numerical simulation, the 

analytical solution of circular rock stratum provides insight 

into the general properties of the solution. On the other hand, 

the mining engineers should be able to evaluate the general 

correctness of numerical analysis due to the simplification of 
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numerical modeling, however, analytical solution provides a 

valuable method for this evaluation. Therefore, the elastic 

stress distribution in circular rock stratum may become an 

important research topic for mining engineers. 

Traditionally, the stress function formula and displacement 

function formula are two common methods for stress analysis 

of curved beams in elastic mechanics. The former is the 

simplest method for curved beams in elastic mechanics, and 

the stress solutions of curved beams with different cross 

sections or with different loading have been obtained in 

literatures [3]–[10] as well as the improving calculation 

method. However, when the boundary condition is 

displacement condition or strain condition, a satisfactory 

solution cannot be obtained. As for the latter, it is difficult to 

solve the two partial differential equations of radial 

displacement (horizontal displacement) and circumferential 

displacement (vertical displacement), so it is not widely used 

in geotechnical engineering. Especially when the boundary 

condition is the mixed mode of displacement (strain) and 

loading (stress), it is impossible to obtain the exact solution 

from two variable coefficient partial differential equations. 

Therefore, these traditional methods seem to be inaccurate 

and unreliable for these mixed boundary value problems 

[11]–[13]. Besides, the Hamiltonian system is introduced into 

the elastic problems and the Symplectic Elasticity is 

established, which has the defect of breaking in the Jordan 

chain [14]. 

In recent years, the combination of elasticity and 

computational mechanics have been used to solve mixed 

boundary conditions. The common methods for numerical 

calculation are the Finite Element Method (FEM) and the 

Finite Difference Method (FDM). FEM has been successfully 

and widely applied in stress analysis [15]–[18], however, the 

large bending deformation in FEM results are unreliable [19]. 

In addition, it is proved that the calculation results of FDM are 

better than that of FEM [20]–[25]. 

Based on the above considerations, a displacement 

function is given in polar coordinate system to solve partial 

differential equations with two mixed boundary conditions in 

elastic, isotropic and homogeneous rock. Then, the radial and 

circumferential displacement are expressed as a summation of 

all possible partial derivatives of the displacement function up 

to an order of two, together with the unknown coefficients. 

The displacement function and its numerical solution are 

obtained by the finite difference computation. Meanwhile, the 

variations of stress distribution with different influencing 

factors are analyzed according to the analytical expression of 

stress components in the form of displacement function. 
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Finally, these semi-analytical elastic stress solutions are 

applied to the fold structure in No.2502 mining area in 

China. 

II. ELASTIC STRESS SOLUTIONS FOR CIRCULAR ROCK 

STRATUM 

A. Governing Equation in the Form of Displacement 

Function 

According to elastic mechanics in polar coordinate system 

(r, θ) [4], the equilibrium equations in the form of radial 

displacement ur and circumferential displacement uθ in plane 

problem without external force are as follows. 
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(1b) 

Where, uθ and ur are the circumferential displacement and 

radial displacement, respectively, and μ is the Poisson’s ratio. 

Equation (1) gives two partial differential equations in 

plane strain problem in polar coordinate system. The exact 

solutions of radial and circumferential displacement should 

satisfy the two equations and all boundary conditions. 

However, these equations are simultaneous partial differential 

equations with variable coefficients. Moreover, boundary 

conditions are in mixed type of displacement (strain) and 

loading (stress). Thus, the exact results in this case are 

impossible. The mathematical method can be adopted to 

reduce variables. The feasible option is to change two 

equations with two variables into one equation with a single 

variable. 

In order to reduce the two equations with two variables in 

(1) to one equation with a single variable, a displacement 

function ψ(r, θ) is introduced, and the radial and 

circumferential displacement are expressed as follows. 
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(2b) 

Where, coefficients αi (i=1,2,3,…,12) are defined as 

material constants [22]. 

Substituting the above expressions of ur and uθ into (1), two 

partial differential equations in the form of displacement 

function can be represented as follows. 
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In this case, one of (3) should be eliminated reasonably for 

getting the solution of displacement function ψ(r, θ). In 

mathematical method, one of (3) should automatically satisfy 

the equation. Fortunately, when the coefficients of all partial 

derivatives of displacement function ψ(r, θ) and the 

coefficient of displacement function ψ(r, θ) in one of (3) are 

all zero, the left and right terms of this equation will be all 

zero and equal to each other.  

If the coefficients in (3a) are all zero, equation (3b) 

becomes the only equation to solve the displacement function 

ψ(r, θ), which is called governing equation. Hence, the 

coefficients of all partial derivatives of displacement function 

ψ(r, θ) and the coefficient of displacement function ψ(r, θ) in 

(3a) equate to zero. The values of coefficients αi can be 

obtained and substituted into (3b). The explicit expression of 

governing equation in the form of displacement function ψ(r, 

θ) is shown as follows. 
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(4) 

Equation (4) gives the expression of governing equation in 

plane strain problem in polar coordinates. Similarly, if (3b) 

automatically satisfy the equation, equation (3a) will be the 

only equation in the form of displacement function ψ(r, θ). 

The explicit expression of governing equation in the form of 

displacement function ψ(r, θ) is also obtained in the same way, 

which is the same with (4). Thus, the conclusion is that the 

governing equation of polar coordinates plane problem is 

unique. 

B. Physical Components Expressed by Displacement 

Function 

To solve (4), the boundary conditions should be provided 

at any point of all boundaries. Thus, it is necessary to describe 

physical components in the form of displacement function ψ(r, 

θ). There are two displacement components, including radial 

displacement ur and circumferential displacement uθ. There 

are three stress components, including radial stress σr, 

circumferential stress σθ and shear stress τrθ. 

Displacement components expressed by displacement 

function ψ(r, θ) are shown as follows. 
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Stress components expressed by displacement function ψ(r, 

θ) are shown as follows. 
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III. NUMERICAL ANALYSIS OF STRESS FOR CIRCULAR ROCK 

STRATUM 

A. Object for Investigating 

The schematic diagram of coal extractions in circular rock 

strata is shown in Fig. 1 according to the characteristics of 

circular rock stratum. The shape of rock strata is simplified as 

an arc with a radius for the feasibility of theoretical analysis. 

After coal extractions, the confining stress reduces to zero on 

the boundary of goaf and the stress is redistributed in the 

overburden and floor. From the perspective of deformation, 

the overburden above the goaf will be collapsing and the floor 

below the goaf will be uplifting, which will lead to unstable 

deformation and affect mining production. The object for 

investigating is the red area in Fig. 1, that is, the first rock 

stratum above the goaf. 

q

q  q 

Stratum

 
Fig. 1.  Schematic diagram of coal extractions in circular rock strata 

 

B. Numerical Modeling for Computation 

The numerical modeling for computation in circular rock 

stratum in plane strain problem is given in Fig. 2, where rib 

and rob are the inner radius and outer radius, respectively. 

θ
e

i

Th

q
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A

B

C
D

rib

rob

 
Fig. 2.  Numerical modeling for computation in circular rock stratum 

 

The conditions at left boundary or right boundary are the 

displacement restrain with roller support. The boundary 

condition in the outer surface is the stress restrain caused by 

horizontal stress λq and vertical stress q in rock strata (the 

parameter λ is the tectonic stress coefficient), while the stress 

in the inner surface is zero due to coal extractions. The angle 

θi between the horizontal line and right boundary is named as 

mining position, and the angle θe between left boundary and 

right boundary is named as advancing angle. The thickness of 

circular rock stratum is marked as “st”. 

In this paper, the finite difference method is used to solve 

the displacement function ψ(r, θ), and there are many finite 

discrete points in the computation domain. The discrete points 

in the computation domain should satisfy the governing 

equation (4) and the discrete points at the boundary should 

satisfy boundary conditions in Fig. 2. Table I lists the values 

of stress and displacement at the all boundaries, and Table Ⅱ 

lists the values of stress and displacement at the four corner 

points in numerical modeling. It is obvious that three out of 

four conditions should be satisfied at each corner point, which 

is superior to the traditional computing method with only two 

out of four conditions being satisfied. Therefore, the stress 

solutions around the corner region obtained by this method 

will be closer to the actual state, while these values obtained 

by traditional method will deviate from the actual state. The 

mesh length in radial and circumferential direction is 0.5m 

and 1°, respectively. 
 

Table I 

BOUNDARY CONDITIONS 

Boundary 

Boundary Conditions 

Normal Component Tangential Component 

right boundary 

i   
( , ) 0r iu r    ( , ) 0iu r    

left boundary 

max ei       max( , ) 0ru r    
max( , ) 0u r    

inner surface 

ibr r  ( , ) 0r ibr    ( , ) 0r ibr    

outer surface 

, 90obr r    ( , ) ( cos sin )r obr q        ( , ) (cos sin )r obr q        

outer surface 
, 90obr r    ( , ) ( cos sin )r obr q         ( , ) (cos sin )r obr q        

 

Table Ⅱ 

BOUNDARY CONDITIONS AT THE FOUR CORNER POINTS 

Corner Point Boundary Conditions Given Boundary Conditions 

A  , , ,r r ru u    0; 0; 0r ru u     

B  , , ,r r ru u    0; 0; 0r ru u     

C  , , ,r r ru u    0; 0; 0r ru u     

D  , , ,r r ru u    0; 0; 0r ru u     

C. Stress Distribution 

a: The Factor of Inner Radius 

Given that the tectonic stress coefficient λ is 1.8, the mining 

depth md is 1000m, the mining position θi is 0°, the advancing 

angle θe is 120°, the thickness of circular rock stratum st is 

20m and the inner radius rib is assigned as 5m, 10m, 20m, 

40m, 50m, 60m, 80m and 100m, respectively, the stress 
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components along middle circumference with different 

inner radii are presented as follows. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.  The radial stress distribution along middle circumference with 

different inner radii 

 

Fig. 3 shows the radial stress distribution along middle 

circumference with different inner radii. The results show that 

the radial stress at left boundary or right boundary increases 

gradually with the increasing of inner radius. For instance, the 

radial stresses at left boundary and right boundary increase 

from 18.65MPa and 11.60MPa to 73.05MPa and 69.08MPa 

when the inner radius increases from 5m to 100m. The radial 

stress increases by nearly 3 ~ 5 times at left boundary or right 

boundary when the inner radius increases by 19 times, that is, 

from 5m to 100m. It can be obtained that the growth rate of 

radial stress is much smaller than that of inner radius. It 

should be noted that the peak value of radial stress along 

middle circumference does not always increase with the 

increasing of inner radius. The peak value of radius stress 

decreases from 41.61MPa to 38.14MPa when the inner radius 

increases from 5m to 20m, and it increases from 40.61MPa to 

69.08MPa when the inner radius increases from 40m to 100m. 

Meanwhile, the position of peak value of radius stress varies 

with different inner radii. For example, the position of peak 

value of radial stress is located from θ=35° to θ=0° when the 

inner radius increases from 5m to 100m. Therefore, it can be 

concluded that the peak value of radius stress will move 

toward the right boundary with the increasing of inner radius. 

It can be seen from Fig. 4 that the circumferential stress 

distribution curves with different inner radii are basically 

the same. With the increasing of inner radius, the value of 

circumferential stress increases gradually, and so does the 

peak value of circumferential stress. An example shows 

that the peak value of circumferential stress increases from 

60.99MPa to 329.94MPa when the inner radius increases 

from 5m to 100m. The circumferential stress increases by 

about 4 times when the inner radius increases by 19 times. 

Obviously, the growth rate of circumferential stress is much 

smaller than that of inner radius. It should be worth noting that 

the position of peak value of circumferential stress is around 

at θ=90° for all inner radii except the inner radius being 5m. 

The position of peak value of circumferential stress is easy 

to cause circumferential compression failure in circular 

rock stratum. Therefore, more observation should be made 

and more measures should be taken around the location of 

θ=90° for avoiding the disastrous accidents during the coal 

mining advancing in circular rock stratum. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.  The circumferential stress distribution along middle circumference 

with different inner radii 

 

The peak value of shear stress basically increases with 

the increasing of inner radius in Fig. 5. For example, the 

peak value of shear stress increases from 23.97MPa to 

97.65MPa when the inner radius increases from 5m to 100m. 

The shear stress increases by about 3 times when the inner 

radius increases by 19 times. Obviously, the growth rate of 

shear stress is also much smaller than that of inner radius. It is 

noteworthy that the shear stress at right boundary increases 

from 22.75MPa to 42.29MPa when the inner radius increases 

from 5m to 40m, but it is stable at about 43MPa when the 

inner radius increases from 40m to 100m. However, the shear 

stress at left boundary is increasing with the increasing of 

inner radius when the inner radius exceeds 40m. Thus, it can 

be concluded that the effect of inner radius on shear stress is 

not significant for right boundary while the effect is 

significant for left boundary. The results also show that the 

position of peak value of shear stress is stable within the range 

of θ=5°~6° under different inner radii, indicating that the 
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effect of inner radius on the position of peak value of shear 

stress is not significant. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5.  The shear stress distribution along middle circumference with 

different inner radii 

 

b: The Factor of Tectonic Stress Coefficient 

Given that the inner radius rib is 20m, the mining depth md 

is 1000m, the mining position θi is 0°, the advancing angle θe 

is 120°, the thickness of circular rock stratum st is 20m and 

the tectonic stress coefficient λ is assigned as 1.2, 1.5, 1.8, 

2.1 and 2.4, respectively, the stress components along 

middle circumference with different tectonic stress 

coefficients are presented as follows. 

 
(a) 

 
(b) 

Fig. 6.  The distribution of radial stress along middle circumference with 

different tectonic stress coefficients 

 

According to Fig. 6, the curves of radial stress 

distribution are basically the same with different tectonic 

stress coefficients. The value of radial stress increases 

gradually with the increasing of tectonic stress coefficient, 

so does the peak value of radial stress. For example, the 

peak value of radial stress increases from 27.95MPa to 

48.42MPa when the tectonic stress coefficient increases 

from 1.2 to 2.4. The radial stress increases by about 66% 

while the tectonic stress coefficient increases by 100%. 

Hence, the growth rate of radial stress is less than that of 

tectonic stress coefficient. Moreover, the position of peak 

value of radial stress changes from θ=15° to θ=18° with the 

increasing of tectonic stress coefficient. It can be 

concluded that the position of peak value of radial stress 

will move toward the left boundary with the increasing of 

tectonic stress coefficient, but not significantly. 

 
(a) 

 
(b) 

Fig. 7.  The circumferential stress distribution along middle circumference 

with different tectonic stress coefficients 

 

The effect of tectonic stress coefficient on 

circumferential stress is different for different cross 

sections according to the curves in Fig. 7. The 

circumferential stress in cross sections (θ=0°~34°) 

decreases while the circumferential stress in cross sections 

(θ=34°~120°) increases with the increasing of tectonic 

stress coefficient. For instance, the circumferential stress 

at right boundary (θ=0°) decreases from 55.67MPa to 

53.59MPa when the tectonic stress coefficient increases 

from 1.2 to 2.4, while the circumferential stress at left 

boundary (θ=120°) increases from 55.19MPa to 91.79MPa. 

It can be concluded that the circumferential stress around 

right boundary decreases with the increasing of tectonic 

stress coefficient, whereas the circumferential stress far 

away from right boundary increases. At the same time, the 

position of peak value of circumferential stress is also 

slightly different with the increasing of tectonic stress 

coefficient. The position of peak value changes from 

θ=88° to θ=91° when the tectonic stress coefficient 

increases from 1.2 to 2.4. It can be a conclusion that the 

peak value of circumferential stress moves toward left 

boundary, but not significantly. Therefore, more 

observation should be made and more measures should be 

taken around the location of θ=90° for avoiding disastrous 

accidents during the coal mining advancing in circular 

rock stratum. 

The effect of tectonic stress coefficient on shear stress is 

either not the same for different cross sections according 

to the curves in Fig. 8. The shear stress in cross sections 

(θ=0°~30° and θ=45°~105°) increases with the increasing 

of tectonic stress coefficient, but the shear stress in other 

cross sections decreases with the increasing of tectonic 

stress coefficient. For example, the shear stress at right 
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boundary (θ=0°) increases from 21.53MPa to 50.15MPa, 

while the shear stress at left boundary (θ=120°) decreases 

from 9.85MPa to -4.39MPa when the tectonic stress 

coefficient increases from 1.2 to 2.4. It indicates that the 

shear stress around right boundary increases with the 

increasing of tectonic stress coefficient, while the shear 

stress far away from right boundary decreases. Meanwhile, 

the position of peak value changes from θ=11° to θ=7° 

when the tectonic stress coefficient increases from 1.2 to 

2.4. This result suggests that the position of peak value of 

shear stress moves toward right boundary, but not 

obviously. 

 
(a) 

 
(b) 

Fig. 8.  The shear stress distribution along middle circumference with 

different tectonic stress coefficients 

 

c: The Factor of Mining Depth 

Given that the inner radius rib is 20m, the tectonic stress 

coefficient λ is 1.8, the mining position θi is 0°, the advancing 

angle θe is 120°, the thickness of circular rock stratum st is 

20m, and the mining depth md is assigned as 600m, 800m, 

1000m, 1200m, and 1400m, respectively, the stress 

components along middle circumference with different 

mining depths are presented as follows. 

 
(a) 

 
(b) 

Fig. 9.  The radial stress distribution along middle circumference with 

different mining depths 

 

According to Fig. 9, the curves of radial stress 

distribution are basically the same with different mining 

depths. The value of radial stress increases gradually with 

the increasing of mining depth, so does the peak value of 

radial stress. For instance, the peak value of radial stress 

increases from 22.88MPa to 53.39MPa when the mining 

depth increases from 600m to 1400m. The radial stress 

increases by 1.33 times when the mining depth increases 

by 1.33 times as well. In fact, the radial stress for all cross 

sections increases by 1.33 times with the mining depth 

increasing by 1.33 times as well. Therefore, the radial 

stress is linear with the mining depth. Meanwhile, 

regardless of the mining depth, the position of peak value of 

radial stress remains in the same cross section with θ=17°. 

It can be concluded that the mining depth will not change 

the position of peak value of radial stress. 

 
(a) 

 
(b) 

Fig. 10.  The circumferential stress distribution along middle 

circumference with different mining depths 

 

 
(a) 

 
(b) 

Fig. 11.  The shear stress distribution along middle circumference with 

different mining depths 

 

From Fig. 10 and Fig. 11, the effect of mining depth on 

circumferential stress or shear stress is the same as that of 

mining depth on radial stress. There is also a linear 

relationship between the circumferential stress and the 

mining depth, or, between the shear stress and the mining 

depth. Moreover, the mining depth will not change the 

position of peak value of circumferential stress or shear 

stress. 

d: The Factor of Advancing Angle 

Given that the inner radius rib is 20m, the tectonic stress 

coefficient λ is 1.8, the mining depth md is 1000m, the mining 

position θi is 0°, the thickness of circular rock stratum st is 
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20m, and the advancing angle θe is assigned as 30°, 60°, 90°, 

120°, 150° and 180°, respectively, the stress components 

along middle circumference with different advancing 

angles are presented as follows. 

 
(a) 

 
(b) 

Fig. 12.  The radial stress distribution along middle circumference with 

different advancing angles 

 

As can be seen from Fig. 12, the distribution of radial stress 

varies with different advancing angles. The radial stress first 

increases and then decreases along circumferential direction 

when the advancing angle is less than 90°, while the radial 

stress increases and decreases alternately along 

circumferential direction when the advancing angle is greater 

than 90°. In particular, when the advancing angle is equal to 

180°, the radial stress distribution is symmetrical when the 

loading and constraint in numerical modeling are symmetrical. 

The peak value of radial stress increases with the increasing of 

advancing angle. For example, the peak value of radial stress 

increases from 27.86MPa to 39.14MPa when the advancing 

angle increases from 30° to 180°. Obviously, the advancing 

angle increases by 5 times while the peak value of radial stress 

increases by only 40%. Therefore, the growth rate of radial 

stress is much smaller than that of advancing angle. Besides, 

the position of peak value of radial stress is far away from 

right boundary with the increasing of advancing angle, and 

then tends to be stable in the cross section with θ=17°. 

 
(a) 

 
(b) 

Fig. 13.  The circumferential stress distribution along middle 

circumference with different advancing angles 

 

The variations of circumferential stress are not the same 

with different advancing angles as shown in Fig. 13. For 

example, the circumferential stress first decreases and then 

increases along circumferential direction when the advancing 

angle is less than 90°, while it decreases and increases 

alternately when the advancing angle is greater than 120°. 

Similar to radial stress, the distribution of circumferential 

stress is also symmetrical when the advancing angle is equal 

to 180°. The value of circumferential stress increases 

gradually with the increasing of advancing angle, as well 

as the peak value of circumferential stress. For example, the 

peak value of circumferential stress increases from 

22.61MPa to 101.62MPa when the advancing angle increases 

from 30° to 180°. The advancing angle increases by 5 times 

while the peak value of circumferential stress increases by 3.5 

times. Thus, the advancing angle not only affects the 

distribution of circumferential stress, but also significantly 

affects the value of circumferential stress. Meanwhile, the 

position of peak value of circumferential stress varies with 

the increasing of advancing angle. The peak value of 

circumferential stress is at right boundary while the advancing 

angle is less than 60°, but it is located in the cross section with 

θ=90° when the advancing angle is greater than 60°. 

Therefore, more observation should be made and more 

measures should be taken at right boundary when the 

advancing angle is less than 60°, while more observation 

should be made and more measures should be taken in the 

cross section with θ=90° when the advancing angle is 

greater than 60°. 

 
(a) 

 
(b) 

Fig. 14.  The shear stress distribution along middle circumference with 

different advancing angles 

 

 
Fig. 15.  The relationship between peak value of shear stress and advancing 

angle 

 

According to Fig. 14, the shear stress increases and 

decreases alternately along circumferential direction, 

especially for large values of advancing angle. Contrary to 
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radial stress and circumferential stress, the distribution of 

shear stress is anti-symmetrical when the advancing angle 

is equal to 180°. Fig. 15 shows the relationship between 

peak value of shear stress and advancing angle. As can be 

seen from Fig. 15, the peak value of shear stress first 

increases and then decreases with the increasing of 

advancing angle. At the same time, the position of peak 

value of shear stress changes from θ=0° to θ=8° when the 

advancing angle increases from 30° to 180°. The 

conclusion is that the position of peak value of shear stress 

tends to be far away from right boundary, but not 

significantly. 

e: The Factor of Mining Position 

This part analyzes the cross sections with the same angle 

from right boundary for different mining positions in 

numerical modeling, which is defined as θ-θi. Given that the 

inner radius rib is 20m, the tectonic stress coefficient λ is 1.8, 

the mining depth md is 1000m, the advancing angle θe is 120°, 

the thickness of circular rock stratum st is 20m and the mining 

position θi is assigned as 0°, 15°, 30°, 45° and 60°, 

respectively, the stress components along middle 

circumference in different mining positions are presented 

as follows.  

 
(a) 

 
(b) 

Fig. 16.  The radial stress distribution along middle circumference with 

different mining positions 

 

 
Fig. 17.  The variation of radial stress with different mining positions 

 

According to Fig. 16, the radial stress increases and 

decreases alternately along circumferential direction. Here, 

the radial stress at right boundary, left boundary and the peak 

value of radial stress are mainly analyzed, which is shown in 

Fig. 17. The results show that the radial stresses in these cross 

sections decrease first and then increase with the increasing of 

mining position. Obviously, a minimum value of radial stress 

exists nearby the mining position at the angle of 30°. In fact, 

the distribution of radial stress is symmetrical under the 

loading and restrain in numerical modeling when the mining 

position is at the angle of 30°. Therefore, the right boundary 

should be located around the angle of 30° for coal mining in 

circular rock stratum. It should be noted that there are two 

equal peak values of radial stress when the mining location is 

at the angle of 30°. The position of peak value is close to the 

right boundary when the mining position is smaller than 30°, 

while it is close to left boundary when the mining position is 

larger than 30°. 

 
(a) 

 
(b) 

Fig. 18.  The circumferential stress distribution along middle 

circumference with different mining positions 

 

 
Fig. 19.  The variation of circumferential stress with different mining 

positions 

 

The circumferential stress decreases and increases 

alternately along circumferential direction as shown in Fig. 18. 

Still, the circumferential stress at right boundary, left 

boundary and the peak value of circumferential stress are 

mainly analyzed in Fig. 19. The results show that the 

circumferential stress in these cross sections first decreases 

and then increases with the increasing of mining position. A 

minimum value of circumferential stress exists nearby the 

mining position at the angle of 30° as well as the characteristic 

of radial stress. It should be noted that the peak value of 

circumferential stress is located at the highest point of 

numerical modeling for different mining positions. For 

example, the peak value of circumferential stress is located at 

the angle of 75° from right boundary when the mining 

position is equal to 15°, which is the highest point in 

numerical modeling. Therefore, more observation should 

be made and more measures should be taken at the 

anticline ridge in circular rock stratum during the mining 

advancing. 

The shear stress decreases and increases alternately 

along circumferential direction as shown in Fig. 20. 

Obviously, the shear stress has negative and positive 

values. Similarly, the shear stress at right boundary, left 
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boundary and the peak value of shear stress are mainly 

analyzed in Fig. 21. The positive peak values of shear 

stress increase while the negative peak values decrease 

with the increasing of mining position. The feasible 

position for right boundary is at the angle of 30° in circular 

rock stratum. On the other hand, the variation of the position 

of positive peak value is just the opposite to that of 

negative peak value. Therefore, the mining position has 

significant effect on the position of peak value of shear 

stress. 

 
(a) 

 
(b) 

Fig. 20.  The shear stress distribution along middle circumference with 

different mining positions 

 

positive peak value

left boundary

right boundary

negative peak value

 
Fig. 21.  The variation of shear stress with different mining positions 

 

f: The Factor of Thickness of Circular Rock Stratum 

Given that the inner radius rib is 20m, the tectonic stress 

coefficient λ is 1.8, the mining depth md is 1000m, the 

advancing angle θe is 120°, the mining position θi is 0° and the 

thickness of circular rock stratum st is assigned as 10m, 15m, 

20m, 25m and 30m, respectively, the stress components 

along middle circumference with different thicknesses of 

circular rock stratum are presented as follows. 

Fig. 22 shows the radial stress increasing and decreasing 

alternately along circumferential direction. The radial stress 

increases with the increasing of thickness of circular rock 

stratum in some cross sections, while it decreases in other 

cross sections. Fig. 23 shows the radial stress distribution with 

different thicknesses of circular rock stratum in four cross 

sections (θ=0°, 30°,90°,120°). It can be seen that the radial 

stress at right boundary (θ=0°) or left boundary (θ=120°) 

decreases with the increasing of thickness of circular rock 

stratum, but the radial stress in cross sections (θ=30° and 90°) 

increases. Clearly, the radial stress in cross sections within 

the range of 30° ~ 90° increases with the increasing of 

thickness of circular rock stratum. Fig. 24 shows the variation 

of peak value of radial stress with different thicknesses of 

circular rock stratum. Obviously, the peak value of radial 

stress first decreases and then increases with the increasing of 

thickness of circular rock stratum. A minimum value of radial 

stress exists when the thickness of circular rock stratum is 

20m. In addition, the position of peak value of radial stress 

moves toward left boundary with the increasing of thickness 

of circular rock stratum, but not significantly. For example, 

the position of peak value of radial stress changes from θ=8° 

to θ=23° when the thickness of circular rock stratum 

increases from 10m to 30m. 

 
(a) 

 
(b) 

Fig. 22.  The radial stress distribution along middle circumference with 

different thicknesses of circular rock stratum 

 

θ=0°

θ=30°

θ=90° θ=120°

 
Fig. 23.  The radial stress distribution with different thicknesses of circular 

rock stratum in four cross sections 

 

 
Fig. 24.  The variation of peak value of radial stress with different 

thicknesses of circular rock stratum 

 

Fig. 25 shows the variation of circumferential stress with 

different thicknesses of circular rock stratum. Obviously, the 

circumferential stress decreases and increases alternately 

along circumferential direction. The peak value of 

circumferential stress decreases with the increasing of 

thickness of circular rock stratum. For instance, the peak 

value of circumferential stress decreases from 142.85MPa to 

64.83MPa when the thickness of circular rock stratum 

increases from 10m to 30m. Meanwhile, the position of peak 

value of circumferential stress changes from 90° to 97° when 

the thickness of circular rock stratum increases from 10m to 

30m. It can be concluded that the increasing of thickness of 

circular rock stratum makes the position of peak value of 
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circumferential stress move toward the left boundary, but not 

significantly. Therefore, the increasing of thickness of 

circular rock stratum plays a positive role in reducing the 

circumferential stress, and the position of peak value of 

circumferential stress is always around the angle of 90°. More 

observation should be made and more measures should be 

taken at the location of θ=90° for avoiding disastrous 

accidents during the mining advancing in circular rock 

stratum. 

 
(a) 

 
(b) 

Fig. 25.  The circumferential stress distribution along middle 

circumference with different thicknesses of circular rock stratum 

 

Fig.26 shows that the shear stress increasing and 

decreasing alternately along circumferential direction. The 

shear stress within the range of 0°~90° decreases with the 

increasing of thickness of circular rock stratum, so does the 

peak value of shear stress, but it decreases within the range 

of 90°~120°. For example, the peak value of shear stress 

decreases from 59.43MPa to 33.85MPa when the thickness 

of circular rock stratum increases from 10m to 30m. In 

addition, the position of peak value of shear stress is basically 

stable within the range of 6°~7°. Therefore, it can be 

concluded that the thickness of circular rock stratum plays 

a positive role in reducing the value of shear stress, but has 

no significant effect on the position of peak value of shear 

stress. 

 
(a) 

 
(b) 

Fig. 26.  The shear stress distribution along middle circumference with 

different thicknesses of circular rock stratum 

 

IV. FIELD APPLICATION IN FOLD STRUCTURE 

A. Geological Conditions 

No. 2502 mining area is located at the depth of + 860m 

~ + 1200m in China. The thickness of coal seam is within 

the range of 18.2m~54.5m and its average thickness is 

about 31m. The geological conditions in this mining 

project are more complicated because of the geological 

structure, especially the fold structure. The syncline and 

anticline are alternately distributed from north to south 

with a distance of 2600m in this mining project. 

Full-mechanized caving mining method is used for coal 

extractions along the fold structure of syncline and 

anticline. Fig. 27 shows the part of geological sections in 

this mining project. 

 
Fig. 27.  The part of geological section 

 

B.  Numerical Modeling for a Circular Arc-shaped Fold 

Structure 

The schematic diagram of coal extractions is established 

as shown in Fig. 28 based on the geological conditions in 

No.2502 mining area. Here, the fold structure is simplified 

to arc shape, which is similar to that in section Ⅲ. The 

open-off cut is located at the groove point of syncline, and 

the working face is pushed up to the ridge point of 

anticline. The research object is the first overburden above 

the goaf, that is, the red area in Fig. 28. Fig. 29 shows the 

numerical modeling in plane strain problem, and the boundary 

conditions of displacement or stress. The mining depth is 

assigned as 1000m, the thickness of rock stratum is assigned 

as 16.8m, and the tectonic stress coefficient λ is assigned as 2. 

The radius of rock stratum at lower boundary in syncline is 

56.8m, and the radius of rock stratum at lower boundary in 

anticline is 40m. The mesh length in radial and 

circumferential direction is 0.4m and 1°, respectively. The 

physical and mechanical parameters of rock stratum are 

shown in Table Ⅲ. 
q

q  q 

 
Fig. 28.  Schematic diagram of coal extractions in No.2502 mining area 
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Fig. 29.  Numerical modeling of coal extractions from syncline to 

anticline 

 

Table Ⅲ 

PHYSICAL AND MECHANICAL PARAMETERS OF ROCK STRATUM 

Young’s Modulus Poisson’s Ratio Density 

18  109 Pa 0.185 2400 kg/m-3 

C. Stress Analysis for Circular Rock Stratum 

This section analyzes the stress components when the 

working face is pushed upward to 30m, 60m, 90m, 110m, 

130m and 150m, respectively. For feasible analysis, the 

coordinate transformation method is used to convert the 

numerical calculation results from polar coordinate system 

into Cartesian coordinate system. The distribution of 

horizontal stress σx, vertical stress σy, and shear stress τxy are 

shown in Figs. 30-32.  

 
(a) 

 
(b) 

Fig. 30.  The horizontal stress distribution along middle circumference with 

different advancing distances 

 

As can be seen from Fig. 30, the horizontal stress along 

middle circumference is unevenly distributed along the 

upward direction and changes alternately between decreasing 

and increasing. Due to different advancing distances, half of 

the horizontal stress is tensile stress and the other half is 

compressive stress. The tensile stress is mainly distributed in 

the rock stratum in front of the open-off cut, and the 

compressive stress is mainly distributed in the rock stratum 

behind the working face. The maximum value of horizontal 

tensile stress is about 1.43 times than that of initial stress in 

rock stratum in front of open-off cut, which is easy to cause 

tensile fracture for rock stratum. Besides, the maximum value 

of horizontal compressive stress is about 1.75 times than that 

of initial stress in rock stratum behind working face, resulting 

in compression failure for rock stratum. These conclusions 

are basically consistent with the actual break failure of fold 

structure in No.2502 mining area. 

 
(a) 

 
(b) 

Fig. 31.  The vertical stress distribution along middle circumference with 

different advancing distances 

 

As shown in Fig. 31, the vertical stress along middle 

circumference shows an alternating variation between 

increasing and decreasing, which is mainly tensile stress with 

different advancing distances. The maximum value of vertical 

tensile stress is mainly distributed in the rock stratum behind 

working face, and is about 3.71 times than that of initial stress, 

which is easy to cause tensile failure for rock stratum. What’s 

more, the vertical tensile stress at the ridge point is relatively 

reduced when the advancing distance is equal to 150m. These 

results show that, the vertical tensile stress is relatively 

large before working face reaching the ridge point, and it 

decreases when working face reaches or passes through 

the ridge point. Thus, working face should quickly pass 

through the ridge point of anticline during coal extractions for 

avoiding rock break failure under the condition of vertical 

tensile stress. 

 
(a) 

 
(b) 

Fig. 32.  The shear stress distribution along middle circumference with 

different advancing distances 

 

It can be seen that the shear stress along middle 

circumference is unevenly distributed along the upward 

direction and alternates between increasing and decreasing 
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according to Fig. 32. The maximum value of shear stress is 

mainly distributed in the rock stratum behind working face 

with different advancing distances. Thus, there might be shear 

damage or shear failure in the rock stratum behind working 

face during the process of coal extractions. 

V. CONCLUSIONS 

A displacement function is given in polar coordinates to 

solve two partial differential equations with mixed boundary 

conditions in elastic, isotropic and homogeneous rock. 

Subsequently, the displacement function is governed by a 

fourth-order elliptic partial differential equilibrium equation, 

and its numerical solution is obtained by finite difference 

calculation. This paper analyzes the variation of stress 

distribution with different influencing factors according to the 

analytical expressions of stress components in the form of 

displacement function, which is better our understanding of 

the stability of circular rock stratum after coal extractions. 

Finally, this semi-analytical elastic stress solution is applied 

to the fold structure in No.2502 mining area, and the 

dangerous positions are pointed out during the process of coal 

extractions, which is of enormous significance for coal mining 

engineering. 
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