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Theory of Fractional Calculus

Abdulhameed Qahtan Abbood Altai

Abstract—This work aims to introduce a theory of fractional
calculus by using a map k(x) instead of x in the definitions of the
classical derivative and the classical integral. The applicability of
the results obtained is demonstrated using fractional differential
equations.

Index Terms—Fractional function, Fractional continuous,
Fractional bounded, Fractional derivative, Fractional integral,
Fractional differential equation.

[. INTRODUCTION

HE study of fractional calculus was initiated by Leibniz in
1695, when he was asked by L’H"opital about the
derivative of order 1/2 (see e.g., [7], [8], [19], [20]). Since
then, fractional calculus has attracted the attention of
mathematicians, physicists, and engineers, and is regarded as
an effective and powerful tool for modeling nonlinear systems
(see e.g., [2], [4], [6], [9], [10], [12], [15], [16], [17], [18],
[21], [22], [23], [24], [25], [27]); hence, various definitions of
the fractional derivative and the fractional integral have been
introduced (to review these definitions see e.g., [5]). In this
work, we propose a novel theory of fractional calculus by
considering a bijective, uniformly continuous map k(x) in the
definition of the classical derivative instead of the variable x
such that k: R — R is defined by
x%, if x € [0, ),
() = {—(—x)“, ifx € (=00, 0), @
a € (0,1]. Moreover, k: R = R is continuously differentiable
exceptatx = 0,

ax® 1 if x € (0, ),
k'(x) = {does not exit, if x =0, 2
a(—x)%1, ifx € (—o0,0).

The novelty of this theory is that it is a natural extension of
the theory of classical calculus; hence, the rules of fractional
calculus coincide with those of classical calculus such that
there are no inconsistencies or difficulties to handle with.

For the convenience of the reader, we state below the
common inconsistent and inconvenient properties in the other
definitions of the fractional derivatives (see e.g., [1], [3], [11],
[12], [13], [14], [28]):

1) All fractional derivatives, except Caputo’s derivative, do
not satisfy D*(1) = 0 if a is not a natural number.
2) All fractional derivatives do not satisfy

D%(fg) = fD*(g) + gD*(f).
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3) All fractional derivatives do not satisfy

D« — fpa
e g < S2°D =0 0)

4) All fractional derivatives do not satisfy

D%(g ° f) = D*(g)(f () D*(f).
5) All fractional derivatives do not satisfy D*1D%2 f =
Da1+a2f.

6) The term t17¢ in the derivative of [14] is not essential and
there is no physical interpretation of this derivative, i.e.,
the basis of its potential applications is not solid.

II. METHODOLOGY

In this paper, we always assume that the fractional function
(or a-function) is the operator f,: A - R, a € (0,1], defined
by f,(x) =f (K(x)) for a real-valued function f: B — R and
the map x: A - R defined as in Eq. (1) such that k(4) € B.

Now we use the concept of a-function, a € (0,1], to
define the fractional continuity, the fractional boundedness,
the fractional derivative, and the fractional integral.

A. Fractional Continuity
Definition 1. A function f: B — R is said to be a-continuous,
a € (0,1], at x, € A, k(A) € B, if f,:A-> R, a € (0,1], is
continuous at x,, i.e., given any € > 0, there exists § > 0 such
that x € 4 and |[x — x| < 6 imply

llfe () — fa(xoll < € (3)
and we write it as
Jim o (20) = fa (xo0)- 4)

And f:B — R is said to be a-continuous, a € (0,1], on A,
k(A) € B, if f,:A—> R, a € (0,1], is continuous at every
point in A.

Remark 2. The a-continuity, a € (0,1], in Definition 1 means
that f is fractionally continuous of order a, a € (0,1].

Proposition 3. Every continuous function is a-continuous of
order a =1 but not every a-continuous function is
continuous.

Example 4. f(x) = x_11/2

a = 1 but it is a-continuous whenever a € (0,1).

. . 1
1s not continuous at x = > whenever

Proposition 5. Let f: B = R be an a,,-continuous function,
am € (0,1], m € N, on a nonempty set A, x(A) € B. If a,,
converges to a, @ € (0,1], then f is a-continuous, @ € (0,1],
on A.

Theorem 6. Let f,,,: B - R, m €N, as a sequence of a-
continuous functions, a € (0,1], on a nonempty compact set
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A, k(A) € B. If f,: B - R, m € N, converges uniformly to
f:B - R then f is a-continuous, @ € (0,1], on A.

Theorem 7 (Intermediate Value Theorem for Fractional
Functions). If f:[c,d] » R,c <d, is a-continuous, «a €

(0,1], and A € (fa(a)'fa(b)) (01‘ A € (fa(b)'fa(a)))a
k([a,b]) € [c,d], then there exists an x, € (a,b) such that
fa(%0) = 2.
Proof. For z, € (fa (a),fa(b)), a € (0,1], assume that there is
no such x; in (a, b) and let the sets

Ry = {x € [a,b]: fo(x) < 7o},

Ry ={x € [a,b]: fa(x) > 2o},
be such that [a,b] = R; UR,. If x, € R;, by the a-continuity
of f, there exists § > 0 such that ||x —xy|| <& implies
fu(x) <z, and x €R;. So, xo€R, and R, NR, = 0.
Similarly, R, N R, = @. That is, [a, b] is disconnected in R.
But [a, b] is always connected in R and the result follows.
Similarly, we can prove f,(xy) = z, for z, € (f,(b), fy(a))
as well.

B. Fractional Boundedness
Definition 8. A function f: B — R is said to be a-bounded,
a€(0,1], on A, k(A) B, if f,;A-> R, a€(0,1], is
bounded on A, i.e., there exists some M € R such that
[z ()] < M for all x € A.

Remark 9. The a-boundedness, « € (0,1], in Definition 8
means that f is fractionally bounded of order @, a € (0,1].

Proposition 10. Every bounded function is a-bounded of
order & = 1 but not every a-bounded function is bounded.

Example 11. f(x) = le_4

a = 1 but it is a-bounded whenever @ € (0,1).

is unbounded on [0,2] whenever

Proposition 12. Let f: B = R be an a,,-bounded function,
am € (0,1], m € N, on a nonempty set 4, k(4A) € B. If a,,
converges to a, a € (0,1], then f is a-bounded, @ € (0,1], on
A.

Theorem 13. Let f,,: B - R, m € N, be a sequence of a-
bounded functions, @ € (0,1], on a nonempty compact set
A, k(A) € B. If f,,: B> R, m €N, converges uniformly to
f:B - R then f is a-bounded, a € (0,1], on A.

Theorem 14. If f:[c,d] - R is a-continuous, @ € (0,1], on
[a,b], k([a,b]) € [c,d], then f is a-bounded, @ € (0,1], on
[a,b].

Proof. Assume that f is not a-bounded, a € (0,1], on [a, b],
i.e., there exists x,, € [a, b] such that ||f,(x;,)|| > m for all
m € N. Since [a,b] is compact, there is a convergent
subsequence {xmk} of {xp} such that x,, — x,, as k - oo,
and x, € [a, b] by the Bolzano-Weierstrass Theorem. Since f
is a-continuous, a € (0,1], at x,, then limk_)oofa(xmk) =
f (x0) which contradicts with || fa (xmk)” > my, forall k € N.

Theorem 15 (Extreme Value Theorem for Fractional
Functions). If f:[c,d] » R is a-continuous, a@ € (0,1], on
[a,b], k([a,b]) € [c,d], then f has an absolute a-maximum
value and an absolute a-minimum value, ¢ € (0,1], on [a, b].
Proof. Let M = sup,ejqpfa(x), @ € (0,1]. Assume that
fo(x) < M, x € [a,b]. Then g,(x) = YT

and by Theorem 14, g is a-bounded, a € (0,1], and for some
K>0, g,(x)<K, xe€lab]. Thus, f,(x)< M—%,
X € [a, b]. Since M is the supremum of f,, a € (0,1], then
M<M- % < M which is a contradiction. Thus, there is an
Xy € [a,b] such that f,(xy) = M, a € (0,1]. Similarly, we
can prove that there is an x,, € [a,b] such that f,(x,,) =
infxe[a,b]fa(x)a a€ (0’1]~

1S a-continuous

Remark 16. The a-maximum value and a@-minimum
value, @ € (0,1], in Theorem 15 mean that the function f has
a fractional maximum value and a fractional minimum value
of order a, a € (0,1].

C. Fractional Derivative

Definition 17. Let f:] — R be a function, where ] € R is an
interval. We say that a real number L,, a € (0,1], is an a-
derivative, @ € (0,1], of f at xo €1, k(I) €/, and f is a-
differentiable, @ € (0,1], at x, if f:I > R,a € (0,1], is
differentiable at x,, i.e., given any & > 0, there exists § =
&(g) > 0 such that if x € [ satisfies 0 < [|x — x,|| < &, then

o)~ Sl <, -

X — Xg

In other words, if we denote D®f(x,) for L., a € (0,1], we
can define the a-derivative, @ € (0,1], of the function f at x,

by
D fey) = lim 22 I ﬁo ) ©)

Lq

provided that the limit exists.

Remark 18. The a-derivative D*f, a € (0,1], in Definition
17 is the fractional derivative of f of order @, a € (0,1].

Proposition 19. Every differentiable function is a-
differentiable of order ¢ = 1 but not every a-differentiable
function is differentiable.

Example 20. f(x)=—— is not differentiable at x =5
whenever ¢ = 1 but it is a-differentiable whenever a € (0,1).

Proposition 21. Suppose that f: B — R is a,,-continuous on a
nonempty set A and a,,-differentiable, a,, € (0,1], m € N, at
Xy € A, k(A) € B. If a,;, converges to a, a« € (0,1], then f is
a-differentiable, a € (0,1], at x,.

Theorem 22. Let f,,:B - R, m €N, be a sequence of a-
continuous, a-differentiable functions, « € (0,1], on a
nonempty compact set A, k(4) € B. If limy, o finq(xo)
exists for some x, € A and D*f,,, converges uniformly on 4,
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then f,,, converges uniformly on 4 and
lim Df,,(x) = D% (lim f;,(x)). 7)
n—oo n—oo

Theorem 23. Let f,g:] - R be a-differentiable functions,

a € (0,1], at x, €1, where I and ] are intervals such that

k(I) € J.Then

1) If f is differentiable at k, and x is differentiable at x,,
then D (xo) = fo(x0)K' (o).

2) If f(x) =c, where c is a constant, for all x € I, then
D*f(x,) = 0.

3) D%*(cf)(xo) = cD*f(xy), where c is a constant.

4) D*(af + bg)(xy) = aD*f(xy) + bD%g(x,), for all
a,b € R.

5) DU(fg)(x0) = goD%f (xo) + fuD*g (xo).

6) D“ (5) (xo) = Ga(x)D¥f (x0)—fa(x0)D g(xo)’ if g (x0) # 0.

9%(x0)

Proof. For part (1), we have
D*f(x,) = lim

X—X0

fa () — fa(x0)
X — X,
fr(x)) = f(k(x))
X — X,
k() = f(re(x)) I K (x) — k(xo)
im
K(x) —k(xy) xox x—xq
= f’(’c(xo)) K'(xo)
= fa(x0) k' (o).
The proofs of parts (2),(3), and (4) follow directly from the
definition 17. For (5), we have
Da(fg)(xo) — xlir};lo (faga)(x))c — )(C};aga)(xo)

- lim ga(x)(fa(x) - fa(xo)) + fa(xo)(ga(xa) - ga(xo))

= lim
X—-Xg

a K ()~ (xg)

X-X0 X — xO
a\X) = JaX
= lim g,(x) lim f—( ) ~ fa(xo)
X—Xg X—Xg X — Xg

. a(xe) = ga(xo)
+ fa (%) ijrgo—“ ';_xoa .

= ga(x)D*f (x0) + fo(x)D*g(x0)-
And to prove part (6),

fa(X) _ fa(x0)

D« (g) (xo) = lim 9=&)_ 9a(*0)

x->xg X — X
= lim fa(x)ga(xﬁ) - ga(x)fa(xo)
=20 Ga(2)Ga(x0) (x — xo)

=1 . fa(x)_fa(xo)
= lim lim
X—Xg ga(x) X-Xq X — Xp
li goc(x) - goc(xo) . fa(xo)
— 11m m
X=Xo X = Xp x=x0 Jo (%) o (o)
_ 9a(xg)D¥f (x0) — fa(x0)D*g(x0)

9% (xo)

Theorem 24. If f:] - R is a-differentiable, a € (0,1], at
Xo € I, where I and J are intervals such that x(I) € J, then f
is a-continuous, a € (0,1], at x,.

Proof. Since D*f (x,), a € (0,1], exists and for all x € I, x #
X, that

Fa0O) = fulxo) = (%) G — o).
Then
i () = o) = i (0 iy 1)
= D“f(xo).O = 0.
Thus

xh—gclofa (x) = fa (xo)-

Theorem 25 (Chain Rule for Fractional Derivative). Let
f:Ji = Rand g:J, = R be such that f,(J,) € J,, where J;and
J, are intervals. If f is a-differentiable, @ € (0,1], at x, € I,
k() € J;, and g is differentiable at f, (x,), then

D¥(g © f)(xo) = g'(fule))D*f (o). ®)
Proof. Since g is differentiable at z, = f,(x,), a € (0,1],
there exists g’ (z,) such that
im 9(z0 +42) — g(20) _

Jim 7 9'(2o).
Define h by
+ 4z) —
h(dz) = 9(zo j) 9(z0) _ ' (z0).
z
Then

9(20 + 42) — g(20) = (9'(20) + h(42))4z.
Taking Az = f, (xq + Ax) — f,(x,) with Ax # 0, we get
g(fa (xo + Ax)) - g(foc(xo))
= (g (fux0)) +h(42)) (fu o + A) — fox0)).
Dividing both sides by Ax yields
g(foc(xo + Ax)) - g(fa(xo))

Ax
xo +4x) — f,(x
= (g’(fa(xo))+h(4z))<f“( o A) Jul ")).
x
Since f is a-differentiable, a € (0,1], at x,, it is a-
continuous, «a € (0,1], at x,. Letting Ax — 0, then 4z — 0,
and consequently that h(4z) — 0. Then,
lim g(foc(xo + Ax)) - g(foc(xo))

Ax—0 Ax

fa(xo + Ax) - fa(xo)
Ax

= 9'(fu(x)) Jim
x—0
implies that

D%(g ° f)(xo) = g’(fa(xo)) D%f (xo).

Fractional Derivative of Certain Functions of Ordera,
a € (0,1]

anx %1, if x € (0, 00),
1) D*(x™) =< does not exist, ifx=0,
an(—=1)" 1(—x)*""1, ifx € (— o0,0).
ax®1lex”, ifx € (0,00),
2) D%(e*) = does not exist, ifx =0,
a(—x)*"te= 0% ifx € (= ,0).
a .
3) D“(ln(x)) _ {;, ifx € (—o0,0) U (0, ),
does not exist, ifx = 0.
aln(a)x* ta*®, if x € (0, 00),
4) D%(a*) = { does not exist, ifx=0,

aln(a)(—x)*1a~ 9% ifx € (= o,0).
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a

5) D%(logyx) = {r if x € (—0,0) U (0, ),

does not exist, ifx = 0.
6) D%*(sin(x)) =
ax®* tcos(x%), if x € (0,00),
does not exist, ifx =0,
a(—x)*"1cos((—x)%), ifx € (= ,0).
7) D%(cos(x)) =
—ax* Lsin(x%), if x € (0, ),
does not exist,, ifx =0,
a(—x)*1sin((—x)%), ifx € (— o,0).
8) D%*(sinh(x)) =
ax®* tcosh(x%), if x € (0,00),
does not exist, ifx =0,
a(—x)*"1cosh((—x)%), ifx € (—oo,0).
9) D%(cosh(x)) =
ax® tsinh(x%), if x € (0, 00),
does not exist, ifx =0,
—a(—x)*"1sinh((—x)*"1), ifx € (—oo,0).

Definition 26. Let f:] — R be a function, where ] € R is an
interval, and let 8 € (n,n + 1],n € N. The B-derivative of f
atx, € I, k(I) €], is defined by

(n—-1) _ (n—-1)
Dif (x°)=JlTo(f )“(xi—;(cf LD )

a € (0,1], provided that the limit exists, where f™~1 is the
(n — 1)™ derivative of f.

Remark 27.

(1) The B-derivative D f in Definition 26 is the fractional
derivative of f of order 8, B € (n,n+ 1], n € N.

() If f®™=D s differentiable at wx(x) and x(x) is
differentiable at x,, then

(Fm ) @)~ (F™D) (xo)

DA f(x,) = Jim

—X X — xo
e PO () — £ (k) (o)
XX X — Xg
fFO00) = FM V) | x(x) = K(xo)
= lim
K(x)-K(xg) K(x) — K(xo) X—Xo X — Xy

= £ (xo) K’ (xp)-

Proposition 28. Every (n + 1)™ differentiable function is -
differentiable of order § =n+ 1, n € N but not every f-
differentiable function, § € (n,n+ 1), n €N is (n+ 1)th
differentiable.

Example 29. f(x) = ln(x —%) has no second derivative at
X = %but it is B-differentiable whenever 8 € (1,2).

Proposition 30. Suppose that f: B = R is 8,,-continuous on a
nonempty set A and f3,,-differentiable, B,, € (0,1], m € N, at
Xy € A, k(A) € B. If B,, converges to 8, B € (0,1], then f is
B-differentiable, € (0,1], at x.

Theorem 31. Let f,,: B> R, m € N, be a sequence of f3-
continuous, f-differentiable functions, § € (n,n+ 1], n € N,

on a nonempty compact set A, k(A)<B. If
lim,,, o f,,(lfla_l) (x,) exists for some x, €A and DFf,
converges uniformly on A, then f,, converges uniformly on A

and
Jim DP£,,(x) = DF ( lim f,, ().

Theorem 32 (Rolle’s Theorem for Fractional Derivative).
If filc,d] > R, c<d, is a-differentiable, a € (0,1], on
(a,b) and a-continuous, a € (0,1], on [a,b] , x([a,b]) S
[c,d], with f,(a) = f,(b), then D*f(x,) = 0 for some x, in
(a,b).
Proof. By Theorem 15 that f,:[a,b] > R, @ € (0,1], has a
finite minimum value m and a finite maximum value M on
[a,b]. If m =M, then f, is a constant on (a,b) and
D*f(x) =0 for all x € (a,b). If m+= M, then either
fulx,) =m or f,(x,) =M for some x, € (a,b) because
fa(a) = fa(b) Suppose fa(xo) =m. Then fa(xo + 8) -
fa(x,) = 0 for all € such that x, + € € (a, b). Therefore,

. fa(xo-l_‘g)_fa(xo)

lim >0,

e-0t &

if >0,

and

lim fa(xo + 8) _fa(xo) <

£-07

Thus, D*f(x,) = 0.

0, if e<O.

Theorem 33 (Mean Value Theorem for Fractional
Derivative). If f: [c,d] - R is a-differentiable, a € (0,1], on
(a,b), k([a,b]) € [c,d], and a-continuous, a € (0,1], on
[a, b], then

() — k(@)D F (x) = (ful®) — fau(@)K'(x,),
for x, € (a, b).
Proof. Let h,: [a, b] = R be defined by

a b) - a
@) = o) = w0 1D
a € (0,1]. Then

« _ha v Ja(B) = fo(@)
D%h(x) = D%f(x) — k'(x) x(b) = x(a) "
Note that h is a-continuous, @ € (0,1], on [a,b] and a-
differentiable, @ € (0,1], on (a,b) with h,(a) = h,(b). By
Theorem 30, there is x, € (a, b) such that D*h(x,) = 0 and

a b) — a
D (x,) = x'(xo)f—,{gbi - ’;(El“)).

(10)

D. Fractional Integral

Definition 34. Let f:[c,d] >R be an a-bounded
function, @ € (0,1], on [a,b], k([a,b]) € [c,d], and let
P = {x; }}i=, be a partition of [a, b] such that a = x, < x; <
X, <+ < x, = b. The a-Riemann sum, a € (0,1], of f over
P is defined by

n
SalfiP) = D a0kt = ¥ia),
i=1
for any selected point x; € [x;_q, x;].

(11D

Definition 35. We say that f:[c,d] » R is an a@-Riemann
integrable function, a € (0,1], on [a,b], x([a,b]) € [c,d],
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and a real number I, is the a-definite integral, @ € (0,1], of f
over [a, b] if for any & > 0, there exists § = §(¢) > 0 such
that for every partition P = {x}-, of [a,b] with ||P| =
maxq<;<p{X; — X;_1} < 6 and for any x; € [x;_4, x;], then

1S2(F, P) — L]l < (12)
and we write it as
b
a—Lﬂ@w=a=@mxmm
b
- j' £ (K (D) dx. (13)

And we will denote to the set of all a-Riemann integrable
functions on [a, b], k([a, b]) € [c,d], by R.[a, b], a € (0,1].

Remark 36. The a-integral a — fff(x)dx, a € (0,1], in
Definition 35 is the fractional Riemann integral of f of order
a,a € (0,1].

Proposition 37. Every Riemann integrable function is a-
Riemann integrable of order @ = 1 but not every a-Riemann
integrable function is Riemann integrable.

Example 38. f(x) =% is not Riemann integrable on (0,1)

whenever ¢ = 1 but it is a-Riemann integrable whenever
a € (0,1).

Proposition 39. Suppose that f:[c,d] = R is a,,-continuous
and a,,-Riemann integrable, a,, € (0,1], m € N, on [a, b],
k([a, b]) € [c,d]. If a,, converges to a, a € (0,1], then f is
a-Riemann integrable, a € (0,1], on [a, b].

Theorem 40. Let f,,: B > R, m € N, be a sequence of a-
continuous, a-Riemann integrable functions, a € (0,1], on
[a,b], x([a,b]) € [c,d]. If f,,:B > R, m €N, converges
uniformly to f:[c,d] > R then f is a-Riemann integrable,
a € (0,1], on [a, b].

Theorem 41. If f € R,[a, b], « € (0,1], then the a-Riemann
integral, @ € (0,1], of f is unique.
Proof. Assume that I,; and [,, are a-Riemann integrals,
a € (0,1], of f and let € > 0 be given. Then for i = 1,2, there
exists 6; = §;(€/2) > 0 such that

€
1Pl <& = [|So(f,P) = Lol < >
where P is any partition of [a, b]. Letting § = min{d,, §,}, we
get
0< ||1a,1 - a,2|| = ||1a,1 _Sa(f! P) + Sa(f’ P) - la,Z”
S‘E“Ia,}g_ Sa(f:P)” + ”Sa(f,P) - 105,2”
< E + E = E&.
Since € was arbitrary, then
0 < |[lgr — Lz < €
holds for all € > 0. Thus, ||10,_1 - Ia,2|| =0and I, = Ig,.

Proposition 42. The a-definite integral, « € (0,1], in (13) can
be written as follows
b Kk(b)
a— f fx)dx =
a

f(o)dr.

k(a)

(14)

Proof. The proof is directly from the Theorem (Change of
Variables for Continuous Integrands) (see e.g., [26]).

Now we use the formula (14) of the fractional integral to
introduce the following theorems.

Theorem 43. Let f, g € R,[a, b], @ € (0,1]. Then
k(a) k(b)
1) f(@dr = —f f(o)dr.
K

k(b) ()
K(a)
2) f(@dr = 0.
k(a)
k(b) Kk (b)
3) cf(r)dr = cf f(@)dr,c € R
Kk(a) Kk(a)
Kk(b) Kk(b) Kk(b)
4) f (f(r) + g(‘r))d‘r = f(dr + f g(o)dr.
Kk(a) Kk(a) Kk(a)
Kk(b) k(c) k(c)
5) f(@dr+ f(D)dr = f(r)dr.
Kk(a) Kk(b) Kk(a)

6) If f is a-continuous on [a, b], then

Kk(b)
min foa0) < PORTO) v f(@dr < max fo (). (15)

7) If f,(x) < go(x) on [a, b], then

Kk(b) Kk(b)
f(Ddr < f

g(@)dr. (16)
k(a)

k(a)

Theorem 44 (Mean Value Theorem for Fractional Definite
Integrals). If f:[c,d] > R is a-continuous «a € (0,1], on
[a, b], k([a, b]) € [c,d], then

Kk(b)

mm>K@_d®L@
for some point x,, € [a, b].
Proof. The proof is directly from (15) and by applying
Theorem 7.

fa(T)dT (7)

Theorem 45 (Fundamental Theorem of Fractional

Calculus).

1) If f:[c,d] » R is a-continuous, a € (0,1], on [a,b],
k([a, b]) € [c,d], and k is continuously differentiable on

[a, b], then

d K(x)
( f (T)df> = fa (), (18)

dr(x) \J @
for each x € [a, b].
2) If f:[c,d] - R is a-differentiable, a € (0,1], on [a, b],
k([a, b]) € [c,d], f' is a-continuous, a € (0,1], on [a, b]
and « is continuously differentiable on [a, b], then

Kk(b)
[ r@dr =1 - f@.
k(a)

Proof. To prove part (1), for any x,x + Ax € [a, b], assume

that k(x + Ax) = k(x) + Ax(x) and let

(19)

K(x)
Fo(x) = f(@dr
k(a)
and
Kk(x)+AKk(x)
F,(x + Ax) = f f(o)dr.
Kk(a)
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for f,:[a,b] > R, @ € (0,1]. Subtracting the last two
equalities gives
1 () +AK(x) K(x)
F(x + Ax) — F,(x) = j f(dr — f(odr
K(;?()x)+mc(x) K@
= f f(r)dr.
K(x)

By Theorem 44, we have
Fu(x + Ax) — F (%) = fo(x,) Ak (x).
for some point x, € [a,b]. Dividing both sides by Ax(x)
gives
E,(x + Ax) — E,(x)
= = = fo(x,)-
Ak(x)
Letting Ax(x) —» 0 (Ax —» 0) on both sides of the equation,
we get

d . Fy(x+ Ax) — F,(x)
drc(x) F(K(x)) - Aicl(l)gl—*O Ax(x)
= Jim o) = fuCo),

where Alimoxo = x by the Squeeze Theorem.
X—
For part (2), let

K(x)
%m=f”fmm

for fy:la,b] » R,a € (0,1]. By part (1), we have that
Ga(x) = f7(x). Thus, there is a constant v such that g, (x) —
fo(x) = v forall x € [a, b]. Since

k(a)

%@=fwfmw=o

and gg(a) — f,(a) =v, then v=—f,(a) and g,(x)—
fu(x) = —f,(a) for all x € [a, b]. Moreover, since g,(b) —

fa(b) = —fo (@), then go(b) = fo(b) — fo(a).
Fractional Integral of Certain Functions of Order o, a € (0,1]

1 +1 n+1
— 1(K (b)) — K (a)).

b
1 a—f x"dx =
b
2) a— f e*dx = e*®) — gx(@,
ab 1
3) a-— f ;dx = ln(lc(b)) — ln(k(a)).
b
4) a— f sin(x)dx = cos(rc(a)) — cos(K(b)).
5 a-— fb cos(x)dx = sin(x(b)) — sin(:c(a)).
b
6) a— f sinh(x)dx = cosh(K(b)) — cosh(rc(a)).
7) a— fb cosh(x)dx = sinh(K(b)) — sinh(lc(a)).

V. APPLICATIONS
Now we apply our results to solve some interesting
fractional differential equations.

Example 46 [14]. The equation y1/? +y =2 4+ 2t3/2 is
converted to
Vij2 + 2Kky1/, = 2K3 + 4xc5/2

because y(1/?) = %K‘ly{ /2 By the method of integral factor,
the general solution is

y12(8) = e (J- (213 + 41c5/2) e’ dic + c),

where c is a constant.

Example 47 [14]. The equation y1/? +/ty = te™*

becomes
K

Yija + 2632y = 21%e”
where y(1/2) = %K‘ly{ /2~ Using the method of integral factor,
the general solution is

—dsr2 2 ST

Vij2(t) = €75 (2 K exp(EK / —K)dK+C),
where c is a constant.

2t
1+t2

Example 48. The equation DY*y+ y =3t with

y1/4(1) = 4 is converted to

8t

Vit Ty = 12

where D/*y = iK_3 ¥1/4- The method of integral factor gives
the general solution

3’1/4(t) = eXp(

3
K 853
(f 12exp = 8s + 8tan~1(s) |s*ds + c),
1

where ¢ is a constant. Plugging the initial condition into the
general solution, we get

3
3’1/4(t) = eXp(

3

+ 8K — 8tan‘1(K)>

K
+8k—8 tan‘l(ic)>

K 853
f 12exp T—Ss+8tan‘1(s) s*ds
1

16
+ 4exp (271 - ?> .

3t2+4t+2

Example 49. The equation D%y = T has the converted

6%
form

. KBK? + 4K+ 2)
y . =
o7 14(yo7— 1)
because D°7y = 0.7x73/7y},. Using the separation of
variables method, the general solution is

3

Yor(£) =1—
J1— 2(=c — 0.00735294(85k2 + 160k + 136)K10/7)

=1-
J1—2(=c — 0.00735294(85t1* + 160t°7 + 136)t)

or

Yor (&) =1+
J1— 2(=c — 0.00735294(85k2 + 160k + 136)K1%/7)

=1+

\/1 — 2(—c —0.00735294(85t14 + 160t°7 + 136)t),
where c is a constant.
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Example 50. The equation 4D3/2y — 8D'/?y + 3t~y = 0 is
transferred to the equation
" ! 3
Y172 = 2Y172 + Y172 = 0.
where D3/%y = —K “'y1), and D%y = —K‘ly{/z

Hence, the general solution is

K K
t) = c,e*cos (—) + c,e¥sin (—)
3’1/2( ) 1 NG 2 NG
1 t1/2 1 t1/2
= c,e**cos| — | + c,e**sin <—>,
1 (\/E) 2 \/E

where c; and c, are constants.

8 2
Example 51. The equation 4y(§) +4y' + 0.6t 3y = et_zz’

t > 0 is converted to the equation
e—K/Z

Yo + Yoe + EJ’o.e = S a3
because y®/% = 0.6k %/3y}s. Using the variation of
parameters method, the homogeneous equation

Yo+ Voo + Vo5 =0
has the complementary solution
Yooc®) = vy +vyK)e ™% = (v, + Vzto'ﬁ)e_t(m/z-

where v,,V, are constants. Then, the fundamental solutions
are
(t) = e K/2 = e—t°'6/2’
-K/2 — to.ae—t°-6/2

Yos,1

Yoe2(t) = ke
and the Wronskian is

W()’o 6,1 J’o 6 2) =Do. 6,1y(,).6,2

14 —_ —-K
—Yo6,1Y062 =€ -

—K/2
Since go(t) = =73 then
t t 2
u, () = — de = —0.625k3 = —0.625t%4,
W()’o.e,b)’o.e,z)
t t 1
() = [2eea®906® (g3 o 5002,

W(J’o.6,1'J’0.6,2)
Thus, the particular solution is
Yo.6(8) = u1(6)y0.61 () + uz(t)y0.6.2(£)

= —1.875k2/3e /2

= —1.875t%4e~t""/2,
and the general solution is

Y0.6(t) = Yo.6,c(t) + Yo,6(t)
= (v; +vyKk)e /2 — 1.875K2/3eF/2
= (v; + v,t06)et"/2 — 1.875¢04e7t"/2,

13 10
Example 52. The equation x3 D3y + x3D%3y — 03y =0
has a transferred Euler differential equation
K*Yos + KYo3 — Yo3 =0
where D'3y =03k 7Pyy; and D°3y = 03k"7/3y,.
Assume that y, 3 = k", where r is a constant. Then
0 =k>yg3 + kY03 — Vo3

=k [k"]" + k[k"] = [£"]
k2 r(r — Dr™ 2] + k[r™ ] — [k"]

= [r? —1]x"
Since k # 0, then r, = =1 and r, = 1. Thus, the general
solution is

Yo3(x) = cik™t + o = €x7%3 + ¢,x03,

where ¢; and c, are constants.

Example 53. The equation D54y — ky = 0 becomes

Vija = 4k*y1,, =0

—3.,11

because D5/4y——lc ¥17s- To find the series solution,

assume that the general solution has the form

[oe]

}’1/4(95) = Z apk™.

n=0

Then

Z (n+ 1D+ 2)a,, k™ — Z 4a,_ k" =0
n=0 n=4

gives
2a, + 6a3k + 12a,k? + 20ask?
+ Z m+ 1D+ 2)a, k™
Z 4a, _,k".
and
a,=az=a,=as =0,
=——————Qy_4, =456, ...
R A T L
produces the formulas
_ 4"a,
%en =5 611.12...(6n — 1)(6n)
_ 4"a,
Gon+1 = 71213, .. (6n)(6n + 1)’
Thus, the general solution is
4K6 42K12
=a |1 T
Y1/4(%) = o [ 56 561112
4nK6n
+ + ces
6....(6n — 1)(6n) ]
4K7 42K13 4nK6n+1
+ bt 4o
% [K 67 1671213 6.7 .. (6n)(6n + 1) ]
3 6n
3 L4 4x7 4253 - 4"x % N
=ttt tsearz T 6....(6n — 1)(6n)
7 13 6n+1
1 4x4 42xx 44

ta |ttt erzs T

T emen+D

VI. CONCLUSION

The theory of fractional calculus has been studied as the
natural extension of the theory of classical calculus. The
fractional derivative and the fractional integral have been
defined using the map k(x) instead of x in the definitions of
the classical derivative and the classical integral respectively.
Moreover, the fractional differential equations have been
solved using the solution methods of ordinary differential
equations.
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