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Abstract—This work aims to introduce a theory of fractional 
calculus by using a map 𝜿(𝒙) instead of 𝒙 in the definitions of the 
classical derivative and the classical integral. The applicability of 
the results obtained is demonstrated using fractional differential 
equations.   
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I. INTRODUCTION 

HE study of fractional calculus was initiated by Leibniz in 
1695, when he was asked by L’Hˆopital about the 

derivative of order 1/2 (see e.g., [7], [8], [19], [20]). Since 
then, fractional calculus has attracted the attention of 
mathematicians, physicists, and engineers, and is regarded as 
an effective and powerful tool for modeling nonlinear systems 
(see e.g., [2], [4], [6], [9], [10], [12], [15], [16], [17], [18], 
[21], [22], [23], [24], [25], [27]); hence, various definitions of 
the fractional derivative and the fractional integral have been 
introduced  (to review these definitions see e.g., [5]). In this 
work, we propose a novel theory of fractional calculus by 
considering a bijective, uniformly continuous map κ(x) in the 
definition of the classical derivative instead of the variable x 
such that κ: ℝ → ℝ is defined by  

                       𝜅(𝑥) =
𝑥 , if 𝑥 ∈ [0, ∞),

−(−𝑥) , if 𝑥 ∈ (−∞, 0),
                    (1) 

𝛼 ∈ (0,1]. Moreover, 𝜅: ℝ → ℝ is continuously differentiable 
except at 𝑥 = 0, 

                 𝜅 (𝑥) =

𝛼𝑥 , if 𝑥 ∈ (0, ∞),

does  not  exit, if  𝑥 = 0,

𝛼(−𝑥) , if 𝑥 ∈ (−∞, 0).

            (2) 

The novelty of this theory is that it is a natural extension of 
the theory of classical calculus; hence, the rules of fractional 
calculus coincide with those of classical calculus such that 
there are no inconsistencies or difficulties to handle with. 

For the convenience of the reader, we state below the 
common inconsistent and inconvenient properties in the other 
definitions of the fractional derivatives (see e.g., [1], [3], [11], 
[12], [13], [14], [28]):  
1) All fractional derivatives, except Caputo’s derivative, do 

not satisfy 𝐷 (1) = 0 if 𝛼 is not a natural number. 
2) All fractional derivatives do not satisfy 

𝐷 (𝑓𝑔) = 𝑓𝐷 (𝑔) + 𝑔𝐷 (𝑓). 
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3) All fractional derivatives do not satisfy  

𝐷 (𝑓/𝑔) =
𝑔𝐷 (𝑓) − 𝑓𝐷 (𝑔)

𝑔
. 

4) All fractional derivatives do not satisfy 
𝐷 (𝑔 ∘ 𝑓) = 𝐷 (𝑔) 𝑓(𝑡) 𝐷 (𝑓). 

5) All fractional derivatives do not satisfy 𝐷 𝐷 𝑓 =
𝐷 𝑓. 

6) The term 𝑡  in the derivative of [14] is not essential and 
there is no physical interpretation of this derivative, i.e., 
the basis of its potential applications is not solid. 
 

II. METHODOLOGY 

 In this paper, we always assume that the fractional function 
(or 𝛼-function) is the operator 𝑓 : 𝐴 → ℝ, 𝛼 ∈ (0,1], defined 
by 𝑓 (𝑥) = 𝑓 𝜅(𝑥)  for a real-valued function 𝑓: 𝐵 → ℝ and 
the map 𝜅: 𝐴 → ℝ defined as in Eq. (1) such that 𝜅(𝐴) ⊆ 𝐵.   
 Now we use the concept of 𝛼-function, 𝛼 ∈ (0,1], to 
define the fractional continuity, the fractional boundedness, 
the fractional derivative, and the fractional integral. 
 

A. Fractional Continuity 

Definition 1. A function 𝑓: 𝐵 → ℝ is said to be 𝛼-continuous, 
𝛼 ∈ (0,1], at 𝑥 ∈ 𝐴, 𝜅(𝐴) ⊆ 𝐵, if 𝑓 : 𝐴 → ℝ, 𝛼 ∈ (0,1], is 
continuous at 𝑥 , i.e., given any 𝜀 > 0, there exists 𝛿 > 0 such 
that 𝑥 ∈ 𝐴 and ‖𝑥 − 𝑥 ‖ < 𝛿 imply   
                                     ‖𝑓 (𝑥) − 𝑓 (𝑥 )‖ < 𝜀                              (3) 
and we write it as 

                              lim
→

𝑓 (𝑥) = 𝑓 (𝑥 ).                                (4) 

And 𝑓: 𝐵 → ℝ is said to be 𝛼-continuous, 𝛼 ∈ (0,1], on 𝐴, 
𝜅(𝐴) ⊆ 𝐵, if 𝑓 : 𝐴 → ℝ, 𝛼 ∈ (0,1], is continuous at every 
point in 𝐴.  
 
Remark 2. The 𝛼-continuity, 𝛼 ∈ (0,1], in Definition 1 means 
that 𝑓 is fractionally continuous of order 𝛼, 𝛼 ∈ (0,1].  
 
Proposition 3. Every continuous function is 𝛼-continuous of 
order 𝛼 = 1 but not every 𝛼-continuous function is 
continuous. 
 

Example 4. 𝑓(𝑥) =
/

 is not continuous at 𝑥 =  whenever 

𝛼 = 1 but it is 𝛼-continuous whenever 𝛼 ∈ (0,1).   
 

Proposition 5. Let 𝑓: 𝐵 → ℝ be an 𝛼 -continuous function, 
𝛼 ∈ (0,1], 𝑚 ∈ ℕ, on a nonempty set 𝐴,  𝜅(𝐴) ⊆ 𝐵. If 𝛼  
converges to 𝛼, 𝛼 ∈ (0,1], then 𝑓 is 𝛼-continuous, 𝛼 ∈ (0,1], 
on 𝐴.    
 
Theorem 6. Let 𝑓 : 𝐵 → ℝ, 𝑚 ∈ ℕ, as a sequence of 𝛼-
continuous functions, 𝛼 ∈ (0,1], on a nonempty compact set 

T
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𝐴, 𝜅(𝐴) ⊆ 𝐵. If 𝑓 : 𝐵 → ℝ, 𝑚 ∈ ℕ, converges uniformly to 
𝑓: 𝐵 → ℝ then 𝑓 is 𝛼-continuous, 𝛼 ∈ (0,1], on 𝐴.   
   
Theorem 7 (Intermediate Value Theorem for Fractional 
Functions). If 𝑓: [𝑐, d] → ℝ, 𝑐 < d, is 𝛼-continuous, 𝛼 ∈

(0,1], and 𝑧 ∈ 𝑓 (𝑎), 𝑓 (𝑏)  or 𝑧 ∈ 𝑓 (𝑏), 𝑓 (𝑎) , 

𝜅([𝑎, b]) ⊆ [𝑐, d], then there exists an 𝑥 ∈ (𝑎, 𝑏) such that 
𝑓 (𝑥 ) = 𝑧 . 
Proof. For 𝑧 ∈ 𝑓 (𝑎), 𝑓 (𝑏) , 𝛼 ∈ (0,1], assume that there is 
no such 𝑥  in (𝑎, 𝑏) and let the sets 

𝑅 = {𝑥 ∈ [𝑎, b]: 𝑓 (𝑥) < 𝑧 }, 
𝑅 = {𝑥 ∈ [𝑎, 𝑏]: 𝑓 (𝑥) > 𝑧 }, 

be such that [𝑎, 𝑏] = 𝑅 ∪ 𝑅 . If 𝑥 ∈ 𝑅 , by the 𝛼-continuity 
of 𝑓, there exists 𝛿 > 0 such that ‖𝑥 − 𝑥 ‖ < 𝛿 implies 
𝑓 (𝑥) < 𝑧  and 𝑥 ∈ 𝑅 . So, 𝑥 ∈ 𝑅  and 𝑅 ∩ 𝑅 = ∅. 
Similarly, 𝑅 ∩ 𝑅 = ∅. That is, [𝑎, 𝑏] is disconnected in ℝ. 
But [𝑎, 𝑏] is always connected in ℝ and the result follows. 
Similarly, we can prove 𝑓 (𝑥 ) = 𝑧  for 𝑧 ∈ (𝑓 (𝑏), 𝑓 (𝑎)) 
as well.  
 

B. Fractional Boundedness 

Definition 8. A function 𝑓: 𝐵 → ℝ is said to be 𝛼-bounded, 
𝛼 ∈ (0,1], on 𝐴, 𝜅(𝐴) ⊆ 𝐵, if 𝑓 : 𝐴 → ℝ, 𝛼 ∈ (0,1], is 
bounded on 𝐴, i.e., there exists some 𝑀 ∈ ℝ such that 
‖𝑓 (𝑥)‖ < 𝑀 for all 𝑥 ∈ 𝐴.  
 
Remark 9. The 𝛼-boundedness, 𝛼 ∈ (0,1], in Definition 8 
means that 𝑓 is fractionally bounded of order 𝛼, 𝛼 ∈ (0,1].  
 
Proposition 10. Every bounded function is 𝛼-bounded of 
order 𝛼 = 1 but not every 𝛼-bounded function is bounded. 
 

Example 11. 𝑓(𝑥) =  is unbounded on [0,2] whenever 

𝛼 = 1 but it is 𝛼-bounded whenever 𝛼 ∈ (0,1).  
 
Proposition 12. Let 𝑓: 𝐵 → ℝ be an 𝛼 -bounded function, 
𝛼 ∈ (0,1], 𝑚 ∈ ℕ, on a nonempty set 𝐴, 𝜅(𝐴) ⊆ 𝐵. If 𝛼  
converges to 𝛼, 𝛼 ∈ (0,1], then 𝑓 is 𝛼-bounded, 𝛼 ∈ (0,1], on 
𝐴.    
 
Theorem 13. Let 𝑓 : 𝐵 → ℝ, 𝑚 ∈ ℕ, be a sequence of 𝛼-
bounded functions, 𝛼 ∈ (0,1], on a nonempty compact set 
𝐴, 𝜅(𝐴) ⊆ 𝐵. If 𝑓 : 𝐵 → ℝ, 𝑚 ∈ ℕ, converges uniformly to 
𝑓: 𝐵 → ℝ then 𝑓 is 𝛼-bounded, 𝛼 ∈ (0,1], on 𝐴.           
 
Theorem 14. If 𝑓: [𝑐, d] → ℝ is 𝛼-continuous, 𝛼 ∈ (0,1], on 
[𝑎, b], 𝜅([𝑎, b]) ⊆ [𝑐, d], then 𝑓 is 𝛼-bounded, 𝛼 ∈ (0,1], on 
[𝑎, b].    
Proof. Assume that 𝑓 is not 𝛼-bounded, 𝛼 ∈ (0,1], on [𝑎, 𝑏], 
i.e., there exists 𝑥 ∈ [𝑎, 𝑏] such that ‖𝑓 (𝑥 )‖ > 𝑚 for all 
𝑚 ∈ ℕ. Since [𝑎, 𝑏] is compact, there is a convergent 
subsequence 𝑥  of {𝑥 } such that 𝑥 → 𝑥 , as 𝑘 → ∞, 
and 𝑥 ∈ [𝑎, 𝑏] by the Bolzano-Weierstrass Theorem. Since 𝑓 
is 𝛼-continuous, 𝛼 ∈ (0,1], at 𝑥 , then lim → 𝑓 𝑥 =

𝑓 (𝑥 ) which contradicts with 𝑓 𝑥 > 𝑚  for all 𝑘 ∈ ℕ. 
 

Theorem 15 (Extreme Value Theorem for Fractional 
Functions). If 𝑓: [𝑐, d] → ℝ is 𝛼-continuous, 𝛼 ∈ (0,1], on 
[𝑎, 𝑏], 𝜅([𝑎, b]) ⊆ [𝑐, d], then 𝑓 has an absolute 𝛼-maximum 
value and an absolute 𝛼-minimum value, 𝛼 ∈ (0,1], on [𝑎, 𝑏].   
Proof. Let 𝑀 = sup ∈[ , ]𝑓 (𝑥), 𝛼 ∈ (0,1]. Assume that 

𝑓 (𝑥) < 𝑀, 𝑥 ∈ [𝑎, 𝑏]. Then 𝑔 (𝑥) =
( )

 is 𝛼-continuous 

and by Theorem 14, 𝑔 is 𝛼-bounded, 𝛼 ∈ (0,1], and for some 

𝐾 > 0, 𝑔 (𝑥) ≤ 𝐾, 𝑥 ∈ [𝑎, 𝑏]. Thus, 𝑓 (𝑥) ≤ 𝑀 −  , 

𝑥 ∈ [𝑎, 𝑏]. Since 𝑀 is the supremum of 𝑓 , 𝛼 ∈ (0,1], then 

𝑀 ≤ 𝑀 − < 𝑀 which is a contradiction. Thus, there is an 

𝑥 ∈ [𝑎, 𝑏] such that 𝑓 (𝑥 ) = 𝑀, 𝛼 ∈ (0,1]. Similarly, we 
can prove that there is an 𝑥 ∈ [𝑎, 𝑏] such that 𝑓 (𝑥 ) =
inf ∈[ , ]𝑓 (𝑥), 𝛼 ∈ (0,1].    
 
Remark 16. The 𝛼-maximum value and 𝛼-minimum 
value, 𝛼 ∈ (0,1], in Theorem 15 mean that the function 𝑓 has 
a fractional maximum value and a fractional minimum value 
of order 𝛼, 𝛼 ∈ (0,1].   

                                                                                            

C. Fractional Derivative 

Definition 17. Let 𝑓: 𝐽 → ℝ be a function, where 𝐽 ⊆ ℝ is an 
interval. We say that a real number 𝐿 , 𝛼 ∈ (0,1], is an 𝛼-
derivative, 𝛼 ∈ (0,1], of 𝑓 at 𝑥 ∈ 𝐼, 𝜅(𝐼) ⊆ 𝐽, and 𝑓 is 𝛼-
differentiable, 𝛼 ∈ (0,1], at 𝑥  if 𝑓 : 𝐼 → ℝ, 𝛼 ∈ (0,1], is 
differentiable at 𝑥 , i.e., given any 𝜀 > 0, there exists 𝛿 =

𝛿(𝜀) > 0 such that if 𝑥 ∈ 𝐼 satisfies 0 < ‖𝑥 − 𝑥 ‖ < 𝛿, then     

                         
𝑓 (𝑥) − 𝑓 (𝑥 )

𝑥 − 𝑥
− 𝐿 < 𝜀.                       (5) 

In other words, if we denote 𝐷 𝑓(𝑥 ) for 𝐿 , 𝛼 ∈ (0,1], we 
can define the 𝛼-derivative, 𝛼 ∈ (0,1], of the function 𝑓 at 𝑥  
by    

                      𝐷 𝑓(𝑥 ) = lim
→

𝑓 (𝑥) − 𝑓 (𝑥 )

𝑥 − 𝑥
                           (6) 

provided that the limit exists.  
 
Remark 18. The 𝛼-derivative 𝐷 𝑓, 𝛼 ∈ (0,1], in Definition 
17 is the fractional derivative of 𝑓 of order 𝛼, 𝛼 ∈ (0,1].   
 
Proposition 19. Every differentiable function is 𝛼-
differentiable of order 𝛼 = 1 but not every 𝛼-differentiable 
function is differentiable. 
 
Example 20. 𝑓(𝑥) =  is not differentiable at 𝑥 = 5 

whenever 𝛼 = 1 but it is 𝛼-differentiable whenever 𝛼 ∈ (0,1).     
 
Proposition 21. Suppose that 𝑓: 𝐵 → ℝ is 𝛼 -continuous on a 
nonempty set 𝐴 and 𝛼 -differentiable, 𝛼 ∈ (0,1], 𝑚 ∈ ℕ, at 
𝑥 ∈ 𝐴, 𝜅(𝐴) ⊆ 𝐵. If 𝛼  converges to 𝛼, 𝛼 ∈ (0,1], then 𝑓 is 
𝛼-differentiable, 𝛼 ∈ (0,1], at 𝑥 .    
 
Theorem 22. Let 𝑓 : 𝐵 → ℝ, 𝑚 ∈ ℕ, be a sequence of 𝛼-
continuous, 𝛼-differentiable functions, 𝛼 ∈ (0,1], on a 
nonempty compact set 𝐴, 𝜅(𝐴) ⊆ 𝐵. If lim → 𝑓 , (𝑥 ) 
exists for some 𝑥 ∈ 𝐴 and 𝐷 𝑓   converges uniformly on 𝐴, 
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then 𝑓  converges uniformly on 𝐴 and   

                     lim
→

𝐷 𝑓 (𝑥) = 𝐷 lim
→

𝑓 (𝑥) .                       (7) 

  
Theorem 23. Let 𝑓, 𝑔: 𝐽 → ℝ be 𝛼-differentiable functions, 
𝛼 ∈ (0,1],  at 𝑥 ∈ 𝐼, where 𝐼 and 𝐽 are intervals such that 
𝜅(𝐼) ⊆ 𝐽.Then   
1) If 𝑓 is differentiable at 𝜅, and 𝜅 is differentiable at 𝑥 , 

then 𝐷 𝑓(𝑥 ) = 𝑓 (𝑥 )𝜅 (𝑥 ). 
2) If 𝑓(𝑥) = 𝑐, where 𝑐 is a constant, for all 𝑥 ∈ 𝐼, then 

𝐷 𝑓(𝑥 ) = 0. 
3) 𝐷 (𝑐𝑓)(𝑥 ) = 𝑐𝐷 𝑓(𝑥 ), where 𝑐 is a constant.  
4) 𝐷 (𝑎𝑓 + 𝑏𝑔)(𝑥 ) = 𝑎𝐷 𝑓(𝑥 ) + 𝑏𝐷 𝑔(𝑥 ), for all 

𝑎, 𝑏 ∈ ℝ.  
5) 𝐷 (𝑓𝑔)(𝑥 ) = 𝑔 𝐷 𝑓(𝑥 ) + 𝑓 𝐷 𝑔(𝑥 ). 

6) 𝐷 (𝑥 ) =
( ) ( ) ( ) ( )

( )
, if 𝑔 (𝑥 ) ≠ 0. 

Proof. For part (1), we have  

𝐷 𝑓(𝑥 ) = lim
→

𝑓 (𝑥) − 𝑓 (𝑥 )

𝑥 − 𝑥
 

                          = lim
→

𝑓(𝜅(𝑥)) − 𝑓(𝜅(𝑥 ))

𝑥 − 𝑥
 

= lim
( )→ ( )

𝑓 𝜅(𝑥) − 𝑓 𝜅(𝑥 )

𝜅(𝑥) − 𝜅(𝑥 )
lim
→

𝜅(𝑥) − 𝜅(𝑥 )

𝑥 − 𝑥
 

            = 𝑓 𝜅(𝑥 )  𝜅 (𝑥 ) 
      = 𝑓 (𝑥 ) 𝜅 (𝑥 ). 

The proofs of parts (2),(3), and (4) follow directly from the 
definition 17. For (5), we have  

    𝐷 (𝑓𝑔)(𝑥 ) = lim
→

(𝑓 𝑔 )(𝑥) − (𝑓 𝑔 )(𝑥 )

𝑥 − 𝑥

= lim
→

𝑔 (x) 𝑓 (x) − 𝑓 (𝑥 ) + 𝑓 (𝑥 ) 𝑔 (𝑥 ) − 𝑔 (𝑥 )

𝑥 − 𝑥
  

= lim
→

𝑔 (𝑥) lim
→

𝑓 (𝑥) − 𝑓 (𝑥 )

𝑥 − 𝑥

+ 𝑓 (𝑥 )  lim
→

𝑔 (𝑥 ) − 𝑔 (𝑥 )

𝑥 − 𝑥
 

            = 𝑔 (𝑥 )𝐷 𝑓(𝑥 ) + 𝑓 (𝑥 )𝐷 𝑔(𝑥 ). 
And to prove part (6),   

𝐷
𝑓

𝑔
(𝑥 ) = lim

→

𝑓 (𝑥)
𝑔 (𝑥)

−
𝑓 (𝑥 )
𝑔 (𝑥 )

𝑥 − 𝑥
                    

= lim
→

𝑓 (𝑥)𝑔 (𝑥 ) − 𝑔 (𝑥)𝑓 (𝑥 )

𝑔 (𝑥)𝑔 (𝑥 )(𝑥 − 𝑥 )
 

= lim
→

1

𝑔 (𝑥)
  lim

→

𝑓 (𝑥) − 𝑓 (𝑥 )

𝑥 − 𝑥
   

                  − lim
→

𝑔 (𝑥) − 𝑔 (𝑥 )

𝑥 − 𝑥
lim
→

𝑓 (𝑥 )

𝑔 (𝑥)𝑔 (𝑥 )
 

  =
𝑔 (𝑥 )𝐷 𝑓(𝑥 ) − 𝑓 (𝑥 )𝐷 𝑔(𝑥 )

𝑔 (𝑥 )
. 

 
Theorem 24. If 𝑓: 𝐽 → ℝ is 𝛼-differentiable, 𝛼 ∈ (0,1], at 
𝑥 ∈ 𝐼, where 𝐼 and 𝐽 are intervals such that 𝜅(𝐼) ⊆ 𝐽, then 𝑓 
is 𝛼-continuous, 𝛼 ∈ (0,1], at 𝑥 .  
Proof. Since 𝐷 𝑓(𝑥 ), 𝛼 ∈ (0,1], exists and for all 𝑥 ∈ 𝐼, 𝑥 ≠
𝑥 , that  

𝑓 (𝑥) − 𝑓 (𝑥 ) =
𝑓 (𝑥) − 𝑓 (𝑥 )

𝑥 − 𝑥
(𝑥 − 𝑥 ). 

Then  

lim
→

𝑓 (𝑥) − 𝑓 (𝑥 ) = lim
→

𝑓 (𝑥) − 𝑓 (𝑥 )

𝑥 − 𝑥
lim
→

(𝑥 − 𝑥 ) 

    = 𝐷 𝑓(𝑥 ). 0 = 0. 
Thus  

   lim
→

𝑓 (𝑥) = 𝑓 (𝑥 ). 

 
Theorem 25 (Chain Rule for Fractional Derivative). Let 
𝑓: 𝐽 → ℝ and 𝑔: 𝐽 → ℝ be such that 𝑓 (𝐽 ) ⊆ 𝐽 , where 𝐽 and 
𝐽  are intervals. If 𝑓 is 𝛼-differentiable, 𝛼 ∈ (0,1], at 𝑥 ∈ 𝐼, 
𝜅(𝐼) ⊆ 𝐽 , and 𝑔 is differentiable at 𝑓 (𝑥 ), then    
                   𝐷 (𝑔 ∘ 𝑓)(𝑥 ) = 𝑔 𝑓 (𝑥 ) 𝐷 𝑓(𝑥 ).                  (8) 
Proof. Since 𝑔 is differentiable at 𝑧 = 𝑓 (𝑥 ), 𝛼 ∈ (0,1], 
there exists 𝑔 (𝑧 ) such that   

lim
→

𝑔(𝑧 + 𝛥𝑧) − 𝑔(𝑧 )

𝛥𝑧
= 𝑔 (𝑧 ). 

Define ℎ by  

ℎ(𝛥𝑧) =
𝑔(𝑧 + 𝛥𝑧) − 𝑔(𝑧 )

𝛥𝑧
− 𝑔 (𝑧 ). 

Then  
𝑔(𝑧 + 𝛥𝑧) − 𝑔(𝑧 ) = 𝑔 (𝑧 ) + ℎ(𝛥𝑧) 𝛥𝑧. 

Taking 𝛥𝑧 = 𝑓 (𝑥 + 𝛥𝑥) − 𝑓 (𝑥 ) with 𝛥𝑥 ≠ 0, we get  
𝑔 𝑓 (𝑥 + 𝛥𝑥) − 𝑔 𝑓 (𝑥 )  

= 𝑔 𝑓 (𝑥 )  + ℎ(𝛥𝑧) 𝑓 (𝑥 + 𝛥𝑥) − 𝑓 (𝑥 ) . 

Dividing both sides by 𝛥𝑥 yields  

  
𝑔 𝑓 (𝑥 + 𝛥𝑥) − 𝑔 𝑓 (𝑥 )

𝛥𝑥
         

= 𝑔 𝑓 (𝑥 ) + ℎ(𝛥𝑧)
𝑓 (𝑥 + 𝛥𝑥) − 𝑓 (𝑥 )

𝛥𝑥
. 

Since 𝑓 is 𝛼-differentiable, 𝛼 ∈ (0,1], at 𝑥 , it is 𝛼-
continuous, 𝛼 ∈ (0,1], at 𝑥 . Letting 𝛥𝑥 → 0, then 𝛥𝑧 → 0, 
and consequently that ℎ(𝛥𝑧) → 0. Then,  

      lim
→

𝑔 𝑓 (𝑥 + 𝛥𝑥) − 𝑔 𝑓 (𝑥 )

𝛥𝑥
 

= 𝑔 (𝑓 (𝑥 )) lim
→

𝑓 (𝑥 + 𝛥𝑥) − 𝑓 (𝑥 )

𝛥𝑥
 

implies that  
𝐷 (𝑔 ∘ 𝑓)(𝑥 ) = 𝑔 𝑓 (𝑥 )   𝐷 𝑓(𝑥 ). 

 
Fractional Derivative of Certain Functions of Order 𝛼, 
𝛼 ∈ (0,1] 

1) 𝐷 (𝑥 ) =
𝛼𝑛𝑥 , if 𝑥 ∈ (0, ∞),
does not exist, if 𝑥 = 0,

𝛼𝑛(−1) (−𝑥) , if 𝑥 ∈ (− ∞, 0).

 

2) 𝐷 (𝑒 ) =
𝛼𝑥 𝑒 ,  if 𝑥 ∈ (0, ∞),
does not exist,  if 𝑥 = 0,

𝛼(−𝑥) 𝑒 ( ) ,  if 𝑥 ∈ (−  ∞, 0).

 

3) 𝐷 ln(𝑥) =  
, if 𝑥 ∈ (−∞, 0) ∪ (0, ∞),

does not exist, if 𝑥 = 0.
 

4) 𝐷 (𝑎 ) =
𝛼ln(𝑎)𝑥 𝑎 , if 𝑥 ∈ (0, ∞),
does not exist, if 𝑥 = 0,

𝛼ln(𝑎)(−𝑥) 𝑎 ( ) , if 𝑥 ∈ (−  ∞, 0).   

 

IAENG International Journal of Applied Mathematics, 52:3, IJAM_52_3_23

Volume 52, Issue 3: September 2022

 
______________________________________________________________________________________ 



5) 𝐷 (log 𝑥) =
, if 𝑥 ∈ (−∞, 0) ∪ (0, ∞),

does not exist, if 𝑥 = 0.
 

6) 𝐷 (sin(𝑥)) =

𝛼𝑥 cos(𝑥 ), if 𝑥 ∈ (0, ∞),
does not exist, if 𝑥 = 0,

𝛼(−𝑥) cos((−𝑥) ), if 𝑥 ∈ (−  ∞, 0).

 

7) 𝐷 (cos(𝑥)) =

−𝛼𝑥 sin(𝑥 ), if 𝑥 ∈ (0, ∞),

does not exist, , if 𝑥 = 0,

𝛼(−𝑥) sin((−𝑥) ), if 𝑥 ∈ (−  ∞, 0).

 

8) 𝐷 (sinh(𝑥)) =

𝛼𝑥 cosh(𝑥 ), if 𝑥 ∈ (0, ∞),
does not exist, if 𝑥 = 0,

𝛼(−𝑥) cosh((−𝑥) ), if 𝑥 ∈ (−∞, 0).

 

9) 𝐷 (cosh(𝑥)) =

𝛼𝑥 sinh(𝑥 ), if 𝑥 ∈ (0, ∞),
does not exist, if 𝑥 = 0,

−𝛼(−𝑥) sinh((−𝑥) ), if 𝑥 ∈ (−∞, 0).

  

 
Definition 26. Let 𝑓: 𝐽 → ℝ be a function, where 𝐽 ⊆ ℝ is an 
interval, and let 𝛽 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ ℕ. The 𝛽-derivative of 𝑓 
at 𝑥 ∈ 𝐼, 𝜅(𝐼) ⊆ 𝐽, is defined by  

          𝐷 𝑓(𝑥 ) = lim
→

𝑓( ) (𝑥) − 𝑓( ) (𝑥 )

𝑥 − 𝑥
,        (9) 

𝛼 ∈ (0,1], provided that the limit exists, where 𝑓( ) is the 
(𝑛 − 1)th derivative of 𝑓. 
 
Remark 27.  
(1) The 𝛽-derivative 𝐷 𝑓 in Definition 26 is the fractional 

derivative of 𝑓 of order 𝛽, 𝛽 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ ℕ. 
(2) If 𝑓( ) is differentiable at 𝜅(𝑥) and 𝜅(𝑥) is 

differentiable at 𝑥 , then  

   𝐷 𝑓(𝑥 ) = lim
→

𝑓( ) (𝑥) − 𝑓( ) (𝑥 )

𝑥 − 𝑥
 

   = lim
→

𝑓( ) 𝜅(𝑥) − 𝑓( ) 𝜅(𝑥) (𝑥 )

𝑥 − 𝑥
 

= lim
( )→ ( )

𝑓( )(𝜅) − 𝑓( )(𝜅 )

𝜅(𝑥) − 𝜅(𝑥 )
lim
→

𝜅(𝑥) − 𝜅(𝑥 )

𝑥 − 𝑥
 

                    = 𝑓
( )(𝑥 ) 𝜅 (𝑥 ). 

 
Proposition 28. Every (𝑛 + 1)th differentiable function is 𝛽-
differentiable of order 𝛽 = 𝑛 + 1, 𝑛 ∈ ℕ but not every 𝛽-
differentiable function, 𝛽 ∈ (𝑛, 𝑛 + 1), 𝑛 ∈ ℕ is (𝑛 + 1)th 
differentiable.   
 
Example 29. 𝑓(𝑥) = ln 𝑥 −  has no second derivative at 

𝑥 =  but it is 𝛽-differentiable whenever 𝛽 ∈ (1,2).    

 
Proposition 30. Suppose that 𝑓: 𝐵 → ℝ is 𝛽 -continuous on a 
nonempty set 𝐴 and 𝛽 -differentiable, 𝛽 ∈ (0,1], 𝑚 ∈ ℕ, at 
𝑥 ∈ 𝐴, 𝜅(𝐴) ⊆ 𝐵. If 𝛽  converges to 𝛽, 𝛽 ∈ (0,1], then 𝑓 is 
𝛽-differentiable, 𝛽 ∈ (0,1], at 𝑥 .      
 
Theorem 31. Let 𝑓 : 𝐵 → ℝ, 𝑚 ∈ ℕ, be a sequence of 𝛽-
continuous, 𝛽-differentiable functions, 𝛽 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ ℕ, 

on a nonempty compact set 𝐴, 𝜅(𝐴) ⊆ 𝐵. If 

lim → 𝑓 ,
( )(𝑥 ) exists for some 𝑥 ∈ 𝐴 and 𝐷 𝑓  

converges uniformly on 𝐴, then 𝑓  converges uniformly on 𝐴 
and  

      lim
→

𝐷 𝑓 (𝑥) = 𝐷 lim
→

𝑓 (𝑥) .       

 
Theorem 32 (Rolle’s Theorem for Fractional Derivative). 
If 𝑓: [𝑐, 𝑑] → ℝ, 𝑐 < 𝑑, is 𝛼-differentiable, 𝛼 ∈ (0,1], on 
(𝑎, 𝑏) and 𝛼-continuous, 𝛼 ∈ (0,1], on [𝑎, 𝑏] , 𝜅([𝑎, 𝑏]) ⊆
[𝑐, 𝑑], with 𝑓 (𝑎) = 𝑓 (𝑏), then 𝐷 𝑓(𝑥 ) = 0 for some 𝑥  in 
(𝑎, 𝑏).    
Proof. By Theorem 15 that  𝑓 : [𝑎, 𝑏] → ℝ, 𝛼 ∈ (0,1], has a 
finite minimum value 𝑚 and a finite maximum value 𝑀 on 
[𝑎, 𝑏]. If 𝑚 = 𝑀, then 𝑓  is a constant on (𝑎, 𝑏) and 
𝐷 𝑓(𝑥) = 0 for all 𝑥 ∈ (𝑎, 𝑏). If 𝑚 ≠ 𝑀, then either 
𝑓 (𝑥 ) = 𝑚 or 𝑓 (𝑥 ) = 𝑀 for some 𝑥 ∈ (𝑎, 𝑏) because 
𝑓 (𝑎) = 𝑓 (𝑏). Suppose 𝑓 (𝑥 ) = 𝑚. Then 𝑓 (𝑥 + 𝜀) −
𝑓 (𝑥 ) ≥ 0 for all 𝜀 such that 𝑥 + 𝜀 ∈ (𝑎, 𝑏). Therefore,   

             lim
→

𝑓 (𝑥 + 𝜀) − 𝑓 (𝑥 )

𝜀
≥ 0, if  𝜀 > 0, 

and  

             lim
→

𝑓 (𝑥 + 𝜀) − 𝑓 (𝑥 )

𝜀
≤ 0, if  𝜀 < 0. 

Thus, 𝐷 𝑓(𝑥 ) = 0.  
 
Theorem 33 (Mean Value Theorem for Fractional 
Derivative). If 𝑓: [𝑐, 𝑑] → ℝ is 𝛼-differentiable, 𝛼 ∈ (0,1], on 
(𝑎, 𝑏), 𝜅([𝑎, 𝑏]) ⊆ [𝑐, 𝑑], and 𝛼-continuous, 𝛼 ∈ (0,1], on 
[𝑎, 𝑏], then   
     𝜅(𝑏) − 𝜅(𝑎) 𝐷 𝑓(𝑥 ) = 𝑓 (𝑏) − 𝑓 (𝑎) 𝜅 (𝑥 ),       (10) 
for 𝑥 ∈ (𝑎, 𝑏).    
Proof. Let ℎ : [𝑎, 𝑏] → ℝ be defined by 

ℎ (𝑥) = 𝑓 (𝑥) − 𝜅(𝑥)
𝑓 (𝑏) − 𝑓 (𝑎)

𝜅(𝑏) − 𝜅(𝑎)
, 

𝛼 ∈ (0,1]. Then  

𝐷 ℎ(𝑥) = 𝐷 𝑓(𝑥) − 𝜅 (𝑥)
𝑓 (𝑏) − 𝑓 (𝑎)

𝜅(𝑏) − 𝜅(𝑎)
. 

Note that ℎ is 𝛼-continuous, 𝛼 ∈ (0,1], on [𝑎, 𝑏] and 𝛼-
differentiable, 𝛼 ∈ (0,1], on (𝑎, 𝑏) with ℎ (𝑎) = ℎ (𝑏). By 
Theorem 30, there is 𝑥 ∈ (𝑎, 𝑏) such that 𝐷 ℎ(𝑥 ) = 0 and  

𝐷 𝑓(𝑥 ) = 𝜅 (𝑥 )
𝑓 (𝑏) − 𝑓 (𝑎)

𝜅(𝑏) − 𝜅(𝑎)
. 

 

D. Fractional Integral 

Definition 34. Let 𝑓: [𝑐, 𝑑] → ℝ be an 𝛼-bounded 
function, 𝛼 ∈ (0,1], on [𝑎, 𝑏], 𝜅([𝑎, 𝑏]) ⊆ [𝑐, 𝑑], and let 
𝑃 = {𝑥 }  be a partition of [𝑎, 𝑏] such that 𝑎 = 𝑥 < 𝑥 <
𝑥 < ⋯ < 𝑥 = 𝑏. The 𝛼-Riemann sum, 𝛼 ∈ (0,1], of 𝑓 over 
𝑃 is defined by 

                𝑆 (𝑓, 𝑃) =  𝑓 (𝑥∗)𝜅 (𝑥∗)(𝑥 − 𝑥 ),              (11) 

for any selected point 𝑥∗ ∈ [𝑥 , 𝑥 ].  
 
Definition 35. We say that 𝑓: [𝑐, 𝑑] → ℝ is an 𝛼-Riemann 
integrable function, 𝛼 ∈ (0,1], on [𝑎, 𝑏], 𝜅([𝑎, 𝑏]) ⊆ [𝑐, 𝑑], 
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and a real number 𝐼  is the 𝛼-definite integral, 𝛼 ∈ (0,1], of 𝑓 
over [𝑎, 𝑏] if for any 𝜀 > 0, there exists 𝛿 = 𝛿(𝜀) > 0 such 
that for every partition 𝑃 = {𝑥}  of [𝑎, 𝑏] with ‖𝑃‖ =
max {𝑥 − 𝑥 } < 𝛿 and for any 𝑥∗ ∈ [𝑥 , 𝑥 ], then  

                         ‖𝑆 (𝑓, 𝑃) − 𝐼 ‖ < 𝜀                                  (12) 
and we write it as  

 𝛼 −  𝑓(𝑥)𝑑𝑥 = 𝐼 = lim
‖ ‖→

𝑆 (𝑓, 𝑃)                      

                                                   =  𝑓 (𝑥)𝜅 (𝑥)𝑑𝑥.                (13) 

And we will denote to the set of all 𝛼-Riemann integrable 
functions on [𝑎, 𝑏], 𝜅([𝑎, 𝑏]) ⊆ [𝑐, 𝑑], by ℛ [𝑎, 𝑏], 𝛼 ∈ (0,1]. 
 

Remark 36. The 𝛼-integral 𝛼 − ∫  𝑓(𝑥)𝑑𝑥, 𝛼 ∈ (0,1], in 
Definition 35 is the fractional Riemann integral of 𝑓 of order 
𝛼, 𝛼 ∈ (0,1].   
 
Proposition 37. Every Riemann integrable function is 𝛼-
Riemann integrable of order 𝛼 = 1 but not every 𝛼-Riemann 
integrable function is Riemann integrable.  
 

Example 38. 𝑓(𝑥) =  is not Riemann integrable on (0,1) 

whenever 𝛼 = 1 but it is 𝛼-Riemann integrable  whenever 
𝛼 ∈ (0,1).    
 
Proposition 39. Suppose that 𝑓: [𝑐, 𝑑] → ℝ is 𝛼 -continuous 
and 𝛼 -Riemann integrable, 𝛼 ∈ (0,1], 𝑚 ∈ ℕ, on [𝑎, 𝑏], 
𝜅([𝑎, 𝑏]) ⊆ [𝑐, 𝑑]. If 𝛼  converges to 𝛼, 𝛼 ∈ (0,1], then 𝑓 is 
𝛼-Riemann integrable, 𝛼 ∈ (0,1], on [𝑎, 𝑏].     
 
Theorem 40. Let 𝑓 : 𝐵 → ℝ, 𝑚 ∈ ℕ, be a sequence of 𝛼-
continuous, 𝛼-Riemann integrable functions, 𝛼 ∈ (0,1], on 
[𝑎, 𝑏], 𝜅([𝑎, 𝑏]) ⊆ [𝑐, 𝑑]. If 𝑓 : 𝐵 → ℝ, 𝑚 ∈ ℕ, converges 
uniformly to 𝑓: [𝑐, 𝑑] → ℝ  then 𝑓 is 𝛼-Riemann integrable, 
𝛼 ∈ (0,1], on [𝑎, 𝑏].      
 
Theorem 41. If 𝑓 ∈ ℛ [𝑎, 𝑏], 𝛼 ∈ (0,1], then the 𝛼-Riemann 
integral, 𝛼 ∈ (0,1], of 𝑓 is unique.   
Proof. Assume that 𝐼 ,  and 𝐼 ,  are 𝛼-Riemann integrals, 
𝛼 ∈ (0,1], of 𝑓 and let 𝜀 > 0 be given. Then for 𝑖 = 1,2, there 
exists 𝛿 = 𝛿 (𝜀/2) > 0 such that  

‖𝑃‖ < 𝛿   ⟹   𝑆 (𝑓, 𝑃) − 𝐼 , <
𝜀

2
. 

where 𝑃 is any partition of [𝑎, 𝑏]. Letting 𝛿 = min{𝛿 , 𝛿 }, we 
get  

0 ≤ 𝐼 , − 𝐼 , = 𝐼 , − 𝑆 (𝑓, 𝑃) + 𝑆 (𝑓, 𝑃) − 𝐼 ,  
≤ 𝐼 , − 𝑆 (𝑓, 𝑃) + 𝑆 (𝑓, 𝑃) − 𝐼 ,  

                                       <
𝜀

2
+

𝜀

2
= 𝜀. 

Since 𝜀 was arbitrary, then  
0 ≤ 𝐼𝛼,1 − 𝐼𝛼,2 < 𝜀 

holds for all 𝜀 > 0. Thus, 𝐼 , − 𝐼 , = 0 and 𝐼 , = 𝐼 , .  
 
Proposition 42. The 𝛼-definite integral, 𝛼 ∈ (0,1], in (13) can 
be written as follows 

                        𝛼 −  𝑓(𝑥)𝑑𝑥 = 𝑓(𝜏)𝑑𝜏 
( )

( )

.                      (14) 

Proof. The proof is directly from the Theorem (Change of 
Variables for Continuous Integrands) (see e.g., [26]). 
 
   Now we use the formula (14) of the fractional integral to 
introduce the following theorems. 
 
Theorem 43. Let 𝑓, 𝑔 ∈ ℛ [𝑎, 𝑏], 𝛼 ∈ (0,1]. Then  

1) 𝑓(𝜏)𝑑𝜏 
( )

( )

= − 𝑓(𝜏)𝑑𝜏 
( )

( )

. 

2) 𝑓(𝜏)𝑑𝜏 
( )

( )

= 0. 

3) 𝑐𝑓(𝜏)𝑑𝜏 
( )

( )

= 𝑐 𝑓(𝜏)𝑑𝜏 
( )

( )

, 𝑐 ∈ ℝ. 

4) 𝑓(𝜏) ± 𝑔(𝜏) 𝑑𝜏 
( )

( )

= 𝑓(𝜏)𝑑𝜏 
( )

( )

± 𝑔(𝜏)𝑑𝜏 
( )

( )

. 

5) 𝑓(𝜏)𝑑𝜏 
( )

( )

+ 𝑓(𝜏)𝑑𝜏 
( )

( )

= 𝑓(𝜏)𝑑𝜏 
( )

( )

. 

6)  If 𝑓 is 𝛼-continuous on [𝑎, 𝑏], then   

       min 𝑓 (𝑥) ≤
1

𝜅(𝑏) − 𝜅(𝑎)
 

( )

( )

𝑓(𝜏)𝑑𝜏 ≤ max 𝑓 (𝑥).    (15) 

7)  If 𝑓 (𝑥) ≤ 𝑔 (𝑥) on [𝑎, 𝑏], then  

                          𝑓(𝜏)𝑑𝜏 
( )

( )

≤ 𝑔(𝜏)𝑑𝜏 
( )

( )

.                         (16) 

 
Theorem 44 (Mean Value Theorem for Fractional Definite 
Integrals). If 𝑓: [𝑐, 𝑑] → ℝ is 𝛼-continuous 𝛼 ∈ (0,1], on 
[𝑎, 𝑏], 𝜅([𝑎, 𝑏]) ⊆ [𝑐, 𝑑], then   

                     𝑓 (𝑥 ) =
1

𝜅(𝑏) − 𝜅(𝑎)
 

( )

( )

𝑓 (𝜏)𝑑𝜏                 (17) 

for some point 𝑥 ∈ [𝑎, 𝑏]. 
Proof. The proof is directly from (15) and by applying 
Theorem 7.  
 
Theorem 45 (Fundamental Theorem of Fractional 
Calculus).  
1) If 𝑓: [𝑐, 𝑑] → ℝ is 𝛼-continuous, 𝛼 ∈ (0,1], on [𝑎, 𝑏], 

𝜅([𝑎, 𝑏]) ⊆ [𝑐, 𝑑], and 𝜅 is continuously differentiable on 
[𝑎, 𝑏], then 

                
𝑑

𝑑𝜅(𝑥)
 

( )

( )

𝑓(𝜏)𝑑𝜏 = 𝑓 (𝑥),                       (18) 

       for each 𝑥 ∈ [𝑎, 𝑏].  
2) If 𝑓: [𝑐, 𝑑] → ℝ is 𝛼-differentiable, 𝛼 ∈ (0,1], on [𝑎, 𝑏], 

𝜅([𝑎, 𝑏]) ⊆ [𝑐, 𝑑], 𝑓  is 𝛼-continuous, 𝛼 ∈ (0,1], on [𝑎, 𝑏] 
and 𝜅 is continuously differentiable on [𝑎, 𝑏], then  

                     
( )

( )

𝑓 (𝜏)𝑑𝜏 = 𝑓 (𝑏) − 𝑓 (𝑎).                   (19)  

Proof. To prove part (1), for any 𝑥, 𝑥 + ∆𝑥 ∈ [𝑎, 𝑏], assume 
that 𝜅(𝑥 + ∆𝑥) = 𝜅(𝑥) + ∆𝜅(𝑥) and let   

𝐹 (𝑥) = 𝑓(𝜏)𝑑𝜏 
( )

( )

 

and 

 𝐹 (𝑥 + ∆𝑥) = 𝑓(𝜏)𝑑𝜏 
( ) ∆ ( )

( )

. 
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for 𝑓 : [𝑎, 𝑏] → ℝ, 𝛼 ∈ (0,1]. Subtracting the last two 
equalities gives  

𝐹 (𝑥 + ∆𝑥) − 𝐹 (𝑥) = 𝑓(𝜏)𝑑𝜏 
( ) ∆ ( )

( )

− 𝑓(𝜏)𝑑𝜏 
( )

( )

 

           = 𝑓(𝜏)𝑑𝜏 
( ) ∆ ( )

( )

. 

By Theorem 44, we have   
𝐹 (𝑥 + ∆𝑥) − 𝐹 (𝑥) = 𝑓 (𝑥 )∆𝜅(𝑥). 

for some point 𝑥 ∈ [𝑎, 𝑏]. Dividing both sides by ∆𝜅(𝑥) 
gives  

𝐹 (𝑥 + ∆𝑥) − 𝐹 (𝑥)

∆𝜅(𝑥)
= 𝑓 (𝑥 ). 

Letting ∆𝜅(𝑥) → 0 (∆𝑥 → 0) on both sides of the equation, 
we get      

𝑑

𝑑𝜅(𝑥)
𝐹 𝜅(𝑥) = lim

∆ ( )→

𝐹 (𝑥 + ∆𝑥) − 𝐹 (𝑥)

∆𝜅(𝑥)
 

                    = lim
∆ ( )→

𝑓 (𝑥 ) = 𝑓 (𝑥), 

where lim
∆ →

𝑥 = 𝑥 by the Squeeze Theorem.   

For part (2), let 

𝑔 (𝑥) =  
( )

( )

𝑓 (𝜏)𝑑𝜏, 

for 𝑓 : [𝑎, 𝑏] → ℝ, 𝛼 ∈ (0,1]. By part (1), we have that 
𝑔 (𝑥) = 𝑓 (𝑥). Thus, there is a constant 𝜈 such that 𝑔 (𝑥) −
𝑓 (𝑥) = 𝜈 for all 𝑥 ∈ [𝑎, 𝑏]. Since  

𝑔 (𝑎) =  
( )

( )

𝑓 (𝜏)𝑑𝜏 = 0 

and 𝑔 (𝑎) − 𝑓 (𝑎) = 𝜈, then 𝜈 = −𝑓 (𝑎) and 𝑔 (𝑥) −
𝑓 (𝑥) = −𝑓 (𝑎) for all 𝑥 ∈ [𝑎, 𝑏]. Moreover, since 𝑔 (𝑏) −
𝑓 (𝑏) = −𝑓 (𝑎), then 𝑔 (𝑏) = 𝑓 (𝑏) − 𝑓 (𝑎).  
 
Fractional Integral of Certain Functions of Order 𝛼, 𝛼 ∈ (0,1] 

1)  𝛼 −  𝑥 𝑑𝑥 =
1

𝑛 + 1
𝜅 (𝑏) − 𝜅 (𝑎) . 

2)  𝛼 −  𝑒 𝑑𝑥 = 𝑒 ( ) − 𝑒 ( ). 

3)  𝛼 −  
1

𝑥
𝑑𝑥 = ln 𝜅(𝑏) − ln 𝜅(𝑎) . 

4)  𝛼 −  sin(𝑥)𝑑𝑥 = cos 𝜅(𝑎) − cos 𝜅(𝑏) . 

5)  𝛼 −  cos(𝑥)𝑑𝑥 = sin 𝜅(𝑏) − sin 𝜅(𝑎) . 

6)  𝛼 −  sinh(𝑥)𝑑𝑥 = cosh 𝜅(𝑏) − cosh 𝜅(𝑎) . 

7)  𝛼 −  cosh(𝑥)𝑑𝑥 = sinh 𝜅(𝑏) − sinh 𝜅(𝑎) . 

 
V. APPLICATIONS 

 Now we apply our results to solve some interesting 
fractional differential equations. 
 
Example 46 [14]. The equation 𝑦( / ) + 𝑦 = 𝑡 + 2𝑡 /  is 
converted to 

𝑦 / + 2𝜅𝑦 / = 2𝜅 + 4𝜅 /  

because 𝑦( / ) = 𝜅 𝑦 / . By the method of integral factor, 

the general solution is 

𝑦 / (𝑡) = 𝑒  2𝜅 + 4𝜅 / 𝑒 𝑑𝜅 + 𝑐 , 

where 𝑐 is a constant.  
 
Example 47 [14]. The equation  𝑦( / ) + √𝑡𝑦 = 𝑡𝑒  
becomes  

𝑦 / + 2𝜅 / 𝑦 / = 2𝜅 𝑒  

where 𝑦( / ) = 𝜅 𝑦 / . Using the method of integral factor, 

the general solution is 

𝑦 / (𝑡) = 𝑒
/

2  𝜅 exp
4

5
𝜅 / − 𝜅 𝑑𝜅 + 𝑐 , 

where 𝑐 is a constant.   
 

Example 48. The equation 𝐷 / 𝑦 + 𝑦 = 3𝑡 with 

𝑦 / (1) = 4 is converted to 

𝑦 / +
8𝜅

1 + 𝜅
𝑦 / = 12𝜅 , 

where 𝐷 / 𝑦 = 𝜅 𝑦 / . The method of integral factor gives 

the general solution 

𝑦 / (𝑡) = exp
−8𝜅

3
+ 8𝜅 − 8tan (𝜅)  

                      .  12exp
8𝑠

3
− 8𝑠 + 8tan (𝑠) 𝑠 𝑑𝑠 + 𝑐 , 

where 𝑐 is a constant. Plugging the initial condition into the 
general solution, we get 

𝑦 / (𝑡) = exp
−8𝜅

3
+ 8𝜅 − 8 tan (𝜅)  

                         .  12exp
8𝑠

3
− 8𝑠 + 8tan (𝑠) 𝑠 𝑑𝑠

+ 4exp 2𝜋 −
16

3
. 

 

Example 49. The equation 𝐷 . 𝑦 =
( )

 has the converted 

form  

𝑦 . =
𝜅 / (3𝜅 + 4𝜅 + 2)

1.4(𝑦 . − 1)
 

because 𝐷 . 𝑦 = 0.7𝜅 / 𝑦 . . Using the separation of 
variables method, the general solution is  
𝑦 . (𝑡) = 1 − 

          1 − 2(−𝑐 − 0.00735294(85𝜅 + 160𝜅 + 136)𝜅 / ) 
              = 1 − 

            1 − 2(−𝑐 − 0.00735294(85𝑡 . + 160𝑡 . + 136)𝑡) 
 or  
𝑦 . (𝑡) = 1 + 

          1 − 2(−𝑐 − 0.00735294(85𝜅 + 160𝜅 + 136)𝜅 / ) 
              = 1 + 

            1 − 2(−𝑐 − 0.00735294(85𝑡 . + 160𝑡 . + 136)𝑡), 
where 𝑐 is a constant. 
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Example 50. The equation  4𝐷 / 𝑦 − 8𝐷 / 𝑦 + 3𝑡 𝑦 = 0 is 
transferred to the equation 

𝑦 / − 2𝑦 / + 𝑦 / = 0. 

where 𝐷 / 𝑦 = 𝜅 𝑦 /  and 𝐷 / 𝑦 = 𝜅 𝑦 / .  

Hence, the general solution is  

     𝑦 / (𝑡) = 𝑐 𝑒 cos
𝜅

√2
+ 𝑐 𝑒 sin

𝜅

√2
 

                             = 𝑐 𝑒 cos
𝑡 /

√2
+ 𝑐 𝑒 sin

𝑡 /

√2
, 

where 𝑐  and 𝑐  are constants. 
 

Example 51. The equation  4𝑦 + 4𝑦 + 0.6𝑡 𝑦 = , 

𝑡 > 0 is converted to the equation 

𝑦 . + 𝑦 . + 𝑦 . =
𝑒 /

2.4𝜅 /
 

because 𝑦( / ) = 0.6𝜅 / 𝑦 . . Using the variation of 
parameters method, the  homogeneous equation 

𝑦 . + 𝑦 . + 𝑦 . = 0 

has the complementary solution   

𝑦 . , (𝑡) = (𝜈 + 𝜈 𝜅)𝑒 / = (𝜈 + 𝜈 𝑡 . )𝑒
. / . 

where 𝜈 , 𝜈  are constants. Then, the fundamental solutions 
are 

𝑦 . , (𝑡) = 𝑒 / = 𝑒
. / ,   

      𝑦 . , (𝑡) = 𝜅𝑒 / = 𝑡 . 𝑒
. /  

and the Wronskian is  
    𝑊 𝑦 . , , 𝑦 . , = 𝑦 . , 𝑦 . , − 𝑦 . , 𝑦 . , = 𝑒 . 

Since 𝑔 . (𝑡) =
/

. / , then 

𝑢 (𝑡) = −
𝑦 . , (𝑡)𝑔 . (𝑡)

𝑊 𝑦 . , , 𝑦 . ,

𝑑𝜅 = −0.625𝜅 = −0.625𝑡 . , 

𝑢 (𝑡) =
𝑦 . , (𝑡)𝑔 . (𝑡)

𝑊 𝑦 . , , 𝑦 . ,

𝑑𝜅 = −1.25𝜅 = −1.25𝑡 . . 

Thus, the particular solution is 
𝑌 . (𝑡) = 𝑢 (𝑡)𝑦 . , (𝑡) + 𝑢 (𝑡)𝑦 . , (𝑡) 

                                 = −1.875𝜅 / 𝑒 /  
                                 = −1.875𝑡 . 𝑒

. / . 
and the general solution is   
                  𝑦 . (𝑡) = 𝑦 . , (𝑡) + 𝑌 . (𝑡) 

                   = (𝜈 + 𝜈 𝜅)𝑒 / − 1.875𝜅 / 𝑒 /  
                            = (𝜈 + 𝜈 𝑡 . )𝑒

. / − 1.875𝑡 . 𝑒
. / . 

 

Example 52. The equation 𝑥 𝐷 . 𝑦 + 𝑥 𝐷 . 𝑦 − 0.3𝑦 = 0 
has a transferred Euler differential equation 

𝜅 𝑦 . + 𝜅𝑦 . − 𝑦 . = 0 
where 𝐷 . 𝑦 = 0.3𝜅 / 𝑦 .  and 𝐷 . 𝑦 = 0.3𝜅 / 𝑦 . . 
Assume that 𝑦 . = 𝜅 , where 𝑟 is a constant. Then 

         0 = 𝜅 𝑦 . + 𝜅𝑦 . − 𝑦 .  
                  = 𝜅 [𝜅 ] + 𝜅[𝜅 ] − [𝜅 ] 

                                         = 𝜅 [𝑟(𝑟 − 1)𝜅 ] + 𝜅[𝑟𝜅 ] − [𝜅 ] 
                                         = [𝑟 − 1]𝜅 . 
Since 𝜅 ≠ 0, then 𝑟 = −1 and 𝑟 = 1. Thus, the general 
solution is  

𝑦 . (𝑥) = 𝑐 𝜅 + 𝑐 𝜅 = 𝑐 𝑥 . + 𝑐 𝑥 . , 
where 𝑐  and 𝑐  are constants. 

Example 53. The equation 𝐷 / 𝑦 − 𝜅𝑦 = 0 becomes  
𝑦 / − 4𝜅 𝑦 / = 0 

because 𝐷 / 𝑦 = 𝜅 𝑦 / . To find the series solution, 

assume that the general solution has the form  

𝑦 / (𝑥) =  𝑎 𝜅 . 

Then  

 (𝑛 + 1)(𝑛 + 2)𝑎 𝜅 −  4𝑎 𝜅 = 0 

gives  
2𝑎 + 6𝑎 𝜅 + 12𝑎 𝜅 + 20𝑎 𝜅                  

+  (𝑛 + 1)(𝑛 + 2)𝑎 𝜅

=  4𝑎 𝜅 . 

and  
𝑎 = 𝑎 = 𝑎 = 𝑎 = 0, 

𝑎 =
4

(𝑛 + 1)(𝑛 + 2)
𝑎 , 𝑛 = 4,5,6, …  

produces the formulas  

    𝑎 =
4 𝑎

5.6.11.12. … (6𝑛 − 1)(6𝑛)
, 

𝑎 =
4 𝑎

6.7.12.13. … (6𝑛)(6𝑛 + 1)
. 

Thus, the general solution is  

𝑦 / (𝑥) = 𝑎 1 +
4𝜅

5.6
+

4 𝜅

5.6.11.12
+ ⋯

+
4 𝜅

5.6. … (6𝑛 − 1)(6𝑛)
+ ⋯  

 + 𝑎 𝜅 +
4𝜅

6.7
+

4 𝜅

6.7.12.13
+ ⋯ +

4 𝜅

6.7 … (6𝑛)(6𝑛 + 1)
+ ⋯  

= 𝑎 1 +
4𝑥

5.6
+

4 𝑥

5.6.11.12
+ ⋯ +

4 𝑥

5.6. … (6𝑛 − 1)(6𝑛)
+ ⋯  

   + 𝑎 𝑥 +
4𝑥

6.7
+

4 𝑥

6.7.12.13
+ ⋯ +

4 𝑥

6.7 … (6𝑛)(6𝑛 + 1)
+ ⋯ . 

 
VI. CONCLUSION  

The theory of fractional calculus has been studied as the 
natural extension of the theory of classical calculus. The 
fractional derivative and the fractional integral have been 
defined using the map 𝜅(𝑥) instead of 𝑥 in the definitions of 
the classical derivative and the classical integral respectively. 
Moreover, the fractional differential equations have been 
solved using the solution methods of ordinary differential 
equations. 
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