An Optimal Fourth Order Iterative Method for Solving Non-linear Equations

Mani Sandeep Kumar Mylapalli, Member, IAENG, Rajesh Kumar Palli, Pragathi Chaganti, and Ramadevi Sri

Abstract

For obtaining a simple root of nonlinear equations, we present an optimum fourth-order iterative technique. By examining certain test problems, we investigate the proposed method's convergence criteria and establish its validity and efficiency. Finally, based on numerical and graphical data, it was determined that our methods are comparable in terms of order, efficiency, and processing time to existing methods of similar kind.

Index Terms - Iterative Method, Non-linear Equation, Functional evaluations, Order of Convergence, Efficiency Index.

I. Introduction

Many mathematical modeling of any knowledge in science and engineering contains non-linear equations in the form of

$$
\begin{equation*}
h(t)=0 \tag{1.1}
\end{equation*}
$$

Where $h: D \subseteq R \rightarrow R$ is a scalar function on an open interval D. While there is no closed-form solution, these equations regularly emerge in real-world problems. As a result, the numerical solution of these equations is receiving a lot of interest these days. Multi-point iterations are used in the most efficient extant root solvers because they transcend the theoretical limits of one-point approaches in terms of convergence order and computational efficiency. Ostrowski [1] proposed the concept of efficiency index as a measure for comparing the efficiency of different methods. This index is described by $E=P^{1 / N}$, where P is the order of convergence and N is the total number of function evaluations per iteration. Kung and Traub [7] proposed that an iteration method without memory based on N functional evaluations could achieve optimal convergence order 2^{N-1}. These iterative methods could be derived using a variety of approaches, such as Taylor series, decomposition, quadrature, and homotopy methods.

Among all the best approaches, one of the well-known approaches for obtaining the zero of "(1.1)" is the classical

[^0]second-order Newton's method (NR) [6]
\[

$$
\begin{equation*}
t_{n+1}=t_{n}-\frac{h\left(t_{n}\right)}{h^{\prime}\left(t_{n}\right)} \tag{1.2}
\end{equation*}
$$

\]

We choose some existing optimal fourth-order methods given as follows:

Francisco-Cordero-Garrido-Juan [5] proposed a two-step novel optimal two-step method (FR) with fourth-order convergence

$$
\begin{align*}
& y_{n}=t_{n}-\frac{h\left(t_{n}\right)}{h^{\prime}\left(t_{n}\right)} \\
& t_{n+1}=t_{n}-\frac{h^{2}\left(t_{n}\right)+h\left(t_{n}\right) h\left(y_{n}\right)+2 h^{2}\left(y_{n}\right)}{h\left(t_{n}\right) h^{\prime}\left(t_{n}\right)} \tag{1.3}
\end{align*}
$$

Traub-Ostrowski [6] suggested an optimal two-step with fourth-order convergence algorithm (TR), which is given by

$$
\begin{align*}
& y_{n}=t_{n}-\frac{h\left(t_{n}\right)}{h^{\prime}\left(t_{n}\right)} \\
& t_{n+1}=y_{n}-\frac{h\left(y_{n}\right)}{h^{\prime}\left(t_{n}\right)}\left(\frac{h^{2}\left(t_{n}\right)}{h^{2}\left(t_{n}\right)-2 h\left(t_{n}\right) h\left(y_{n}\right)}\right) \tag{1.4}
\end{align*}
$$

Chun-Lee-Neta-Jovana [4] presented another optimal fourthorder convergence algorithm (CH)

$$
\begin{align*}
& y_{n}=t_{n}-\frac{2 h\left(t_{n}\right)}{3 h^{\prime}\left(t_{n}\right)} \\
& t_{n+1}=t_{n}+\frac{h^{\prime}\left(t_{n}\right)+3 h^{\prime}\left(y_{n}\right)}{2 h^{\prime}\left(t_{n}\right)-6 h^{\prime}\left(y_{n}\right)} \frac{h\left(t_{n}\right)}{h^{\prime}\left(t_{n}\right)} \tag{1.5}
\end{align*}
$$

Chun [3] suggested a two-step iterative technique with an ideal fourth-order convergence mechanism (KT)

$$
\begin{align*}
& y_{n}=t_{n}-\frac{h\left(t_{n}\right)}{h^{\prime}\left(t_{n}\right)} \\
& t_{n+1}=y_{n}-\frac{h\left(y_{n}\right)}{h^{\prime}\left(y_{n}\right)}\left(\frac{h\left(t_{n}\right)+3 h\left(y_{n}\right)}{h\left(t_{n}\right)+h\left(y_{n}\right)}\right) \tag{1.6}
\end{align*}
$$

Ramandeep-Cordero [11] proposed a new iterative approach (RA) for solving nonlinear equations

$$
\begin{align*}
& y_{n}=t_{n}-\frac{2 h\left(t_{n}\right)}{h^{\prime}\left(t_{n}\right)} \\
& t_{n+1}=z_{n}-\frac{h\left(z_{n}\right)}{h^{\prime}\left(t_{n}\right)}\left(1+\frac{2 h\left(z_{n}\right)}{h\left(t_{n}\right)}\right) \tag{1.7}
\end{align*}
$$

where $z_{n}=\frac{t_{n}+y_{n}}{2}$.
Rajni-Bahl [10] proposes a second optimal two-step approach (RS) with fourth-order convergence.

$$
y_{n}=t_{n}-\frac{h\left(t_{n}\right)}{h^{\prime}\left(t_{n}\right)}
$$

$$
\begin{equation*}
t_{n+1}=t_{n}-\left(\frac{-1}{2}+\frac{9 h^{\prime}\left(t_{n}\right)}{8 h^{\prime}\left(y_{n}\right)}+\frac{3 h^{\prime}\left(y_{n}\right)}{8 h^{\prime}\left(t_{n}\right)}\right) \frac{h\left(t_{n}\right)}{h^{\prime}\left(t_{n}\right)} \tag{1.8}
\end{equation*}
$$

Santiago-Francisco [12] proposes an optimal fourth-order convergence iterative approach (SA)

$$
\begin{align*}
& y_{n}=t_{n}-\frac{h\left(t_{n}\right)}{h^{\prime}\left(t_{n}\right)} \\
& t_{n+1}=t_{n}-\frac{h^{2}\left(t_{n}\right)+h\left(t_{n}\right) h\left(y_{n}\right)+2 h^{2}\left(y_{n}\right)}{h\left(t_{n}\right) h^{\prime}\left(t_{n}\right)} \tag{1.9}
\end{align*}
$$

Anuradha-Jaiswal [2] has presented an efficient optimum method (AN) with fourth-order convergence

$$
\begin{align*}
& y_{n}=t_{n}-\frac{2 h\left(t_{n}\right)}{3 h^{\prime}\left(t_{n}\right)} \\
& \left.t_{n+1}=t_{n}-\left(1+\frac{9}{16} \frac{h^{\prime}\left(y_{n}\right)}{h^{\prime}\left(t_{n}\right)}-1\right)^{2}\right)\left(\frac{4 h\left(t_{n}\right)}{h^{\prime}\left(t_{n}\right)+3 h^{\prime}\left(y_{n}\right)}\right) \tag{1.10}
\end{align*}
$$

Soleymani [14] proposes an optimal fourth-order iterative approach (SO) that is free of derivatives

$$
\begin{align*}
& y_{n}=t_{n}-\frac{h\left(t_{n}\right)}{h^{\prime}\left(t_{n}\right)} \\
& t_{n+1}=y_{n}-\left\{\begin{array}{l}
\frac{\left(h\left(t_{n}\right)\right)^{2}}{h^{\prime}\left(t_{n}\right)^{2}-2 h\left(t_{n}\right) h\left(y_{n}\right)} \frac{h\left(y_{n}\right)}{h^{\prime}\left(t_{n}\right)} \\
\left(1+\frac{\left(h\left(y_{n}\right)\right)^{2}}{\left(h\left(t_{n}\right)\right)^{2}}\right)\left(1+\frac{\left(h\left(y_{n}\right)\right)^{2}}{\left(h^{\prime}\left(t_{n}\right)\right)^{2}}\right)\left(1+\frac{\left(h\left(t_{n}\right)\right)^{2}}{\left(h^{\prime}\left(t_{n}\right)\right)^{2}}\right)
\end{array}\right\} \tag{1.11}
\end{align*}
$$

We begin with many one-step iterative methods in this study, including the classical Newton's method and a new scheme for solving nonlinear equations. To improve the presented iterative method, we use the approximants of the higher derivatives to avoid calculating the function's highorder derivatives. As a result, we can design an iterative formula without having to calculate high-order derivatives.

The remainder of this work is arranged in the following manner. We provide a new two-step optimal fourth-order iterative approach with fast convergence speed in the following part, and we show that the proposed method is at least fourth-order convergent in the following section. A comparison of our new proposed method with previous optimal schemes of similar type utilizing examples from the literature of numerical methods is shown in the penultimate part.

II. Fourth order convergent method

Consider t^{*} is an exact root of "(1.1)" where $h(t)$ is continuous and has well defined first derivatives. Let t_{n} be the root of $n^{\text {th }}$ approximation of "(1.1)" and is

$$
\begin{equation*}
t^{*}=t_{n}+\varepsilon_{n} \tag{2.1}
\end{equation*}
$$

where ε_{n} is the error. Thus, we get

$$
\begin{equation*}
h\left(t^{*}\right)=0 \tag{2.2}
\end{equation*}
$$

writing $h\left(t^{*}\right)$ by Taylor's series about t_{n}, we have

$$
\begin{equation*}
h\left(t^{*}\right)=h\left(t_{n}\right)+\varepsilon_{n} h^{\prime}\left(t_{n}\right)+\frac{\varepsilon_{n}^{2}}{2!} h^{\prime \prime}\left(t_{n}\right)+\ldots \tag{2.3}
\end{equation*}
$$

Here higher powers of ε_{n} are neglected that to from
$\varepsilon_{n} 3$ onwards. Using "(2.2)" and "(2.3)", we have

$$
\begin{equation*}
\varepsilon_{n}=\left[-2 h^{\prime}\left(t_{n}\right) \pm \sqrt{4 h^{\prime}\left(t_{n}\right)-8 h\left(t_{n}\right) h^{\prime \prime}\left(t_{n}\right)}\right] \div 2 h^{\prime \prime}\left(t_{n}\right) \tag{2.4}
\end{equation*}
$$

On Substituting t^{*} by t_{n+1} in "(2.1)" and from "(2.4)", we get

$$
\begin{equation*}
t_{n+1}=t_{n}-\frac{2 h\left(t_{n}\right)}{h^{\prime}\left(t_{n}\right)}\left(1+G\left(t_{n}\right)\right)^{-1} \tag{2.5}
\end{equation*}
$$

Where
$G\left(t_{n}\right)=\left(1-2 \mu_{n}\right)^{\frac{1}{2}}, \mu_{n}=\frac{h\left(t_{n}\right) h^{\prime \prime}\left(t_{n}\right)}{\left[h^{\prime}\left(t_{n}\right)\right]^{2}}$,
$h^{\prime}\left(t_{n}\right)=2 h\left[t_{n-1}, t_{n}\right]-h^{\prime}\left(t_{n-1}\right)$ and
$h^{\prime \prime}\left(t_{n}\right)=\frac{2}{t_{n-1}-t_{n}}\left[h^{\prime}\left(t_{n-1}\right)-\frac{h\left(t_{n-1}\right)-h\left(t_{n}\right)}{t_{n-1}-t_{n}}\right]$
We develop the algorithm by taking "(1.2)" as the first step and "(2.5)" as the second step.

Algorithm: The iterative scheme is computed by t_{n+1} as

$$
\begin{align*}
& z_{n}=t_{n}-\frac{h\left(t_{n}\right)}{h^{\prime}\left(t_{n}\right)} \\
& t_{n+1}=z_{n}-\frac{2 h\left(z_{n}\right)}{h^{\prime}\left(z_{n}\right)}\left(1+G\left(t_{n}\right)\right)^{-1} \tag{2.6}
\end{align*}
$$

where

$$
\begin{aligned}
& G\left(t_{n}\right)=\left(1-2 \rho_{n}\right)^{\frac{1}{2}}, \rho_{n}=\frac{h\left(z_{n}\right) h^{\prime \prime}\left(z_{n}\right)}{\left[h^{\prime}\left(z_{n}\right)\right]^{2}}, \\
& h^{\prime}\left(z_{n}\right)=2 h\left[t_{n}, z_{n}\right]-h^{\prime}\left(t_{n}\right) \\
& \text { and } h^{\prime \prime}\left(z_{n}\right)=\frac{2}{t_{n}-z_{n}}\left[h^{\prime}\left(t_{n}\right)-\frac{h\left(t_{n}\right)-h\left(z_{n}\right)}{t_{n}-z_{n}}\right]
\end{aligned}
$$

The method "(2.6)" is called a fourth-order convergent method (MMS), which requires two functional evaluations and one of its first derivative.

III. Convergence Criteria

Theorem: Let $t_{0} \in D$ be a single zero of a sufficiently differentiable function h for an open interval D. If t_{0} is in the neighborhood of t^{*}. Then "(2.12)" has fourth-order convergence.

Proof: Let the single zero of (1.1) be t^{*} and $t^{*}=t_{n}+\varepsilon_{n}$ then $h\left(t^{*}\right)=0$
By Taylor's series, writing $h\left(t^{*}\right)$ about t_{n}, we obtain

$$
\begin{align*}
& h\left(t_{n}\right)=h^{\prime}\left(t^{*}\right)\left(\varepsilon_{n}+c_{2} \varepsilon_{n}^{2}+c_{3} \varepsilon_{n}^{3}+c_{4} \varepsilon_{n}^{4}+\ldots\right) \tag{3.1}\\
& h^{\prime}\left(t_{n}\right)=h^{\prime}\left(t^{*}\right)\left(1+2 c_{2} \varepsilon_{n}+c_{3} \varepsilon_{n}^{2}+4 c_{4} \varepsilon_{n}^{3}+\ldots\right) \tag{3.2}
\end{align*}
$$

Replacing "(3.1)" and "(3.2)" in the first step of "(2.6)", we get

$$
\begin{equation*}
z_{n}=t^{*}+c_{2} \varepsilon_{n}^{2}+\left(2 c_{3}-2 c_{2}^{2}\right) \varepsilon_{n}^{3}+\left(3 c_{4}-7 c_{2} c_{3}+4 c_{2}^{3}\right) \varepsilon_{n}^{4}+\ldots \tag{3.3}
\end{equation*}
$$

From "(3.3)", we obtain

$$
\begin{array}{r}
h\left(z_{n}\right)=h\left(t^{*}\right)\binom{c_{2} \varepsilon_{n}^{2}+\left(2 c_{3}-2 c_{2}^{2}\right) \varepsilon_{n}^{3}+}{\left(3 c_{4}-7 c_{2} c_{3}+5 c_{2}^{3}\right) \varepsilon_{n}^{4}+\ldots} \\
h^{\prime}\left(z_{n}\right)=h\left(t^{*}\right)\left(1+\left(2 c_{2}^{2}-c_{3}\right) \varepsilon_{n}^{2}+\left(6 c_{2} c_{3}-c_{2}^{3}-2 c_{4}\right) \varepsilon_{n}^{3}+\ldots\right) \\
h^{\prime \prime}\left(z_{n}\right)=h\left(t^{*}\right)\left(2 c_{2}+4 c_{3} \varepsilon_{n}+\left(2 c_{2} c_{3}+6 c_{4}\right) \varepsilon_{n}^{2}+\ldots\right) \tag{3.6}
\end{array}
$$

Putting "(3.4)", "(3.5)" and "(3.6)" in the second step of "(2.6)", we get
$\varepsilon_{n+1}=\left(-c_{2} c_{3}\right) \varepsilon_{n}^{4}+o\left(\varepsilon_{n}^{5}\right)$
Thus, we proved the convergence of this new method which is of fourth-order and its efficiency index is $\sqrt[3]{4}=1.587$.

IV. NumERICAL EXAMPLES

We offer numerical results on various test equations to check the performance of the fourth-order technique defined by method "(2.6)." We also compare their findings to those obtained using the NR, SO, AN, SA, RS, RA, KI, CH, TR, and FR methodologies. All numerical computations are performed using the mpmath-PYTHON package, starting with a supplied initial approximation $t 0$. Because all of the computations are done with PYTHON (Processor $\operatorname{Intel}(\mathrm{R})$ Core(TM) i5-10210U CPU @ 2.11 GHz with 64-bit operating system), we additionally calculate the CPU execution time in seconds. We use the following stopping criteria to ensure that iterative calculation computer programs are terminated when all of the conditions are met at the same time:
i) $\left|t_{n+1}-t_{n}\right|<10^{-201}$
ii) $\left|h\left(t_{n+1}\right)\right|<10^{-201}$.

Table IV(a) Test functions with their roots	
Test Functions	Root, t^{*}
$h_{1}(t)=\sin (2 \cos t)-1-t^{2}+e^{\sin \left(t^{3}\right)} ;[8]$	-0.7848959876612
$h_{2}(t)=\sin t+\cos t+t ;[8]$	-0.4566247045676
$h_{3}(t)=(t+2) e^{t}-1 ;[8]$	-0.442854010023
$h_{4}(t)=t^{2}+\sin \left(\frac{t}{5}\right)-\frac{1}{4} ;[8]$	0.40999201798913
$h_{5}(t)=\cos t-t ;[16]$	0.73908513321516
$h_{6}(t)=t^{3}-10 ;[16]$	1.74613953040801
$h_{7}(t)=e^{-t}+\cos t ;[17]$	2.63066414792790
$h_{8}(t)=e^{\sin t}-t+1 ;[17]$	0.27775954284172
$h_{9}(t)=t^{4}-7.79075 t^{3}+2.511 t-1.674 ;[15]$	
$h_{10}(t)=\sin ^{2} t-t^{2}+1 ;[13]$	1.40449164821534

To verify the theoretical order of convergence, we calculate the computational order of convergence $\left(p_{c}\right)$ using the
formula [9]

$$
p_{c}=\frac{\log \left[\left(t_{n+1}-t_{n}\right) /\left(t_{n}-t_{n-1}\right)\right]}{\log \left[\left(t_{n}-t_{n-1}\right) /\left(t_{n-1}-t_{n-2}\right)\right]}
$$

taken into consideration the last four approximations in the iterative process.

Table IV(b)Analogy of Efficiency

Methods	p_{c}	N	E
NR	2.00	2	1.414
SO	4.00	3	1.587
AN	4.00	3	1.587
SA	4.00	3	1.587
RS	4.00	3	1.587
RA	4.00	3	1.587
KI	4.00	3	1.587
CH	4.00	3	1.587
TR	4.00	3	1.587
FR	4.00	3	1.587
MMS	4.00	3	1.587

Where p_{c} is the convergence order, N is the number of functional values per iteration and E is the efficiency-index.

Table IV(c) Analogy of Different Methods

ethod	t_{0}	n	$\left\|t_{n+1}-t_{n}\right\|$	$\left\|h\left(t_{n+1}\right)\right\|$	NFE	CPU
$\mathrm{h}_{1}(\mathrm{t})$	-1					
NR		9	1.6e-201	$4.0 \mathrm{e}-201$	18	0.00652
SO		5	2.2e-200	4.1e-201	15	0.00602
AN		6	$1.5 \mathrm{e}-201$	4.1e-201	18	0.00522
SA		5	0	4.1e-201	15	0.00717
RS		6	1.8e-201	4.1e-201	18	0.00611
RA		6	5.7e-201	4.1e-201	18	0.00615
KI		6	4.1e-201	4.1e-201	18	0.00717
CH		6	1.7e-201	4.1e-201	18	0.00527
TR		5	0	4.1e-201	15	0.00731
FR		6	5.6e-201	$4.1 \mathrm{e}-201$	18	0.00559
MMS		5	8.1e-201	4.1e-201	15	0.00513
-0.5						
NR		10	8.9e-201	2.4e-200	20	0.00732
SO		6	1.6e-201	4.1e-200	18	0.00745
AN		7	$1.5 \mathrm{e}-201$	4.1e-200	21	0.00672
SA		6	0	4.1e-200	18	0.00786
RS		7	1.7e-201	4.1e-200	21	0.00714
RA		7	9.6e-201	4.1e-200	21	0.00733
KI		7	4.1e-201	4.1e-200	21	0.00859
CH		7	1.8e-201	4.1e-200	21	0.00672
TR		6	0	4.1e-200	18	0.00805
FR		7	9.7e-200	4.1e-200	21	0.00754
MMS		6	8.1e-201	4.1e-201	18	0.00671
$\mathrm{h}_{2}(\mathbf{t})$	0.1					
NR		9	2.4e-201	5.3e-201	18	0.00317
SO		6	6.1e-201	1.8e-200	18	0.00302
AN		6	2.5e-201	5.3e-201	18	0.00315
SA		5	$3.2 \mathrm{e}-201$	5.3e-201	15	0.00355
RS		6	$2.3 \mathrm{e}-201$	5.3e-201	18	0.00317
RA		6	9.3e-201	5.3e-201	18	0.00325
KI		6	$6.9 \mathrm{e}-201$	5.3e-201	18	0.00327
CH		6	2.6e-201	$5.3 \mathrm{e}-201$	18	0.00307
TR		5	2.8e-201	$5.3 \mathrm{e}-201$	15	0.00357
FR		6	4.8e-200	$5.3 \mathrm{e}-201$	18	0.00298
MMS		5	1.2e-201	$5.3 \mathrm{e}-201$	15	0.00293

TR	5	0	$8.8 \mathrm{e}-201$	15	0.00458
FR	5	$6.8 \mathrm{e}-200$	$1.4 \mathrm{e}-198$	15	0.00404
MMS	5	$4.2 \mathrm{e}-200$	$1.4 \mathrm{e}-199$	15	0.00393
3.3					
NR	9	$6.2 \mathrm{e}-200$	$1.4 \mathrm{e}-199$	18	0.00422
SO	6	$3.5 \mathrm{e}-200$	8.8e-200	18	0.00440
AN	6	$3.5 \mathrm{e}-200$	8.8e-200	18	0.00441
SA	6	$6.8 \mathrm{e}-200$	$1.4 \mathrm{e}-199$	18	0.00471
RS	6	3.5e-201	$8.8 \mathrm{e}-201$	18	0.00450
RA	6	$6.7 \mathrm{e}-200$	$1.4 \mathrm{e}-199$	18	0.00436
KI		Divergent			
CH	6	2.5e-200	$8.8 \mathrm{e}-200$	18	0.00491
TR	6	2.6e-200	$8.8 \mathrm{e}-200$	18	0.00583
FR	6	$6.9 \mathrm{e}-200$	$1.4 \mathrm{e}-199$	18	0.00483
MMS	5	$4.2 \mathrm{e}-200$	$1.4 \mathrm{e}-199$	15	0.00383
h9(t)					
NR	10	8.1e-201	8.1e-201	20	0.00385
SO	4	$6.5 \mathrm{e}-201$	$2.4 \mathrm{e}-200$	12	0.00384
AN	5	$8.9 \mathrm{e}-201$	4.1e-201	15	0.00385
SA	8	$3.2 \mathrm{e}-201$	$2.4 \mathrm{e}-201$	24	0.00391
RS	8	$4.2 \mathrm{e}-201$	4.1e-201	24	0.00392
RA	5	2.4e-201	4.1e-201	15	0.00392
KI	3	$4.2 \mathrm{e}-200$	4.1e-201	9	0.00393
CH	5	$8.9 \mathrm{e}-201$	$4.1 \mathrm{e}-201$	15	0.00388
TR	8	3.2e-201	$2.4 \mathrm{e}-201$	24	0.00420
FR	8	$4.0 \mathrm{e}-201$	4.1e-201	24	0.00407
MMS	3	4.1e-201	4.1e-201	9	0.00383
1.2					
NR	10	8.1e-201	8.1e-201	20	0.00365
SO	4	$6.5 \mathrm{e}-201$	$2.4 \mathrm{e}-200$	12	0.00361
AN	6	$4.8 \mathrm{e}-201$	$4.8 \mathrm{e}-200$	18	0.00387
SA	9	4.1e-201	4.1e-201	27	0.00383
RS	9	$4.2 \mathrm{e}-201$	4.1e-201	27	0.00379
RA	4	$4.2 \mathrm{e}-200$	4.1e-201	12	0.00365
KI	4	4.1e-200	$4.1 \mathrm{e}-201$	12	0.00451
CH	5	$8.9 \mathrm{e}-201$	$4.1 \mathrm{e}-201$	15	0.00365
TR	8	$3.2 \mathrm{e}-201$	$2.4 \mathrm{e}-201$	24	0.00432
FR	8	$4.0 \mathrm{e}-200$	4.1e-201	24	0.00435
MMS	3	$4.0 \mathrm{e}-201$	$4.1 \mathrm{e}-201$	9	0.00362
h 10(t)	0.7				
NR	12	3.1e-200	7.6e-200	24	0.00678
SO		Divergent			
AN	9	3.0e-200	$7.6 \mathrm{e}-200$	27	0.00603
SA	8	0	$7.6 \mathrm{e}-200$	24	0.00679
RS	9	$3.2 \mathrm{e}-200$	7.6e-200	27	0.00813
RA	11	6.6e-200	$1.7 \mathrm{e}-199$	33	0.00819
KI	10	$9.3 \mathrm{e}-200$	7.6e-200	30	0.00691
CH	8	$6.8 \mathrm{e}-200$	$1.7 \mathrm{e}-199$	24	0.00558
TR	7	$5.2 \mathrm{e}-201$	$1.7 \mathrm{e}-199$	21	0.00609
FR	11	$6.5 \mathrm{e}-200$	$1.7 \mathrm{e}-199$	33	0.00783
MMS	5	$4.4 \mathrm{e}-200$	7.6e-200	15	0.00546
1.6					
NR	9	3.1e-200	7.6e-200	18	0.00484
SO	5	$4.8 \mathrm{e}-200$	$1.7 \mathrm{e}-199$	15	0.00676
AN	6	$6.7 \mathrm{e}-200$	$1.7 \mathrm{e}-199$	18	0.00391
SA	5	$3.5 \mathrm{e}-200$	7.6e-200	15	0.00441
RS	6	$6.8 \mathrm{e}-200$	$1.7 \mathrm{e}-199$	18	0.00570
RA	11	$6.5 \mathrm{e}-200$	$1.7 \mathrm{e}-199$	33	0.00761
KI	6	$8.2 \mathrm{e}-200$	1.6e-199	18	0.00485
CH	6	$6.9 \mathrm{e}-200$	$1.7 \mathrm{e}-199$	18	0.00391
TR	5	1.7e-200	7.6e-200	15	0.00536
FR	10	$6.5 \mathrm{e}-200$	1.7e-199	30	0.00393
MMS	4	$6.4 \mathrm{e}-200$	7.6e-200	12	0.00389

Where t_{0} is the initial approximation, n is the number of iterations and $N F E$ is number of function evaluations.

The graphical behavior is reflected in "Fig. 1" to "Fig. 20". We use Origin Pro software for graphical comparisons.

Fig. 1. $h_{1}(t)=0$ at $t_{0}=1$

Fig. 2. $h_{1}(t)=0$ at $t_{0}=0.5$

Fig. 3. $h_{2}(t)=0$ at $t_{0}=0.1$

Fig. 4. $h_{\imath}(t)=0$ at $t_{n}=-1$

Fig. 5. $h_{3}(t)=0$ at $t_{0}=-1.2$

Fig. 6. $h_{3}(t)=0$ at $t_{0}=0.1$

Fig. 7. $h_{4}(t)=0$ at $t_{0}=0.2$

Fig. 8. $h_{4}(t)=0$ at $t_{0}=1$

Fig. 9. $h_{5}(\mathrm{t})=0$ at $\mathrm{t}_{0}=1.4$

Fig. 10. $\mathrm{h}_{5}(\mathrm{t})=0$ at $\mathrm{t}_{0}=0.5$

Fig. 11. $\mathrm{h}_{6}(\mathrm{t})=0$ at $\mathrm{t}_{0}=1.9$

Fig. 12. $h_{6}(t)=0$ at $t_{0}=2.5$

Fig. 13. $h_{7}(t)=0$ at $t_{n}=1$

Fig. 14. $h_{7}(t)=0$ at $t_{0}=1.7$

Fig. 15. $\mathrm{h}_{8}(\mathrm{t})=0$ at $\mathrm{t}_{0}=2.4$

Fig. 16. $\mathrm{h}_{8}(\mathrm{t})=0$ at $\mathrm{t}_{0}=3.3$

Fig. 17. $\mathrm{h}_{9}(\mathrm{t})=0$ at $\mathrm{t}_{0}=0.1$

Fig. 18. $h_{9}(t)=0$ at $t_{0}=1.2$

Fig. 19. $h_{10}(t)=0$ at $t_{0}=0.7$

Fig. 20. $h_{10}(t)=0$ at $t_{0}=1.6$
Figures 1-20 show the residual fall of iterative methods NR, SO, AN, SA, RS, RA, KI, CH, TR, FR and MMS. for simple roots for a nonlinear function $\mathrm{h}_{1},-\mathrm{h}_{10}$ respectively.

V. Conclusions

We modified the proposed iterative technique by employing approximants of the second derivative to avoid calculating the higher derivatives of the function. As a result, we have a modified iterative approach that is free of the function's higher derivatives. The order of convergence of the method "(2.6)" has been proven to be four. With an efficiency score of 1.587 , this method introduced the novel optimal fourth-order convergent iterative method. Two functional evaluations and one of the first derivatives are required. The efficiency of various approaches is compared in Table IV(b). The computational findings in table IV(c) and the graphical results in "Fig. 1" to "Fig. 20" show that the current approach MMS outperforms earlier methods in terms of CPU time for similar tasks. Other optimal fourthorder iterative methods were competitive with the current iterative strategy. As a result, the findings of the study make a significant contribution to the field of computational sciences.

Acknowledgments

The authors would like to be thankful to GITAM (Deemed University) for their support and providing the resources.

References

[1] A.M. Ostrowski, Solutions of Equations and System of Equations, Academic Press, New York, 1960.
[2] Anuradha Singh, Jai Prakash Jaiswal, An Efficient Family of optimal fourth-order iterative methods for finding multiple roots of nonlinear equations, Proceedings of the National Academy of Sciences, vol. 84 (3), 2015, pp. 439-450.
[3] Changbum Chun, Some fourth-order iterative methods for solving nonlinear equations, Applied Mathematics and Computation, vol. 195 (2), 2008, pp. 454-459. Available:
https://www.sciencedirect.com/science/article/pii/S009630030700567 X
[4] Changbum Chun, Mi Young Lee, Beny Neta, Jovana Dzunic, On optimal fourth-order iterative methods free from second derivative and their dynamics, Applied Mathematics and Computation, vol. 218, 2012, pp. 6427-6438. Available:
https://www.sciencedirect.com/science/article/pii/S009630031101471 $\underline{8}$
[5] Francisco I Chicharro, Cordero A, Garrido N, Juan R Torregrosa, Wide stability in a new family of optimal fourth-order iterative methods, Comp and Math Methods, vol. 1, 2019, pp. 1-14. Available: https://doi.org/10.1002/cmm4.1023
[6] J.F.Traub, Iterative Methods for the Solution of Equations. PrenticeHall, New Jersey, 1964.
[7] J.F.Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing Company, New York, 1977.
[8] Mani Sandeep Kumar M., Palli R. K., Ramadevi Sri, An optimal three-step method for solving non-linear equations, Journal of Critical Reviews, vol. 7 (6), 2020, pp. 100-103. Available: http://www.jcreview.com/
[9] M.S.Petković, Remarks on 'On a general class of multipoint rootfinding methods of high computational efficiency'", SIAM J. Numer. Math, vol. 49, 2011, pp. 1317-1319. Available: https://epubs.siam.org/doi/abs/10.1137/100805340
[10] Rajni Sharma, Ashu Bahl, An optimal fourth-order iterative method for solving nonlinear equations and its dynamics, Journal of Complex Analysis, vol. 8, 2015, pp. 1-9. Available: https://doi.org/10.1155/2015/259167
[11] Ramandeep Behl, Alicia Cordero, New iterative methods for solving nonlinear problems with one and several unknowns, Sigma Mathematics, vol. 6 (12), 2018, pp. 1-17.
[12] Santiago Artidiello, Francisco I Chicharro, Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods, International Journal of Computer Mathematics, vol. 90 (10), 2013, pp. 2049-2060. Available: https://doi.org/10.1080/00207160.2012.748900
[13] Shengfeng Li, Fourth-order iterative method without calculating the higher derivatives for nonlinear equations, Journal of Algorithms and Computational Technology, 139, 2019, pp. 1-8. Available: https://doi.org/10.1177/1748302619887686
[14] Soleymani F., Optimal fourth-order iterative method free from derivative, Miskolc Mathematical Notes, 12 (2), 2011, pp. 255-264.
[15] Solaiman S Obadah, Ishak H, Efficacy of optimal methods for nonlinear equations with chemical engineering applications, Mathematical Problems in Engineering, 2019 pp. 1-11. Available: https://doi.org/10.1155/2019/1728965
[16] S. Ramadevi, Mani Sandeep Kumar M., Palli R. K., A new two step Sixth-order iterative method with high efficiency-index, Advances in Mathematics: Scientific Journal, 9(7), 2020, pp. 5265-5272. Available: page AMSJ9-N7-95 - Research-Publication
[17] S. Ramadevi, Mani Sandeep Kumar M., Palli R. K., A three step ninth-order iterative method for solving non-linear equations, Advances in Mathematics: Scientific Journal, 9(7), 2020, pp. 5291-5298. Available: page AMSJ9-N7-98 - Research-Publication

Mani Sandeep Kumar Mylapalli. This author became a Member (M) of IAENG in 2017. The author was born at Visakhapatnam and date of birth is $26^{\text {th }}$ August 1982. The author has completed master's degree in Applied Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh in the year 2004 and earned doctoral degree in Numerical Analysis, Andhra University, Visakhapatnam, Andhra Pradesh in the year 2010. The author's major field

of study is numerical analysis.

He is working currently as an Assistant Professor of mathematics in GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh since 2010. Previously he worked as an Assistant Professor of mathematics in MVGR college of engineering for two years. Some of his previous publications are: An optimal three-step method for solving non-linear equations, Journal of Critical Reviews, vol. 7 (6), 2020, pp. 100-103; A new two-step sixth-order iterative method with high efficiency-index, Advances in Mathematics: Scientific Journal, 9(7), 2020, pp. 5265-5272 and An iterative method with twelfth order convergence for solving nonlinear equations, Advances and Applications in Mathematical Sciences, 2021, 20, pp. 1633-1643. The goal of the current research is to create novel iterative techniques for solving linear and nonlinear systems of equations.

Dr. Mylapalli is a life Member (LM) of IMS in 2021, and a Outreach Member (OM) of SIAM in 2021.

Rajesh Kumar Palli. The author was born at Visakhapatnam and date of
 birth is $17^{\text {th }}$ January 1984. The author has completed master's degree in Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh in the year 2006 and earned doctoral degree in Numerical Analysis, Andhra University, Visakhapatnam, Andhra Pradesh in the year 2021. The author's major field of study is numerical analysis.

He is working currently as a Post Graduate teacher of mathematics in Sri Prakash Vidya Niketan, Visakhapatnam, Andhra Pradesh since 2020. Previously he worked as a Post Graduate teacher of mathematics in Sri Chaitanya IIT Academy. Some of his previous publications are: An optimal three-step method for solving nonlinear equations, Journal of Critical Reviews, vol. 7 (6), 2020, pp. 100-103; A new two-step sixth-order iterative method with high efficiency-index, Advances in Mathematics: Scientific Journal, 9(7), 2020, pp. 5265-5272 and An iterative method with twelfth order convergence for solving nonlinear equations, Advances and Applications in Mathematical Sciences, 2021, 20, pp. 1633-1643. The current research interest includes developing application oriented numerical methods.

Pragathi Chaganti. The author was born at Visakhapatnam and date of birth is $19^{\text {th }}$ August 1967. The author has completed master's degree in Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh in the year 1993 and earned doctoral degree in Lattice Theory, Andhra University, Visakhapatnam, Andhra Pradesh in the year 2001. The author's major field of study is Lattice Theory.

She is working currently as an Associate Professor of mathematics in GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh since 2010.. Previously she worked as Senior Assistant Professor of mathematics in MVGR college of engineering for three years. Some of her previous publications are: An optimal three-step method for solving non-linear equations, Journal of Critical Reviews, vol. 7 (6), 2020, pp. 100-103; Boolean center of an almost distributive lattice, South-East Asian Bulletin of Mathematics, vol. 32,2008 , pp. 985-994.The current research interests are to develop central elements of lattice, semi-lattice, and algebra.

Ramadevi Sri. The author was born at Visakhapatnam and date of birth is
 $5^{\text {th }}$ February 1986. The author has completed master's degree in Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh in the year 2009 and earned doctoral degree in Numerical Analysis, Andhra University, Visakhapatnam, Andhra Pradesh in the year 2019. The author's major field of study is numerical analysis.

She is working currently as an Assistant Professor of mathematics in DR. L. Bullayya College, Visakhapatnam, Andhra Pradesh since 2019. Previously she worked as Assistant Professor of mathematics in Lendi Institute of Engineering and Technology. Some of her previous publications are: An optimal three-step method for solving non-linear equations, Journal of Critical Reviews, vol. 7 (6), 2020, pp. 100-103; A new two-step sixth-order iterative method with high efficiency-index, Advances in Mathematics: Scientific Journal, 9(7), 2020, pp. 5265-5272 and An iterative method with twelfth order convergence for solving nonlinear equations, Advances and

Applications in Mathematical Sciences, 2021, 20, pp. 1633-1643. The current research interests are to develop new iterative methods for the solution of nonlinear, systems of linear and nonlinear equations.

[^0]: Manuscript received December 21, 2021; revised July 22, 2022.
 Mani Sandeep Kumar Mylapalli, IAENG Member is an Assistant Professor of Mathematics, GITAM Institute of Science, GITAM (Deemed to be University), Visakhapatnam 530040, INDIA (corresponding author phone: +91 9989865011; e-mail: mmylapal@gitam.edu).

 Rajesh Kumar Palli is a PhD candidate of GITAM (Deemed to be University), Visakhapatnam 530040, INDIA (e-mail: rajeshkumar.viit @ gmail.com).

 Pragathi Chaganti is an Associate Professor of Mathematics, Gitam Institute of Science, GITAM (Deemed to be University), Visakhapatnam 530040, INDIA (pchagant@gitam.edu).

 Ramadevi Sri is an Assistant Professor of Mathematics, Dr. L. B. College, Andhra University, Visakhapatnam 530003, INDIA (e-mail: ramadevisri9090@gmail.com).

