
 

  

ABSTRACT — For obtaining a simple root of nonlinear 

equations, we present an optimum fourth-order iterative 

technique. By examining certain test problems, we investigate 

the proposed method's convergence criteria and establish its 

validity and efficiency. Finally, based on numerical and 

graphical data, it was determined that our methods are 

comparable in terms of order, efficiency, and processing time 

to existing methods of similar kind. 

 
Index Terms — Iterative Method, Non-linear Equation, 

Functional evaluations, Order of Convergence, Efficiency 

Index. 

I. INTRODUCTION 

any mathematical modeling of any knowledge in 

science and engineering contains non-linear 

equations in the form of  

( ) 0h t =                                                                     (1.1) 

Where :h D R R → is a scalar function on an open 

interval D. While there is no closed-form solution, these 

equations regularly emerge in real-world problems. As a 

result, the numerical solution of these equations is receiving 

a lot of interest these days. Multi-point iterations are used in 

the most efficient extant root solvers because they transcend 

the theoretical limits of one-point approaches in terms of 

convergence order and computational efficiency. Ostrowski 

[1] proposed the concept of efficiency index as a measure 

for comparing the efficiency of different methods. This 

index is described by 1 N
E P= , where P is the order of 

convergence and N is the total number of function 

evaluations per iteration. Kung and Traub [7] proposed that 

an iteration method without memory based on N functional 

evaluations could achieve optimal convergence order 12N − . 

These iterative methods could be derived using a variety of 

approaches, such as Taylor series, decomposition, 

quadrature, and homotopy methods. 

Among all the best approaches, one of the well-known 

approaches for obtaining the zero of "(1.1)" is the classical  
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second-order Newton's method (NR) [6] 

( )
( )1

h tn
t tnn h tn

= −
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(1.2)

 
We choose some existing optimal fourth-order methods 

given as follows:  

Francisco-Cordero-Garrido-Juan [5] proposed a two-step 

novel optimal two-step method (FR) with fourth-order 

convergence 
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(1.3)     

Traub-Ostrowski [6] suggested an optimal two-step with 

fourth-order convergence algorithm (TR), which is given by 
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Chun-Lee-Neta-Jovana [4] presented another optimal fourth-

order convergence algorithm (CH) 
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(1.5)

                                  

 

Chun [3] suggested a two-step iterative technique with an 

ideal fourth-order convergence mechanism (KT) 
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(1.6)

 Ramandeep-Cordero [11] proposed a new iterative 

approach (RA) for solving nonlinear equations 
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(1.7) 

where 
2

t yn nzn
+

= .

 
Rajni-Bahl [10] proposes a second optimal two-step 

approach (RS) with fourth-order convergence. 
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(1.8)     

Santiago-Francisco [12] proposes an optimal fourth-order 

convergence iterative approach (SA) 
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Anuradha-Jaiswal [2] has presented an efficient optimum 

method (AN) with fourth-order convergence 
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Soleymani [14] proposes an optimal fourth-order iterative 

approach (SO) that is free of derivatives 
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(1.11) 

We begin with many one-step iterative methods in this 

study, including the classical Newton's method and a new 

scheme for solving nonlinear equations. To improve the 

presented iterative method, we use the approximants of the 

higher derivatives to avoid calculating the function's high-

order derivatives. As a result, we can design an iterative 

formula without having to calculate high-order derivatives. 

The remainder of this work is arranged in the following 

manner. We provide a new two-step optimal fourth-order 

iterative approach with fast convergence speed in the 

following part, and we show that the proposed method is at 

least fourth-order convergent in the following section. A 

comparison of our new proposed method with previous 

optimal schemes of similar type utilizing examples from the 

literature of numerical methods is shown in the penultimate 

part. 

II. FOURTH ORDER CONVERGENT METHOD 

Consider *t is an exact root of “(1.1)” where ( )h t  is 

continuous and has well defined first derivatives. Let tn be 

the root of nth approximation of “(1.1)” and is  

*
t tn n= +        

                                 
(2.1) 

where n is the error. Thus, we get 

* 0h t
 
 
 

=                                                               (2.2)

 
writing *h t

 
 
 

  by Taylor’s series about tn , we have 

( ) ( ) ( )
2

* ...
2!
nh t h t h t h tn n n n


 

 
 

 = + + +                       (2.3) 

Here higher powers of n are neglected that to from 

3
n onwards. Using “(2.2)” and “(2.3)”, we have 

( ) ( ) ( ) ( ) ( )2 4 8 2h t h t h t h t h tn n n n n n  
 
 

   = −  −                  (2.4) 

On Substituting 
*

t by 
1

t
n+

in “(2.1)” and from “(2.4)”, we 

get  
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We develop the algorithm by taking “(1.2)” as the first 

step and “(2.5)” as the second step. 

 

 Algorithm: The iterative scheme is computed by
1nt +

as  

( )
( )

h tn
z =tn n h tn

−


        

( )
( )

( )( )1
2 1

G tn

h zn
t =znn+1 h zn

+
−

−


                       

(2.6) 
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The method “(2.6)” is called a fourth-order convergent 

method (MMS), which requires two functional evaluations 

and one of its first derivative. 

III. CONVERGENCE CRITERIA 

Theorem: Let 
0
t D  be a single zero of a sufficiently 

differentiable function h for an open interval D. If 
0
t is in the 

neighborhood of *
t . Then “(2.12)” has fourth-order 

convergence. 

Proof:  Let the single zero of (1.1) be *
t and *t tn n= +  then 

* 0h t 
 
 

=  

By Taylor’s series, writing *h t
 
 
 

 about tn , we obtain 

( ) * 2 3 4 ...
2 3 4

th t h c c cn n n n n   
  

   
   

= + + + +                 (3.1) 

( ) * 2 31 2 4 ...
2 3 4

h t h t c c cn n n n    
  

  
 = + + + +                 (3.2) 

Replacing “(3.1)” and “(3.2)” in the first step of “(2.6)”, we 

get

                                                                                            

* 2 3 42 32 2 3 7 4 . . .
2 3 2 4 2 3 2

z t c c c c c c cn n n n  
   
   
   

= + + − + − + +  (3.3) 

From “(3.3)”, we obtain 
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( ) ( ) ( ) ( )( )* 2 32 31 2 6 2 . . .3 2 3 42 2
h z h t c c c c c cn n n  = + − + − − +   

 

(3.5) 

( ) ( ) ( )( )* 2
2 4 2 6 . . .

2 3 2 3 4
h z h t c c c c cn n n  = + + + +

   
(3.6)

                                                                                            

Putting “(3.4)” , “(3.5)” and “(3.6)” in the second step of 

“(2.6)”, we get
  

 

Thus, we proved the convergence of this new method 

which is of fourth-order and its efficiency index 

is 3
4 1.587= . 

IV. NUMERICAL EXAMPLES 

We offer numerical results on various test equations to 

check the performance of the fourth-order technique defined 

by method "(2.6)." We also compare their findings to those 

obtained using the NR, SO, AN, SA, RS, RA, KI, CH, TR, 

and FR methodologies. All numerical computations are 

performed using the mpmath-PYTHON package, starting 

with a supplied initial approximation t0. Because all of the 

computations are done with PYTHON (Processor Intel(R) 

Core(TM) i5-10210U CPU @ 2.11 GHz with 64-bit 

operating system), we additionally calculate the CPU 

execution time in seconds. We use the following stopping 

criteria to ensure that iterative calculation computer 

programs are terminated when all of the conditions are met 

at the same time: 

i)
201

101t tn n
−

− +  

ii) ( )
201

101h tn
−

+ . 

 
Table IV(a) Test functions with their roots 

 

  Test Functions   Root, 
*

t  

( ) ( )
( )3sin

2
sin 2cos 11

t
h t t t e= − − + ;[8]            

 

0.7848959876612−  

( ) sin cos2h t t t t= + + ;[8] 0.4566247045676−  

 

( ) ( )2 13
t

h t t e= + − ;[8] 
0.442854010023−  

( )
12

sin4 5 4

t
h t t

 
 
 

= + − ;[8] 
0.40999201798913  

( ) cos5h t t t= − ;[16] 0.73908513321516  

( ) 3
10

6
h t t= − ;[16] 

2.15443469003188  

( ) cos
7

t
h t e t

−
= + ;[17] 

1.74613953040801  

( ) sin
18

t
h t e t= − + ;[17] 

2.63066414792790  

( ) 4 3
7.79075 2.511 1.6749h t t t t= − + − ;[15] 

( ) 2 2
sin 110h t t t= − + ;[13]                   

0.27775954284172  

 

1.40449164821534  

 

To verify the theoretical order of convergence, we calculate  

the computational order of convergence ( )cp using the  

 

formula [9] 

 
( ) ( )

( ) ( )

log /
1 1

log /
1 1 2

t t t tn nn n
pc

t t t tn n n n

− −
+ −

=
− −

− − −

 
 

 
 

  

taken into consideration the last four approximations in the 

iterative process.    

 
                      Table IV(b)Analogy of Efficiency 

 

 

 

 

 

 

 

 

 

 

 

 

Where 
cp is the convergence order, N is the number of 

functional values per iteration and E is the efficiency-index.  
       

    Table IV(c) Analogy of Different Methods 

 

ethod t0 n 1 tn nt −+

 
( )1h nt +  NFE 

 

CPU   

h1(t)  -1          

NR 

SO 

AN 

SA 

RS 

RA 

KI 

CH 

TR 

FR 

MMS 

 

 

 

 

 

 

 

 

 

 

9 

5 

6 

5 

6 

6 

6 

6 

5 

6 

5 

1.6e-201 

2.2e-200 

1.5e-201 

0 

1.8e-201 

5.7e-201 

4.1e-201 

1.7e-201 

0 

5.6e-201 

8.1e-201 

4.0e-201 

4.1e-201 

4.1e-201 

4.1e-201 

4.1e-201 

4.1e-201 

4.1e-201 

4.1e-201 

4.1e-201 

4.1e-201 

4.1e-201 

18 

15 

18 

15 

18 

18 

18 

18 

15 

18 

15 

0.00652 

0.00602 

0.00522 

0.00717 

0.00611 

0.00615 

0.00717 

0.00527 

0.00731 

0.00559 

0.00513 

 -0.5      

NR 

SO 

AN 

SA 

RS 

RA 

KI 

CH 

TR 

FR 

MMS 

 10 

6 

7 

6 

7 

7 

7 

7 

6 

7 

6 

8.9e-201 

1.6e-201 

1.5e-201 

0 

1.7e-201 

9.6e-201 

4.1e-201 

1.8e-201 

0 

9.7e-200 

8.1e-201 

2.4e-200 

4.1e-200 

4.1e-200 

4.1e-200 

4.1e-200 

4.1e-200 

4.1e-200 

4.1e-200 

4.1e-200 

4.1e-200 

4.1e-201 

20 

18 

21 

18 

21 

21 

21 

21 

18 

21 

18 

0.00732 

0.00745 

0.00672 

0.00786 

0.00714 

0.00733 

0.00859 

0.00672 

0.00805 

0.00754 

0.00671 

   h2(t) 0.1         

NR 

SO 

AN 

SA 

RS 

RA 

KI 

CH 

TR 

FR 

MMS 

 

 

 

 

 

 

 

 

 

 

9 

6 

6 

5 

6 

6 

6 

6 

5 

6 

5 

2.4e-201 

6.1e-201 

2.5e-201 

3.2e-201 

2.3e-201 

9.3e-201 

6.9e-201 

2.6e-201 

2.8e-201 

4.8e-200 

1.2e-201 

5.3e-201 

1.8e-200 

5.3e-201 

5.3e-201 

5.3e-201 

5.3e-201 

5.3e-201 

5.3e-201 

5.3e-201 

5.3e-201 

5.3e-201 

18 

18 

18 

15 

18 

18 

18 

18 

15 

18 

15 

0.00317 

0.00302 

0.00315 

0.00355 

0.00317 

0.00325 

0.00327 

0.00307 

0.00357 

0.00298 

0.00293 

 -1      

Methods pc  N E 

NR 

SO 

AN 

SA 

RS 

RA 

KI 

CH 

TR 

FR 

MMS 

2.00 

4.00 

4.00 

4.00 

4.00 

4.00 

4.00 

4.00 

4.00 

4.00 

4.00 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

1.414 

1.587 

1.587 

1.587 

1.587 

1.587 

1.587 

1.587 

1.587 

1.587 

1.587 
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NR 

SO 

AN 

SA 

RS 

RA 

KI 

CH 

TR 

FR 

 MMS 

 8 

5 

6 

5 

6 

5 

5 

6 

5 

5 

5 

2.4e-201 

1.0e-200 

2.5e-201 

0 

2.6e-201 

9.3e-201 

7.3e-201 

2.3e-201 

1.6e-201 

8.9e-201 

1.2e-201 

5.3e-201 

5.3e-201 

5.3 e-20 

5.3e-201 

5.3e-201 

5.3e-201 

1.8e-201 

5.3e-201 

5.3e-201 

5.3e-201 

5.3e-201 

16 

15 

18 

15 

18 

15 

15 

18 

15 

15 

15 

0.00289 

0.00271 

0.00272 

0.00299 

0.00271 

0.00279 

0.00321 

0.00270 

0.00357 

0.00295 

0.00270 

  h3(t)  -1.2          

NR 

SO 

AN 

SA 

RS 

RA 

KI 

CH 

TR 

FR 

MMS 

 

 

 

 

 

 

 

 

 

 

11 

 

9 

7 

8 

15 

 

7 

6 

15 

6 

2.4e-201 

Divergent 

2.4e-201 

0 

2.3e-201 

9.7e-201 

Divergent 

2.5e-201 

1.1e-201 

9.7e-201 

1.2e-201 

4.0e-201 

 

4.1e-201 

4.1e-201 

4.1e-201 

4.1e-201 

 

4.1e-201 

4.1e-201 

4.1e-201 

4.1e-201 

22 

 

27 

21 

24 

45 

 

21 

18 

45 

18 

0.00251 

 

0.00373 

0.00560 

0.00251 

0.00343 

 

0.00321 

0.00332 

0.00343 

0.00228 

 0.1      

NR 

SO 

AN 

SA 

RS 

RA 

KI 

CH 

TR 

FR 

MMS 

 10 

6 

7 

6 

7 

6 

6 

7 

6 

6 

6 

2.4e-201 

2.3e-201 

2.5e-201 

2.8e-201 

2.4e-200 

9.7e-201 

7.3e-201 

2.3e-200 

5.3e-201 

9.7e-201 

1.2e-201 

4.0e-201 

4.1e-201 

4.1e-201 

4.1e-201 

4.1e-201 

4.1e-201 

4.1e-201 

4.1e-201 

1.1e-201 

4.1e-201 

4.1e-201 

20 

18 

21 

18 

21 

18 

18 

21 

18 

18 

18 

0.00251 

0.00270 

0.00241 

0.00238 

0.00224 

0.00294 

0.00271 

0.00253 

0.00252 

0.00275 

0.00218 

 h4(t) 0.2         

NR 

SO 

AN 

SA 

RS 

RA 

KI 

CH 

TR 

FR 

MMS 

 

 

 

 

 

 

 

 

 

 

 

10 

6 

7 

7 

7 

6 

7 

7 

6 

6 

5 

2.0e-201 

2.4e-201 

2.1e-201 

0 

7.7e-201 

8.9e-201 

7.3e-201 

1.9e-201 

1.2e-201 

8.9e-201 

8.1e-201 

2.2e-201 

2.2e-201 

2.0e-201 

2.2e-201 

7.7e-201 

2.2e-201 

7.7e-201 

2.2e-201 

2.2e-201 

2.2e-201 

2.2e-201 

20 

18 

21 

21 

21 

18 

21 

21 

18 

18 

15 

0.00272 

0.00295 

0.00293 

0.00336 

0.00319 

0.00317 

0.00292 

0.00305 

0.00318 

0.00299 

0.00254 

 1      

NR 

SO 

AN 

SA 

RS 

RA 

KI 

CH 

TR 

FR 

MMS 

 10 

6 

7 

6 

7 

6 

6 

7 

6 

6 

5 

2.0e-201 

2.4e-201 

2.1e-201 

0 

1.9e-201 

8.5e-201 

6.5e-201 

7.7e-201 

6.6e-201 

8.9e-201 

6.1e-201 

2.2e-201 

2.2e-201 

2.2e-201 

2.2e-201 

2.2e-201 

2.2e-201 

2.2e-201 

7.7e-200 

7.7e-200 

2.2e-201 

1.7e-201 

20 

18 

21 

18 

21 

18 

18 

21 

18 

18 

15 

0.00261 

0.00251 

0.00286 

0.00342 

0.00275 

0.00278

0.00322 

0.00262 

0.00329 

0.00303 

0.00250 

 h5(t) 1.4        

NR 

SO 

AN 

SA 

RS 

RA 

KI 

CH 

TR 

FR 

 

 

 

 

 

 

 

 

 

 

9 

6 

6 

5 

6 

6 

6 

6 

5 

6 

1.6e-201 

1.5e-201 

1.7e-201 

2.4e-201 

1.6e-201 

5.7e-201 

7.3e-201 

1.5e-201 

0 

5.7e-201 

2.4e-201 

2.4e-200 

2.4e-201 

2.4e-201 

2.4e-201 

2.4e-201 

1.3e-200 

2.4e-201 

2.4e-201 

2.4e-201 

18 

18 

18 

15 

18 

18 

18 

18 

15 

18 

0.00242 

0.00263 

0.00227 

0.00245 

0.00234 

0.00231 

0.00255 

0.00226 

0.00274 

0.00281 

MMS 5 8.1e-201 2.4e-201 15 0.00232 
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Where 
0t is the initial approximation, n is the number of 

iterations and NFE is number of function evaluations.  

 

 

The graphical behavior is reflected in “Fig. 1” to “Fig. 

20”. We use Origin Pro software for graphical comparisons.  
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Fig.  1.  h1(t)=0 at t0=1
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Fig.  2.  h1(t)=0 at t0=0.5
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Fig.  3.  h2(t)=0 at t0=0.1  
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Fig.  4.  h2(t)=0 at t0=-1  
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Fig.  5.  h3(t)=0 at t0=-1.2
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Fig.  6.  h3(t)=0 at t0=0.1
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Fig.  7.  h4(t)=0 at t0=0.2
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Fig.  8.  h4(t)=0 at t0=1
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Fig.  9.  h5(t)=0 at t0=1.4
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Fig.  10.  h5(t)=0 at t0=0.5
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Fig.  11.  h6(t)=0 at t0=1.9
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Fig.  12.  h6(t)=0 at t0=2.5
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Fig.  13.  h7(t)=0 at t0=1  
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Fig.  14.  h7(t)=0 at t0=1.7
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Fig.  15.  h8(t)=0 at t0=2.4
 

IAENG International Journal of Applied Mathematics, 52:3, IJAM_52_3_25

Volume 52, Issue 3: September 2022

 
______________________________________________________________________________________ 



 

0 1 2 3 4 5 6 7 8 9 10

-500

-400

-300

-200

-100

0

L
o
g
 o

f 
R

e
s
id

u
e
s

No. of Iterations

 MMS

 FR

 TR

 CH

 KI

 RA

 RS

 SA

 AN

 SO

 NR

Fig.  16.  h8(t)=0 at t0=3.3
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Fig.  17.  h9(t)=0 at t0=0.1
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Fig.  18.  h9(t)=0 at t0=1.2
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Fig.  19.  h10(t)=0 at t0=0.7  
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Fig.  20.  h10(t)=0 at t0=1.6
 

 

Figures 1-20 show the residual fall of iterative methods 

NR, SO, AN, SA, RS, RA, KI, CH, TR, FR and MMS. for 

simple roots for a nonlinear function h1,-h10 respectively. 

V. CONCLUSIONS 

   We modified the proposed iterative technique by 

employing approximants of the second derivative to avoid 

calculating the higher derivatives of the function. As a 

result, we have a modified iterative approach that is free of 

the function's higher derivatives. The order of convergence 

of the method "(2.6)" has been proven to be four. With an 

efficiency score of 1.587, this method introduced the novel 

optimal fourth-order convergent iterative method. Two 

functional evaluations and one of the first derivatives are 

required. The efficiency of various approaches is compared 

in Table IV(b). The computational findings in table IV(c) 

and the graphical results in "Fig. 1" to "Fig. 20" show that 

the current approach MMS outperforms earlier methods in 

terms of CPU time for similar tasks. Other optimal fourth-

order iterative methods were competitive with the current 

iterative strategy. As a result, the findings of the study make 

a significant contribution to the field of computational 

sciences. 
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