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Abstract—Through the study of the law of O-conditionality
for the fuzzy implication derived from overlap, grouping
and negation functions, we first present the notion of fuzzy
implications JRO and JG,N which are ordinal sums of fuzzy
implications RO-implications and (G,N)-implications. And
then we analyze the conditions for the two fuzzy implications
JRO and JG,N to preserve the law of O-conditionality. Finally,
a new type of implications called (O,N)-implications which are
derived from overlap and negation functions is given, and the
law of O-conditionality for (O,N)-implications is also discussed.

Index Terms—overlap functions, grouping functions, fuzzy
implications, ordinal sums, O-conditionality.

I. INTRODUCTION

THE concept of fuzzy sets was introduced by Zadeh,
since then, many mathematical concepts such as num-

bers, group, topology, differential equation and so on, have
been generalized to fuzzy sets. There are several ways to
extend the propositional connectives for a set [0, 1], but in
general these extensions do not preserve all the properties of
the classical logical connectives.

Fuzzy implications [1] play a key role in fuzzy logic [2]
and various applications, including approximate reasoning
[3], fuzzy control [4], fuzzy relational equations [5], fuzzy
mathematical morphology [6], image processing [7], and so
on. Classical implications are generalized to fuzzy implica-
tions by considering truth values that vary in the unit interval
[0, 1] rather than in the set {0, 1}. Fuzzy implications are
largely applied in approximate reasoning, modeling fuzzy
conditions and the inference processes via the generalized
Modus Ponens (GMP) and Modus Tollens (GMT) [8]. In
the inference processes of fuzzy logic, many papers discuss
the implementation of generalized Modus Ponens since the
scheme is enabled by the laws of the T-conditionality and the
U-conditionality, for t-norms and t-uninorms, respectively.
The Modus Ponens x ∧ (x → y) ` y is generalized to the
fuzzy context [9], when ∧ is replaced by a t-norm, x→ y is
replaced by a fuzzy implication, the law of T-conditionality
is stated by: ∀x, y ∈ [0, 1],

T (x, I(x, y)) ≤ y (TC).

In the literature, the studies on the T-conditionality have
been done just for the three main families of fuzzy im-
plications, namely, R-implications, (S,N)-implications and
QL-implications. It is observed that (TC) only relates with
two objects, so the associatively property of the conjunc-
tive operator is not necessarily needed. Similarly, in some
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applications, fuzzy implication functions do not require the
exchange principle, for example, in decision-making [10],
consensus measures [11], and multi-criteria decision-making
problems via similarity measures [12]. Readers can refer
to the related works ([13]–[17]). In this direction, Bustince
introduced overlap functions [18] and grouping functions
[19], which are exceptional cases of continuous aggregate
operators, given by monotonic and commutative functions,
but not necessarily associative, satisfying some appropri-
ate boundary conditions ([20]–[22]). In the sequence, the
concept of fuzzy implications derived from overlap and
grouping functions was introduced in [23]. Based on residual
implication of general conjunctions, Dimuro et al. introduced
the concept of RO-implications which are derived from
overlap functions, preserving the residual property. And they
also gave the concepts of (G,N)-implications and QL-
implications derived from triples (O,G,N) in [24] and [25],
respectively. A generalization of (TC) was introduced by
Dimuro et al., that is, the law of O-conditionality [26]:

O(x, I(x, y)) ≤ y (OC).

Dimuro et al. also discussed under what conditions RO-
implications, (G,N)-implications, QL-implications and D-
implications satisfy (OC), respectively. Inspired by [26] and
considering the advantages and flexibility offered by overlap
and grouping functions as aggregation operators, we discuss
whether some fuzzy implications generated by overlap and
grouping functions satisfy the conditions of the law of O-
conditionality. we first present the notion of JRO

-implication
and JG,N -implication which are ordinal sums of fuzzy
implications RO-implications and (G,N)-implications. Then
we study some properties of the ordinal sum, and analyze
the laws of O-conditionality of the JRO

-implication and the
JG,N -implication induced by the ordinal sum, respectively.
Finally, we present a new fuzzy implication IO,N which is
derived from an overlap and negation function, and discuss
under what conditions it does not satisfy the law of O-
conditionality.

The paper is organized as follows. Section II presents basic
concepts that are needed to develop the paper, including the
concepts of RO-implications and (G,N)-implications, and
the law of O-conditionality for any fuzzy implication, espe-
cially the law of O-conditionality for RO-implications and
(G,N)-implications. Section III discusses some properties
of JRO

and JG,N , and studies the law of O-conditionality
for JRO

and JG,N . In section IV, we give a new fuzzy
implication (O,N)-implication, and discuss the law of O-
conditionality for it. Section V is the conclusion, with our
final remarks and future work.
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II. PRELIMINARIES

In this section, we recall some fundamental concepts relat-
ed to the theory of RO-implications and (G,N)-implications
which shall be needed in the sequel.

A. t-norms, t-conorms, overlap and grouping functions

Definition 2.1: [27] A bivariate function T : [0, 1]2 →
[0, 1] is said to be a t-norm if it satisfies the following
conditions: for all x, y, z ∈ [0, 1],

(T1) Commutativity: T (x, y) = T (y, x);
(T2) Associativity: T (T (x, y), z) = T (x, T (y, z));
(T3) Monotonicity: T (x, y) ≤ T (x, z) whenever y ≤ z;
(T4) Boundary condition: T (x, 1) = x.
Definition 2.2: [27] A bivariate function S : [0, 1]2 →

[0, 1] is said to be a t-conorm if, for all x, y, z ∈ [0, 1], it
satisfies the following conditions:

(S1) Commutativity: S(x, y) = S(y, x);
(S2) Associativity: S(S(x, y), z) = S(x, S(y, z));
(S3) Monotonicity: S(x, y) ≤ S(x, z) whenever y ≤ z;
(S4) Boundary condition: S(x, 0) = x.
Definition 2.3: [28] A function N : [0, 1]→ [0, 1] is said

to be a fuzzy negation, if the following conditions hold:
(N1) N satisfies the boundary conditions:

N(0) = 1, N(1) = 0;
(N2) N is decreasing: if x ≤ y, then N(y) ≤ N(x);
(N3) N is strictly decreasing:

if x < y, then N(y) < N(x);
(N4) N is continuous;
(N5) N is involutive: ∀x ∈ [0, 1],

N(N(x)) = x;
(N6) N is frontier:

N(x) ∈ {0, 1} if and only if x = 0 or x = 1;
(N7) N(x) = 1 if and only if x = 0.
The standard fuzzy negation NZ : [0, 1] → [0, 1], is

defined by

NZ(x) = 1− x.

The least fuzzy negation N⊥ : [0, 1] → [0, 1], is defined
by

N⊥(x) =

{
1, x = 0,

0, x ∈]0, 1].

The greatest fuzzy negation N> : [0, 1]→ [0, 1], is defined
by

N>(x) =

{
0, x = 1,

1, x ∈ [0, 1[.

In the following, we introduce the concepts of overlap and
grouping functions ([18], [19]).

Definition 2.4: [18] A bivariate function O : [0, 1]2 →
[0, 1] is said to be an overlap function if it satisfies the
following conditions: for any x, y, z ∈ [0, 1],

(O1) O is commutative: O(x, y) = O(y, x);
(O2) O(x, y) = 0 iff xy = 0;
(O3) O(x, y) = 1 iff xy = 1;
(O4) O is increasing: if x ≤ y, then O(x, z) ≤ O(y, z);
(O5) O is continuous.
Moreover, an overlap function O is said to satisfy (O6) the

property of 1-section deflation: ∀x ∈ [0, 1], O(x, 1) ≤ x; O

satisfies (O7) the property of 1-section inflation: ∀x ∈ [0, 1],
O(x, 1) ≥ x.

Lemma 2.5: [26] Let O : [0, 1]2 → [0, 1] be an overlap
function. If O satisfies (O6), then O(x, y) ≤ x, for all x ∈
[0, 1].

Proof: Assume that O satisfies (O6). Since O is increas-
ing, for all x, y ∈ [0, 1], it holds that

O(x, y) ≤ O(x, 1) ≤ x.

Definition 2.6: [19] A bivariate function G : [0, 1]2 →
[0, 1] is said to be a grouping function if it satisfies the
following conditions: for any x, y, z ∈ [0, 1],

(G1) G is commutative: G(x, y) = G(y, x);
(G2) G(x, y) = 0 iff x = y = 0;
(G3) G(x, y) = 1 iff x = 1 or y = 1;
(G4) G is increasing: if x ≤ y, then G(x, z) ≤ G(y, z);
(G5) G is continuous.
Moreover, a grouping function G is said to satisfy (G6) the

property of 0-section deflation: ∀y ∈ [0, 1], G(0, y) ≤ y; G
satisfies (G7) the property of 0-section inflation: ∀y ∈ [0, 1],
G(0, y) ≥ y.

B. Fuzzy implications

Definition 2.7: [1] A bivariate function I : [0, 1]2 →
[0, 1] is called a fuzzy implication, if for any x, y, z ∈ [0, 1],
it holds that:

(I1) First place non-increasing:
if x ≤ y, then I(x, z) ≥ I(y, z);

(I2) Second place non-decreasing:
if y ≤ z, then I(x, y) ≤ I(x, z);

(I3) Boundary condition:
I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0.

In the following, we present some properties that are used
in this paper.

Definition 2.8: [1] A fuzzy implication I : [0, 1]2 →
[0, 1] satisfies:

(LBC) The left boundary condition: ∀y ∈ [0, 1],
I(0, y) = 1;

(OP) The ordering property: ∀x, y ∈ [0, 1],
x ≤ y ⇔ I(x, y) = 1;

(LOP) The left ordering property: ∀x, y ∈ [0, 1],
x ≤ y ⇒ I(x, y) = 1;

(EP) The exchange principle: ∀x, y, z ∈ [0, 1],
I(x, I(y, z)) = I(y, I(x, z));

(IP) The identity principle: ∀x ∈ [0, 1],
I(x, x) = 1;

(CAB) The conditional antecedent boundary condition:
∀x, y ∈ [0, 1],

x > y ⇒ I(x, y) ≤ y.

C. The residual implication RO-implication

Residual implications (R-implications, for short) consist
in the fuzzy implications obtained by the generalization of
Boolean implications. That is, for a universe set U ,

AC ∪B = (A−B)C = ∪{C ⊆ U |(A ∩ C) ⊆ B},

where A,B ⊆ U .
This class of implications is related to a residual concept

from the intuitionistic logic, to use an overlap function O to

IAENG International Journal of Applied Mathematics, 52:3, IJAM_52_3_26

Volume 52, Issue 3: September 2022

 
______________________________________________________________________________________ 



replace the conjunctive ∩ in [29], and give the definition of
RO-implications.

Definition 2.9: [29] Let O : [0, 1]2 → [0, 1] be an overlap
function. The function IO : [0, 1]2 → [0, 1] is given by

IO(x, y) = max {z ∈ [0, 1]|O(x, z) ≤ y}
for all x, y ∈ [0, 1]. Then IO is called a residual implication
derived from the overlap function O, for short,we call it a
RO-implication.

Proposition 2.10: [23] Let IO : [0, 1]2 → [0, 1] be a RO-
implication, then O and IO satisfy the residual property:
∀x, y, u ∈ [0, 1],

O(x, u) ≤ y ⇔ IO(x, y) ≥ u.
Proposition 2.11: [23] Let O : [0, 1]2 → [0, 1] be an

overlap function, and IO be the residual implication derived
from the overlap function O. Then it holds that:

(1) the RO-implication IO satisfies (LOP) if and only if
O satisfies (O6);

(2) the RO-implication IO satisfies (OP) if and only if O
satisfies (O6) and (O7).

D. The (G,N)-implication IG,N

The class of fuzzy implications called (G,N)-implications
derived from grouping functions and negation functions,
were introduced by Dimuro in [23]. A (G,N)-implication is
a generalization to [0, 1] of the Boolean material implication
defined as

p→ q ≡ ¬p ∨ q.

If ∨ and ¬ are replaced by a grouping function and a fuzzy
negation, respectively, we can get the definition of (G,N)-
implications.

Definition 2.12: [23] Let G : [0, 1]2 → [0, 1] be a
grouping function and N : [0, 1]→ [0, 1] be a fuzzy negation.
IG,N : [0, 1]2 → [0, 1] is given by

IG,N (x, y) = G(N(x), y),
for all x, y ∈ [0, 1], then IG,N is called a fuzzy implication,
denoted by (G,N)-implication.

Proposition 2.13: [23] Let G : [0, 1]2 → [0, 1] be a
grouping function, N : [0, 1] → [0, 1] be a fuzzy negation,
and IG,N be the (G,N)-implication derived from G and N .
Then

(i) IG,N does not satisfy (OP);
(ii) IG,N satisfies (OP) if and only if N = N>.

E. The law of O-conditionality

In this section, we recall the law of O-conditionality for
some fuzzy implications, and discuss their several properties.

Definition 2.14: [26] A fuzzy implication I satisfies the
law of O-conditionality for an overlap function O if and only
if, for all x, y ∈ [0, 1], it holds that:

O(x, I(x, y)) ≤ y (OC).
In fact, (OC) means x ∗O (x→ y) ≤ y, and is equivalent

to (TC) whenever T is a positive (without zero divisors)
and continuous t-norm. All two laws are generalized Modus
Ponens (GMP). But the associativity and exchange principle
is no needed for (OC), hence it is more flexible and more
general.

Example 2.15: Let the overlap function O be defined by
O(x, y) = (xy)

p,

where p > 1. Let I be an implication function such that
I(x, y) ≤ y. Then O(x, I(x, y)) = xpI(x, y)p ≤ xpyp ≤ y.

Proposition 2.16: [26] If a fuzzy implication I satisfies
(CAB) and (LOP), then I satisfies (OC) for any overlap
function O satisfying (O6).

Next we recall some results about the law of O-
conditionality for RO-implications and (G,N)-implications.

Theorem 2.17: [26] Let O : [0, 1]2 → [0, 1] be an overlap
function and IO be a RO-implication. Then IO satisfies
(CAB) if and only if O ≥ min.

Theorem 2.18: [26] Any RO-implication IO : [0, 1]2 →
[0, 1] derived from the overlap function O : [0, 1]2 → [0, 1],
satisfies (OC) for O.

In the following, we recall the law of O-conditionality
for (G,N)-implications and state under what conditions a
(G,N)-implication IG,N satisfies (OC).

Theorem 2.19: [26] Let G : [0, 1]2 → [0, 1] be a grouping
function, N : [0, 1] → [0, 1] be a fuzzy negation, and IG,N

be a (G,N)-implication. Then IG,N satisfies (CAB), and G
satisfies (G6).

Theorem 2.20: [26] Let O : [0, 1]2 → [0, 1] be an overlap
function, G : [0, 1]2 → [0, 1] be a grouping function and
N : [0, 1] → [0, 1] be a fuzzy negation. If O satisfies (O6),
G satisfies (G6) and N = N⊥, then the (G,N)-implication
IG,N : [0, 1]2 → [0, 1] satisfies (OC) for O.

III. THE O-CONDITIONALITY FOR JRO
-IMPLICATIONS

AND JG,N -IMPLICATIONS

In this section, we first present the notion of ordinal
sums of implications, and analyze the conditions for JRO

-
implications and JG,N -implications to satisfy the law of O-
conditionality.

Definition 3.1: [32] Let {Ji}i∈I be a family of impli-
cations and ]ai, bi[i∈I be a family of non-empty, pairwise
disjoint open subintervals of [0, 1], such that ai > 0 for each
i ∈ I . Then the function JI : [0, 1]2 → [0, 1] given by

JI(x, y) =

{
ai + (bi − ai)Ji(

x−ai
bi−ai

, y−ai
bi−ai

), x, y ∈]ai, bi[,

IRS(x, y), otherwise,

is an implication, which is called an ordinal sum of the
summands (ai, bi, Ji)i∈I .

The ordinal sum of the summands (ai, bi, Ji)i∈I is a
method of constructing new fuzzy implications, and it can
preserve many good properties. Inspired by the idea, we use
the ordinal sum of RO-implications and (G,N)-implications
to get two new fuzzy implications, and discuss the law of
O-conditionality whether it can be preserved for the two new
implications.

If {Ji}i∈I , Ji are replaced by RO-implications, then we
get the following definition.

Definition 3.2: Let {Ji}i∈I be a family of RO-
implications and ]ai, bi[i∈I be a family of non-empty,
pairwise disjoint open subintervals of [0, 1], such that ai > 0
for each i ∈ I . Then the function JRO

: [0, 1]2 → [0, 1]
given by

JRO (x, y) =

{
ai + (bi − ai)Ji(

x−ai
bi−ai

, y−ai
bi−ai

), x, y ∈]ai, bi[,

IRS(x, y), otherwise,

is an implication, which is called an ordinal sum of the
summands (ai, bi, Ji)i∈I , denoted by JRO

-implication.

IAENG International Journal of Applied Mathematics, 52:3, IJAM_52_3_26

Volume 52, Issue 3: September 2022

 
______________________________________________________________________________________ 



On the other hand, in the ordinal sum of the summands
(ai, bi, Ji)i∈I , if Ji are replaced by (G,N)-implications, then
we can get the following definition.

Definition 3.3: Let {Ji}i∈I be a family of (G,N)-
implications and ]ai, bi[i∈I be a family of non-empty, pair-
wise disjoint open subintervals of [0, 1], such that ai > 0 for
each i ∈ I . Then the function JG,N : [0, 1]2 → [0, 1] given
by

JG,N (x, y) =

{
ai + (bi − ai)Ji(

x−ai
bi−ai

, y−ai
bi−ai

), x, y ∈]ai, bi[,

IRS(x, y), otherwise,

is an implication, which is called an ordinal sum of the
summands (ai, bi, Ji)i∈I , denoted by JG,N -implication.

Similar to the ordinal sum of the summands (ai, bi, Ji)i∈I

in Definition 3.1, the above two new implications are given,
then we discuss under what conditions the two new implica-
tions satisfy the law of O-conditionality.

Theorem 3.4: Let JRO
: [0, 1]2 → [0, 1] be an implication

given by Definition 3.2. If O satisfied (O6), then JRO
satisfies

(OC).
Proof: Let {Ji}i∈I be a family of RO-implications.

By Theorem 2.17, any RO-implication satisfies (OC), hence
each Ji satisfies (OC).

(1) Let x, y, u ∈ [ai, bi]. Then

x− ai
bi − ai

,
y − ai
bi − ai

,
u− ai
bi − ai

∈ [0, 1].

By Proposition 2.10, any RO-implication Ji : [0, 1]
2 → [0, 1]

satisfies the residuation property:

O(
x− ai
bi − ai

,
u− ai
bi − ai

) ≤ y − ai
bi − ai

⇔Ji(
x− ai
bi − ai

,
y − ai
bi − ai

) ≥ u− ai
bi − ai

,

JRO
(x, y) = ai + (bi − ai)Ji(

x− ai
bi − ai

,
y − ai
bi − ai

)

≥ ai + (bi − ai)
u− ai
bi − ai

= u.

Consider u = JRO
(x, y), we can get

O(x, JRO
(x, y)) ≤ y.

(2) Let x, y ∈ [0, 1]/[ai, bi]. We consider the following
two cases.

If x ≤ y, then

JRO
(x, y) = IRS(x, y) = 1,

O(x, JRO
(x, y)) = O(x, 1) ≤ x ≤ y. (by (O6))

If x ≥ y, then

JRO
(x, y) = IRS(x, y) = 0,

O(x, JRO
(x, y)) = O(x, 0) = 0 ≤ y.

Hence, we can get the ordinal sum of the RO-implications:
JRO

satisfies (OC) for O satisfies (O6).
Theorem 3.5: Let JG,N : [0, 1]2 → [0, 1] be an implica-

tion given by Definition 3.3. If O satisfies (O6), G satisfies
(G6) and N = N⊥, then JG,N satisfies (OC).

Proof: (1) If x, y ∈ [ai, bi], then

x− ai
bi − ai

,
y − ai
bi − ai

∈ [0, 1].

If x > ai, then

x− ai
bi − ai

> 0, N⊥(
x− ai
bi − ai

) = 0,

and

O(x, JG,N⊥(x, y))

= O(x, ai + (bi − ai)Ji(
x− ai
bi − ai

,
y − ai
bi − ai

))

= O(x, ai + (bi − ai)Gi(N⊥(
x− ai
bi − ai

),
y − ai
bi − ai

))

= O(x, ai + (bi − ai)Gi(0,
y − ai
bi − ai

))

≤ O(x, ai + (bi − ai)
y − ai
bi − ai

) (by (G6))

= O(x, y) ≤ y (by Lemma 2.5).

If x = ai, then

x− ai
bi − ai

= 0, N⊥(0) = 1,

and

O(x, JG,N⊥(x, y))

= O(ai, ai + (bi − ai)Ji(0,
y − ai
bi − ai

))

= O(ai, ai + (bi − ai)Gi(N⊥(0),
y − ai
bi − ai

))

= O(ai, ai + (bi − ai)Gi(1,
y − ai
bi − ai

))

= O(ai, ai + (bi − ai))

= O(ai, bi) ≤ ai (by Lemma 2.5)
≤ y.

(2) Let x, y ∈ [0, 1]/[ai, bi]. We consider the following
two cases.

If x ≤ y, by (O6) we get that

O(x, JG,N⊥(x, y)) = O(x, IRS(x, y))

= O(x, 1) ≤ x ≤ y.

If x ≥ y, then

O(x, JG,N⊥(x, y)) = O(x, IRS(x, y))

= O(x, 0) = 0 ≤ y.

IV. THE (O,N)-IMPLICATION AND ITS
O-CONDITIONALITY

In [26], Dimuro et al. mainly discussed the law of
O-conditionality for RO-implications, (G,N)-implications,
QL-implications and D-implications, but QL-implications
and D-implications do not satisfy the law of O-conditionality.
In the sequence, we introduce a new fuzzy implication which
does not satisfy the law of O-conditionality.

Theorem 4.1: Let O : [0, 1]2 → [0, 1] be an overlap
function and N : [0, 1]→ [0, 1] be a fuzzy negation. Then the
function IO,N : [0, 1]2 → [0, 1] defined, for all x, y ∈ [0, 1]
by

IO,N (x, y) = N(O(x,N(y)))
is a fuzzy implication, denoted by a (O,N)-implication
IO,N .
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Proof: If x ≤ y, then

O(x,N(z)) ≤ O(y,N(z)) (by (O4)),
N(O(x,N(z))) ≥ N(O(y,N(z))) (by (N2)),

that is, IO,N (x, y) ≥ IO,N (x, z), IO,N satisfies (I1).
If y ≤ z, then

O(x,N(y)) ≥ O(x,N(z)) (by (O4)),
N(O(x,N(y))) ≤ N(O(x,N(z))) (by (N2)),

that is,

IO,N (x, y) ≤ IO,N (x, z),

and so IO,N satisfies (I2).

IO,N (0, 0) = N(O(0, N(0)))

= N(O(0, 1))

= N(0)

= 1.

IO,N (1, 1) = N(O(1, N(1)))

= N(O(1, 0))

= N(0)

= 1.

IO,N (1, 0) = N(O(1, N(0)))

= N(O(1, 1))

= N(1)

= 0.

That is, IO,N satisfies (I3).
Hence, IO,N (x, y) = N(O(x,N(y))) is a fuzzy implica-

tion.
By Theorem 2.17, we discuss weather IO,N satisfies

(CAB) and (LOP).
Theorem 4.2: Let O be an overlap function and N be a

fuzzy negation. Then IO,N satisfies (LOP) if and only if
N = N⊥.

Proof: (⇐) If x ≤ y, then N(x) ≥ N(y),

O(x,N(y)) ≤ O(x,N(x)) (by (O4)),
N(O(x,N(y))) ≥ N(O(x,N(x))) (by (N2)),

If x = 0, then

O(0, N⊥(0)) = 0.

If x > 0, then

O(x,N⊥(x)) = O(x, 0) = 0.

Hence

N(O(x,N(y))) ≥ N(O(x,N(x))) = N(0) = 1,

that is,

IO,N (x, y) = 1.

(⇒)

IO,N (x, y) = 1 = N(O(x,N(y)))

⇔O(x,N(y)) = 0 (by (N7))
⇔x = 0 ∨N(y) = 0 (by (O2))

Suppose that N 6= N⊥. Then there exist x, y ∈]0, 1[, 0 <
x < y, such that

0 < N(y) < 1, 0 < N(x) < 1,

one has that IO,N (x, y) 6= 1, since x > 0 and N(y) >
0. Thus, IO,N does not satisfy (LOP). While if IO,N (x, y)
satisfies (LOP), then N = N⊥.

Theorem 4.3: Let O : [0, 1]2 → [0, 1] be an overlap
function and N⊥ : [0, 1]2 → [0, 1] be the least fuzzy negation.
Then IO,N⊥ does not satisfy (CAB).

Proof: Take x, y ∈]0, 1] such that 1 ≥ x > y > 0. Then

N⊥(y) = 0

and

IO,N⊥(x, y) = N⊥(O(x, 0)) = N⊥(0) = 1 > y.

Thus IO,N⊥ does not satisfy (CAB).
Theorem 4.4: Let O : [0, 1]2 → [0, 1] be an overlap

function and N⊥ : [0, 1]2 → [0, 1] be the least fuzzy negation.
Then IO,N⊥ does not satisfy (OC).

Proof: Take x = 1 and 0 < y < 1, then N⊥(y) = 0.
Hence

IO,N⊥(x, y) = N⊥(O(x,N⊥(y)))

= N⊥(O(1, 0)))

= N⊥(0)

= 1,

and so,

O(x, IO,N⊥(x, y)) = O(1, 1) = 1 > y.

Therefore, IO,N⊥ does not satisfy (OC).

V. CONCLUSIONS

The overlap and grouping functions are a special class of
binary aggregation operators, while the associativity of these
functions is generally not required in application problems.
When considering fuzzy implications derived from overlap
and grouping functions, some properties may not be verified,
such as the commutative principle or the left-neutrality
principle, but only weaker versions of these properties. In this
paper, based on RO-implications and (G,N)-implications
derived from overlap, grouping and negation functions, we
discuss the law of O-conditionality for the order sum of
RO-implications and (G,N)-implications, and also study
the law of O-conditionality of (O,N)-implications. Future
theoretical work is concerned with the investigation of the
law of O-conditionality in the interval-valued setting, as in
([15], [30], [31], [33], [34]). These results can be used for
performing inferences, decision making and in the fuzzy
control of agents intentions.
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