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Abstract—We propose a cubic B-spline finite element method
to solve the optimal control problem governed by nonlinear
parabolic equation depicting crystal surface growth. Consid-
ering that both the state equation and the adjoint equation
are fourth-order nonlinear parabolic equations, we select the
cubic B-spline functions as shape functions. We establish a
fully-discrete scheme of the optimality system and use an
iterative method to solve it. In the end, a numerical example
is demonstrated for the purpose of verifying the feasibility and
effectivity of the suggested method.

Index Terms—Optimal control problem, cubic B-spline,
fourth-order nonlinear parabolic equation, finite element
method, iterative method.

I. INTRODUCTION

OPTIMAL control problems have received more and
more attention from the researchers. Generally speak-

ing, an optimal control problem (OCP) is aimed at finding
a control variable within an admissible set, so that the state
tends to the desired state during the course of minimizing the
objective functional, and at the same time both the control
and state variables are subject to the differential equations.
A host of practical problems can be boiled down to optimal
control problems governed by differential equations, such as
heating processes, fluid flows and chemical engineering. The
basic theory and numerical methods for OCP can refer to
the monographs by Lions [1]. Details of the adaptive finite
element method (FEM) can be found in [2].

In [3], the crystal surface growth model is expressed by
the following fourth-order nonlinear parabolic equation in
the case of 1D:

∂u

∂t
+ auxxxx + µ

(
ux

1 + |ux|2

)
x

= 0,

(x, t) ∈ Ω × (0, T ],

ux(0, t) = ux(1, t) = uxxx(0, t) = uxxx(1, t) = 0,

t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ Ω,
(1)
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where a > 0, µ > 0 and Ω = (0, 1). Here u(x, t) which is an
unknown quantity to be solved represents the displacement of
height of the crystal surface at the point x. The highest order
item auxxxx means the surface diffusion of adatoms resulted
from the deviation of the chemical potential. Additionally,
nonlinear term µ(ux/(1 + |ux|2))x indicates the effect of
surface roughening [3]–[5].

Reference [3] considered the OCP governed by fourth-
order nonlinear parabolic differential equation (1). It was
proved that the optimal solution existed, and then the opti-
mality system was established. However, they didn’t design
numerical method to solve it. Due to the fact that it is hard
to obtain the exact solutions for optimal control problems
directly, there emerge some methods to obtain the numerical
solutions like the finite difference method (FDM), finite
element method (FEM) [6]–[10] and so on. An important step
of FEM is to establish the finite element space for the state
variable, which needs to select appropriate shape functions.
When we choose m-order polynomials as shape functions,
the smoothness of approximate solutions may be unsatis-
factory. The kth-order B-spline functions can just make up
for this deficiency, since it is continuously differentiable of
order k − 2. The B-spline method has been widely applied
to derive numerical solutions of partial differential equations
[11]–[18]. In [11], a bicubic B-spline interpolation method
was proposed to solve two-dimensional heat equations. In
[12], the authors proposed a two-dimensional bicubic B-
spline FEM to deal with MHD-duct flow model. [14] de-
veloped a quadratic B-spline FEM to solve the coupled
SchrdingerBoussinesq equations numerically. Qin et al. [18]
presented a cubic B-spline FEM to solve equation (1) with
homogeneous Dirichlet boundary condition. They showed
that the approximate solution obtained by cubic B-spline
FEM had better smoothness than that obtained by Hermite
FEM [19], but the convergence rates of these two methods
were the same. However, there are few studies on the
application of B-splines to solve optimal control problems
numerically.

Invoked by the work of [18], we develop a cubic B-spline
FEM for fourth-order nonlinear parabolic OCP. The remain-
der of the article is organized as follows. The optimality sys-
tem of OCP governed by equation (1) is obtained in Section
II. In Section III, the B-spline functions are introduced first.
After that the piecewise cubic B-spline finite element space
is established. We construct a numerical example in Section
IV to demonstrate that our suggested approach is feasible
and efficient. Here, a fully-discrete scheme is established
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for the optimality system and the calculation is performed
by using an iterative method to avoid solving large systems
of the coupled algebraic equations. Finally, we make some
conclusions in Section V.

II. MODEL

We will employ the normal notations of Sobolev spaces
and norms, see [20]. Let V = H2

E(Ω) = {u : u ∈
H2(Ω), ux|∂Ω = 0}. For fixed T > 0, we define the state
space as

W (0, T ;V ) = {u : u ∈ L2(0, T ;V ), ut ∈ L2(0, T ;V ∗)},
where V ∗ represents the dual space of V . We denote
L2−,Hk− norms in Ω by ∥ · ∥ and ∥ · ∥k respectively.

We are concerned about the following nonlinear parabolic
OCP governed by equation (1) in this article:

min
w∈L2(Q0)

J(u,w) =
1

2

∫ T

0

(∥u− zd∥2 + λ∥w∥2) dt (2)

subject to

∂u

∂t
+ auxxxx + µ

(
ux

1 + |ux|2

)
x

= Bw + f,

(x, t) ∈ Ω × (0, T ],
ux(0, t) = ux(1, t) = uxxx(0, t) = uxxx(1, t) = 0,

t ∈ (0, T ],
u(x, 0) = u0(x), x ∈ Ω,

(3)
where J is referred to as the objective functional and w
is the control variable defined on Q0 ⊆ Q = Ω × (0, T ).
Equation (3) is termed as the state equation. Moreover, u
denotes the state variable and zd represents the desired state
variable. f(x, t) ∈ L2(0, T ;L2(Ω)) is a known function and
u0(x) ∈ V is a pre-defined data. λ is a positive constant
serving as a regularization parameter. Let B be a linear
continuous operator from L2(Q0) to L2(0, T ;L2(Ω)). Our
target is to find w in L2(Q0) to make u tend to zd during
the course of optimizing the objective functional J .

We write the variational formulation of the state equation
(3) as the following: For all v ∈ V, t ∈ (0, T ], find u(x, t) ∈
W (0, T ;V ) such that

(ut, v)V ∗,V + a(D2u,D2v)− µ

(
Du

1 + |Du|2
, Dv

)
= (Bw + f, v), ∀ v ∈ V,

u(x, 0) = u0(x), x ∈ Ω,
(4)

where Du = ux, D2u = uxx and

(v, w)V ∗,V =

∫
Ω

vw dx ∀ v ∈ V ∗, w ∈ V.

For fixed f, w and u0, equation (4) exists a unique weak
solution according to reference [3].

Therefore, we restate the optimal control problem (2)-(3)
as follows:

min
w∈L2(Q0)

J(u,w) =
1

2

∫ T

0

(∥u− zd∥2 + λ∥w∥2) dt (5)

subject to
(ut, v)V ∗,V + a(D2u,D2v)− µ

(
Du

1 + |Du|2
, Dv

)
= (Bw + f, v), ∀ v ∈ V,

u(x, 0) = u0(x), x ∈ Ω.
(6)

According to reference [3], the solution of control problem
(5)-(6) is uniquely determined. Furthermore, a pair (u,w)
satisfies (5)-(6) when and only when there exists a co-state
p ∈ W (0, T ;V ) such that the triplet (u, p, w) is the solution
of the following optimality system:

(ut, v)V ∗,V + a(D2u,D2v)− µ

(
Du

1 + |Du|2
, Dv

)
= (Bw + f, v), ∀ v ∈ V,

u(0) = u0,
(7)

−(pt, η)V ∗,V + a(D2p,D2η)

−µ

(
1− |Du|2

(1 + |Du|2)2
Dp,Dη

)
= (u− zd, η),

∀ η ∈ V,

p(T ) = 0,

(8)

(B∗p+ λw, w̃ − w)L2(Q0)
≥ 0, ∀ w̃ ∈ L2(Q0), (9)

where B∗ is the adjoint operator of B. The equation (8) is
called as the adjoint equation of (7) and p is the co-state
variable. Moreover, the inequality (9) is referred to as first-
order necessary optimality condition. As a result, solving the
distributed optimal control problem (5)-(6) is equivalent to
solving the optimality system (7)-(9).

III. FINITE ELEMENT SPACE

In this section, the B-spline functions are introduced first.
After that, the piecewise cubic B-spline finite element space
is established.

Let Nk(x) represent the kth-order B-spline function whose
support is [0, k], where k is a positive integer. To be more
precise, Nk(x) can be defined recursively by [18]

Nk(x) = (Nk−1 ∗N1)(x) =

∫ 1

0

Nk−1(x− t) dt (10)

with

N1(x) = χ[0,1] =

{
1, x ∈ [0, 1],

0, else.
(11)

According to (10)-(11), we derive that N4(x) is the fourth-
order cubic B-spline function and its specific form is

N4(x) =



1

6
x3, x ∈ [0, 1],

−1

2
x3 + 2x2 − 2x+

2

3
, x ∈ [1, 2],

1

2
x3 − 4x2 + 10x− 22

3
, x ∈ [2, 3],

−1

6
(x− 4)3, x ∈ [3, 4],

0, else.

(12)

It’s well known that Nk(x) belongs to Ck−2(−∞,+∞).
Assume that L is a positive integer, the interval 0 = x0 <

x1 < · · · < xL = 1 is partitioned equally by step size
h = 1/L. Let ϕi(x) = N4(

x−xi

h ) denote the cubic B-spline
basis function at xi. Each cubic B-spline basis function is
nonzero over four adjacent elements so that on each interval
[xi, xi+1] there are four cubic B-spline functions, namely
ϕi−3(x), ϕi−2(x), ϕi−1(x) and ϕi(x), as shown in Figure 1.
Based on this, we need to introduce virtual nodes x−3, x−2
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Fig. 1. A family of cubic B-spline basis functions

and x−1 to deal with the boundary conditions. Moreover,
there are three nonzero cubic B-spline basis functions at
xi, namely ϕi−3(x), ϕi−2(x) and ϕi−1(x). This can be seen
from Figure 1. The nonzero values are given in the following,

ϕi−3(xi) =
1

6
, ϕi−2(xi) =

2

3
, ϕi−1(xi) =

1

6
. (13)

The set of ϕ−3, ϕ−2, ..., ϕL−2, ϕL−1 forms a basis for
piecewise cubic B-spline space associated with the partition
{xi, 0 ≤ i ≤ L}. By using these splines as trial functions,
we can express the approximation solution uh(x, t) as

uh(x, t) =
L−1∑
i=−3

δi(t)ϕi(x), (14)

where δi(t) is time-dependent quantity. However, uh(x, t)
must satisfy the essential boundary conditions uh,x(0, t) =
uh,x(1, t) = 0. A straightforward calculation yields

ϕ′
j(xi) =

1

h
N ′

4

(
xi − xj

h

)

=


1

h
N ′

4(3) = − 1

2h
, j = i− 3,

1

h
N ′

4(1) =
1

2h
, j = i− 1,

0, else.

(15)

Therefore, from

uh,x(x0, t) = δ−3(t)ϕ
′
−3(x0) + δ−1(t)ϕ

′
−1(x0)

= − 1

2h
δ−3(t) +

1

2h
δ−1(t)

= 0,

uh,x(xL, t) = δL−3(t)ϕ
′
L−3(xL) + δL−1(t)ϕ

′
L−1(xL)

= − 1

2h
δL−3(t) +

1

2h
δL−1(t)

= 0,

(16)

we have δ−3(t) = δ−1(t) , δL−3(t) = δL−1(t). These con-
ditions are not easily satisfied when the system of equations
is subsequently solved. To deal with this problem, we make
some adjustments to the cubic B-spline basis functions. Let

ϕ̃−1(x) = ϕ−3(x) + ϕ−1(x),

ϕ̃L−3(x) = ϕL−3(x) + ϕL−1(x),

and other basis functions remain unchanged. After modifica-
tion, we obtain

uh,x(x0, t) = δ−3(t)ϕ
′
−3(x0) = − 1

2h
δ−3(t),

uh,x(xL, t) = δL−1(t)ϕ
′
L−1(xL) =

1

2h
δL−1(t).

(17)

Hence, in order to satisfy uh,x(0, t) = uh,x(1, t) = 0, we
just need to take δ−3(t) = δL−1(t) = 0. Eventually, cubic
B-spline basis functions are established in the following:

{ϕ−3(x), ϕ−2(x), ϕ̃−1(x), ϕ0(x), ...

..., ϕL−4(x), ϕ̃L−3(x), ϕL−2(x), ϕL−1(x)}.

Let Uh be the linear space of functions v such that

(1) v ∈ C2([0, 1]),

(2) v|[xi−1,xi] is a cubic B-spline function, i = 1, ..., L,

(3) v′(0) = v′(1) = 0.

Based on the above analysis, we have

Uh = span{ϕ−2(x), ϕ̃−1(x), ϕ0(x), ...

..., ϕL−4(x), ϕ̃L−3(x), ϕL−2(x)} ⊂ V.

The approximation solutions uh(x, t) and ph(x, t) satisfy

uh(x, t) =
L−2∑
i=−2

δi(t)ϕi(x),

ph(x, t) =

L−2∑
i=−2

βi(t)ϕi(x).

IV. NUMERICAL EXAMPLE

We construct a numerical example in this section to
demonstrate that the cubic B-spline FEM mentioned from
the above section is effective and feasible.

We consider the model (2)-(3) by choosing λ = 1, a =
µ = 1 and T = 1. Let Q0 = Q and B is an identity operator,
that is, the control w is unconstrained. We can derive the
following optimality condition by (9):

p+ w = 0. (18)

Substituting (18) into the state equation (7) leads to the
optimality system

(ut, v) + (D2u,D2v)−
(

Du

1 + |Du|2
, Dv

)
= (−p+ f, v), ∀ v ∈ V,

u(x, 0) = u0(x), x ∈ Ω,

−(pt, η) + (D2p,D2η)−
(

1− |Du|2

(1 + |Du|2)2
Dp,Dη

)
= (u− zd, η), ∀ η ∈ V,

p(x, T ) = 0, x ∈ Ω.
(19)

This is a coupled system of two parabolic differential equa-
tions for u and p. Once p has been found, the optimal control
w can be obtained from (18).

On the strength of the cubic B-spline basis, the semi-
discrete finite element formulation for (19) reads as follows:
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For 0 ≤ t ≤ T , find uh = uh(·, t) ∈ Uh and ph = ph(·, t) ∈
Uh such that

(uh,t, vh) + (D2uh, D
2vh)−

(
Duh

1 + |Duh|2
, Dvh

)
= (−ph + f, vh), ∀ vh ∈ Uh,

(uh(0), vh) = (u0, vh), ∀ vh ∈ Uh,

−(ph,t, ηh) + (D2ph, D
2ηh)

−
(

1− |Duh|2

(1 + |Duh|2)2
Dph, Dηh

)
= (uh − zd, ηh),

∀ ηh ∈ Uh,
(ph(T ), ηh) = 0, ∀ ηh ∈ Uh.

(20)

Let 0 = t0 < t1 < · · · < tN = T be a uniform partition
of [0, T ] with the time step size τ = T/N , where N is
a positive integer. Hence tn = nτ, n = 0, 1, ..., N . Let
fn = f(tn). In order to approximate the time derivative, the
Backward-Euler scheme is applied. Thus the fully-discrete
finite element formulation of (19) can be written as: Find
un
h ∈ Uh and pnh ∈ Uh(n = 0, 1, ..., N) such that

(∂tu
n
h, vh) + (D2un

h, D
2vh)−

(
Dun

h

1 + |Dun−1
h |2

, Dvh

)
= (−pn−1

h + fn, vh), ∀ vh ∈ Uh,

(u0
h, vh) = (u0, vh), ∀ vh ∈ Uh,

−(∂tp
n
h, ηh) + (D2pn−1

h , D2ηh)

−
(

1− |Dun−1
h |2

(1 + |Dun−1
h |2)2

Dpn−1
h , Dηh

)
= (un

h − znd , ηh), ∀ ηh ∈ Uh,

(pNh , ηh) = 0, ∀ ηh ∈ Uh,
(21)

where

un
h =

L−2∑
i=−2

δni ϕi(x), pnh =
L−2∑
i=−2

βn
i ϕi(x),

∂tu
n
h =

un
h − un−1

h

τ
, ∂tp

n
h =

pnh − pn−1
h

τ
.

The exact solutions of the problem are assumed to be:
∀x ∈ [0, 1], t ∈ [0, 1],

u = (t2 + 1) cos(2πx),

p = (t2 + 1)(1− t) cos(2πx),

w = −(t2 + 1)(1− t) cos(2πx),

(22)

where zd, u0 and f are chosen correspondingly to satisfy the
model.

Note that the adjoint equation of the fully-discrete scheme
(21) is backward in time with the known final time value,
and also coupled with the time level of the state equation.
It’s complicated to work out the coupled algebraic system of
(21) directly, so we use the iterative algorithm presented in
Algorithm 1.

We present the following numerical results at t = 0.5
for examples and take tol = 10−5. Tables I-III show H2-
norm, H1-norm, L2-norm error estimates and convergence
rate of variables u and p, respectively. To show different
convergence rate of three norms, we take time step ∆t =
h2,∆t = h3 and ∆t = h4 accordingly. However, we find

Algorithm 1 The iterative algorithm for optimal control
problem.

1: Given error threshold tol ≥ 0, take initial iterative step s =

0, δn,s = βn,s = 0, n = 0, 1, 2, ..., N .
2: Since f and u0 are prescribed, take pnh = pn,s

h =∑L−2
i=−2 β

n,s
i ϕi(x) into the fully-discrete scheme of the state

equation, compute δn,s+1, n = 1, 2, ..., N .
3: Take un

h = un,s+1
h =

∑L−2
i=−2 δ

n,s+1
i ϕi(x) and zd into

the fully-discrete scheme of the adjoint equation, backwardly
compute βn,s+1, n = N − 1, N − 2, ..., 0.

4: For s ≥ 1, if max |δn,s+1 − δn,s| ≤ tol and max |βn,s+1 −
βn,s| ≤ tol are satisfied, then let βn := βn,s+1, δn :=

δn,s+1, n = 0, 1, ..., N and terminate the algorithm. Other-
wise, we continue the next step.

5: Let s := s + 1, βn,s := βn,s+1, δn,s := δn,s+1, n =

0, 1, ..., N , and go to step 2.

TABLE I
H2-NORM ERROR ESTIMATES AND CONVERGENCE RATE OF u AND p

(∆t, h) ∥u− uh∥2 Rate ∥p− ph∥2 Rate

(1/100,1/10) 0.537802 0.343458

(1/400,1/20) 0.129863 2.0501 0.083923 2.0330

(1/1600,1/40) 0.032181 2.0127 0.020860 2.0083

(1/6400,1/80) 0.008028 2.0032 0.005207 2.0021

TABLE II
H1-NORM ERROR ESTIMATES AND CONVERGENCE RATE OF u AND p

(∆t, h) ∥u− uh∥1 Rate ∥p− ph∥1 Rate

(1/1000,1/10) 0.008850 0.005940

(1/8000,1/20) 0.001019 3.1187 0.000686 3.1144

(1/64000,1/40) 0.000125 3.0307 0.000083 3.0432

(1/512000,1/80) 0.000015 3.0078 0.000010 3.0177

TABLE III
L2-NORM ERROR ESTIMATES AND CONVERGENCE RATE OF u AND p

(∆t, h) ∥u− uh∥ Rate ∥p− ph∥ Rate

(1/10000,1/10) 0.000257 0.000171

(1/160000,1/20) 0.000015 4.1303 0.000010 4.0611

that h = 1/40 results in ∆t = 1/2560000 when computing
L2-norm convergence rate, which means it will take a very
long time to calculate and overflow the capacity of PC.
Consequently, we omit the cases of h = 1/40 and h = 1/80.

Taking the case of h = 1/80 and ∆t = 1/20000 for
an example, Figures 2-4 below present the figures of the
exact and approximate solution for variables u, p and w,
respectively. It’s observed that the approximate solution is
very close to the exact solution, which shows that the cubic
B-spline FEM is feasible and valid.

V. CONCLUSION

A cubic B-spline FEM has been considered to solve
nonlinear parabolic OCP describing crystal surface growth.
We select the cubic B-spline functions as shape functions
for the purpose of obtaining better smoothness. The fully-
discrete scheme of the optimality system has been estab-
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(a) Exact solution of u (b) Approximate solution of u

Fig. 2. Comparison figures of state variable u

(a) Exact solution of p (b) Approximate solution of p

Fig. 3. Comparison figures of co-state variable p

(a) Exact solution of w (b) Approximate solution of w

Fig. 4. Comparison figures of control variable w

lished. Finally, the numerical example has demonstrated that
our proposed approach is efficient and valid.

In this paper, the parabolic equations are nonlinear, and the
objective functional is defined over the whole time interval.

In fact, our method can be extended to the situation of other
types of boundary conditions with the objective functional at
the final state. The results for this case will be presented in
a forthcoming paper.
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