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Abstract—Waiting in line is an inevitable phenomenon in our
daily life. The length of the queue affects whether customers
enter the system. In this paper, we add variable input rates and
failure rates to the classical M/M/1 queueing model. The input
rate of customers is affected by the queue length in the system,
it will increase or decrease when the queue length reaches the
threshold m. The failure rate of an unreliable service station
is different between idle and busy periods. There is a reliable
repairman in the system who is responsible for repairing the
faulted service station. Firstly, we construct the two-dimensional
Markov chain using the quasi-birth-and-death(QBD) process
theory. Then, the steady-state distribution of the system state is
obtained by matrix analysis, and the steady-state performance
indexes are obtained from the steady-state distribution. Finally,
numerical experiments of the influence of parameters on the
system performance index is provided. Numerical experiments
illustrate the effectiveness of the proposed model.

Index Terms—input rate, failure rate, parameter variable,
repairable queueing system, matrix geometric solution.

I. INTRODUCTION

IN real life, there are many repairable systems due to
operator error or poor management and other reasons

for system failure. In recent years, many of these pub-
lications only consider system failure without considering
the variability of customer input rates. Xu and Xu [1]
analyzed the queueing system with incomplete breakdown
and delayed maintenance characteristics. Ma et al. [2] studied
the queuing model with faults, N strategy and multiple work
vacations. In this model, arrival intervals and service times
are geometric distribution. They used the quasi-birth and
death process to establish a two-dimensional Markov chain.
Wu et al. [3] analyzed the machine maintenance problems
of individual maintainers whose work failed. They obtained
steady-state probabilities and various performance indicators.
Yang and Chen [4] introduced work failure strategies in
M/M/1 queueing systems with secondary alternative services.
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They optimized the service rate to get the minimum cost per
unit of system time. Yu et al. [5] considered the queueing
strategy of customers in almost visible and almost invisible
incomplete fault queueing systems. For repairable queueing
system, it is necessary to study the system availability. Wu
et al. [6] studied a repairable system with a double threshold
control policy. They applied matrix analysis to derive various
performance indices such as system availability and perfor-
mance indices. Other studies on models of single service
station are presented in the literature [7], [8], [9], [10].
Lv et al. [11] studied a repairable queueing system with
multiple service stations. Every service station may fail,
and the failure rate is variable. They used the generating
function method to derive the probability distributions and
then obtained the steady-state mean queue length and other
performance indices. Liu et al. [12] considered a warm
standby system with N strategy and multiple vacations. Ji
and Maxim [13] proposed repairable systems with delayed
failures. They used the Laplace transform method to derive
the survival probability and the mean failure time. Finally,
numerical simulation is provided to verify the model. Li and
Xu [14] investigated a parallel repairable system. Lyu et al.
[15] studied a queueing system where two service stations
could serve one customer simultaneously. They derived per-
formance indices such as steady-state mean queue length.
Lv [16] studied a queueing system with two repairmen and
a limited number of repairable machines. If more than two
machines fail in the system, two technicians will repair the
faulty machine separately. When only one machine in the
system fails, two technicians repair the faulty machine at
the same time. He derived important system performance
indices. Li and Li [17] obtained the steady-state conditions
and probability distributions of the retrial queueing system.
Ramasamy et al. [18] analyzed a model in which the service
time of two service stations obeys different distributions. For
this model, they derived the steady-state results in detail. Tsai
et al. [19] studied open queueing networks with faults. They
verified the validity of the model and the correctness of the
method. In addition, they put forward reasonable suggestions
for the optimization of the proposed model.

When we line up in life, the input rate may change with
the queue length in the system. If the number of customers
in the system is large, customers will stay for a long time
after entering the system. In this case, the stay time is longer
than the customer can accept. Therefore, customers choose
not to enter the system to receive services, so that the input
rate becomes smaller. On the other hand, when we see a lot
of people lining up for a particular product in a store, we
are motivated to buy it. It is like when you are faced with
two restaurants you have never eaten at before, you would
choose the one with more customers. Because people always
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feel that what the majority believes must be the best. This
herd mentality will cause the input rate to become larger
when the queue length in the system reaches the threshold.

In our life, service stations are generally not completely
reliable and often fail. On the one hand, when the service
station is idle, it may fail due to unfavorable factors such as
aging and outside influences. On the other hand, when the
service station is working, it may fail due to wear, corrosion,
fatigue, etc. of the machine. In general, the failure rate of
service stations is different when they are idle and when
they are working. When the service station breaks down, the
service provider will immediately arrange for a repairman
to repair the broken service station. It is of great practical
significance to study the variable breakdown rates.

In summary, the parameters of a queueing system in real
life generally change with the state of the system, such as
the queue length in the system, etc. Previous studies only
considered different failure rates in different states, without
considering the impact of the queue length on the input rate.
So we study a queueing system with two input rates and
breakdown rates using the matrix geometry solution [20]
method.

II. MODEL DESCRIPTION

We assume that the system has infinite capacity and only
one service station. The service station may break down at
any time. Meanwhile, a repairman is responsible for repairing
it.

1) Customer arrival is a Poisson process, and the input
rate varies with the queue length in the system. When the
queue length is smaller than m, the input rate of customers is
λ1(λ1 > 0); when the queue length is greater than or equal
to m, the input rate of customers is λ2(λ2 > 0).

2) The service times obey the negative exponential distri-
bution of µ.

3) The arrival of the fault is a Poisson process. When the
service station is an idle period, the failure rate is α1(α1 >
0); when the service station is in a busy period, the failure
rate is α2(α2 > 0). The failure rate is affected by the status
of the service station.

4) When the service station fails, a reliable repairman
immediately repairs the faulty service station. The repair time
is an exponential distribution. The repair rate is η(η > 0).
The service station is repaired as well as new.

5) The service rule of the service station to customers
in the system is first-come, first-served (FCFS). If there is
a customer waiting in the system after the service station
is repaired, the service station immediately performs the
service, otherwise the service station is in idle period. If a
customer arrives at the service station during the idle period,

the service will be started immediately. Assuming that the
arrival interval, service time, breakdown time and repair time
are independent of each other.

Let Q(t) be the number of customers in the system and
Y (t) be the number of available service stations in the
system at moment t. Then {(Q(t), Y (t)), t ≥ 0} describes
the instantaneous state of the system. The state space is
Ω = {(q, y) , q = 0, 1, 2, · · · ; y = 0, 1}. The system states
are arranged in dictionary order, and the state transfer di-
agram of the two-dimensional Markov chain is shown in
Figure 1.

Its transfer rate matrix Q is the following block tridiagonal
matrix.

Q =



A0 C0

B A1 C0

B A1 C0

. . . . . . . . .
B A1 C0

B A C
B A C

. . . . . . . . .


,

where

A0 =

(
−λ1 − η η
α1 −λ1 − α1

)
, C0 =

(
λ1 0
0 λ1

)
,

A1 =

(
−λ1 − η η
α2 −λ1 − µ− α2

)
, B =

(
0 0
0 µ

)
,

A =

(
−λ2 − η η
α2 −λ2 − µ− α2

)
, C =

(
λ2 0
0 λ2

)
.

III. STEADY-STATE CONDITIONS

Theorem 1. The system of equations C+RA+R2B = 0
has a minimum non-negative solution

R =

(
r11 r12
r21 r22

)
,

where

r11 =
λ2 (µ+ α2)

µ (η + λ2)
, r12 =

λ2
µ
, r21 =

λ2α2

µ (η + λ2)
, r22 =

λ2
µ
.

Proof Bringing R into the system of equations C +RA+
R2B = 0. Then
− (λ2 + η) r11 + α2r12 + λ2 = 0,
µ (r11r12 + r12r22) + ηr11 − (λ2 + µ+ α2) r12 = 0,
− (λ2 + η) r21 + α2r22 = 0,
µ
(
r12r21 + r222

)
+ ηr21 − (λ2 + µ+ α2) r22 + λ2 = 0.

(1)
Solving Eq. (1) to obtain the minimum non-negative solution
R.
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Fig. 1. State transfer diagram.
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Theorem 2. A sufficient necessary condition for the
normal return of the QBD process {(Q(t) = q, Y (t) =
y), t ≥ 0} is

ρ =
λ2(α2 + η)

µη
< 1.

Proof From the structure of Q matrix, we know that
{(Q(t) = q, Y (t) = y), t ≥ 0} is a QBD process. Let
H = B +A+ C, then

H =

(
−η η
α2 −α2

)
.

Obviously, H is a finite integrable matrix. Its steady-state
probability vector P =

(
p0 p1

)
satisfies(

p0 p1
)
H = 0, p0 + p1 = 1.

The solution is

p0 =
α2

η + α2
, p1 =

η

η + α2
.

A sufficient necessary condition for the normal return of
the QBD processes {(Q(t), Y (t)), t ≥ 0} is PCe < PBe,
where e is a two-dimensional column vector whose elements
are all equal to 1. Then(

p0 p1
)( λ2 0

0 λ2

)(
1
1

)
<
(
p0 p1

)( 0 0
0 µ

)(
1
1

)
.

By simple operation, this condition is equivalent to

ρ =
λ2(α2 + η)

µη
< 1.

IV. STEADY-STATE PROBABILITY

When the system satisfies the condition of steady-state
distribution, the Markov process

{(Q(t) = q, Y (t) = y), t ≥ 0}

returns normally and the steady-state distribution of the
system state exists. Define the steady-state probability:∏

= (π0, π1, π2, · · · ),

where,
the steady-state probability

πq = (πq,0, πq,1), q = 0, 1, 2, · · · ,

the steady-state distribution

πq,y = lim
t→∞

P{Q(t) = q, Y (t) = y}, (q, y) ∈ Ω.

Under the sufficient necessary conditions for the normal
return of the QBD process {(Q(t), Y (t)), t ≥ 0} in Theo-
rem 2, the m-dimensional random array

B[R] =



A0 C0

B A1 C0

B A1 C0

. . . . . . . . .
B A1 C0

B RB +A


,

and the steady-state distribution satisfies the system of equa-
tions 

(π0, π1, · · · , πm)B[R] = 0,
m−1∑
q=0

πqe+ πm(I −R)
−1
e = 1,

πq = πmR
q−m, q ≥ m,

(2)

where I is a 2-dimensional unit matrix, e is a column vector
of dimension 2 and all elements are 1.

Theorem 3. Let D0 = A0, Di = A1 − BD−1i−1C0(m >
0, 1 ≤ i ≤ m − 1), then D0 and Di are both invertible
matrices.

Proof Because

D0 = A0 =

(
−λ1 − η η
α1 −λ1 − α1

)
,

the determinant of D0 is

|D0| = |A0|

=

∣∣∣∣ −λ1 − η η
α1 −λ1 − α1

∣∣∣∣
= λ1 (λ1 + α1 + η)

6= 0,

so D0 is invertible. And because

D1 = A1 −BD−10 C0

=

(
−η − λ1 η

α2 + µα1

η+α1+λ1

µα1

η+α1+λ1
− α2 − λ1

)
,

the determinant of D1 is

|D1| =
∣∣∣∣ −η − λ1 η
α2 + µα1

η+α1+λ1

µα1

η+α1+λ1
− α2 − λ1

∣∣∣∣
=
λ1 ((η + λ1) (η + α2 + λ1) + α1 (η + µ+ α2 + λ1))

η + α1 + λ1
6= 0.

Therefore, D1 is also an invertible matrix. By recursion, we
can get Di = A1 − BD−1i−1C0(m > 0, 1 ≤ i ≤ m − 1) as
an invertible matrix.

Using Eq. (2) we get

πi = −πi+1BD
−1
i (0 ≤ i ≤ m− 1,m > 0),

πm = −πm−1C0(RB +A)−1,

then

π0 = −π1BD−10 = (−1)2π2BD
−1
1 BD−10

= · · · = (−1)mπm

m−1∏
y=0

BD−1y ,

π1 = −π2BD−11 = (−1)2π3BD
−1
2 BD−11

= · · · = (−1)m−1πm

m−1∏
y=1

BD−1y ,

...

The recurrence leads to

πi = (−1)m−iπm

m−1∏
y=i

BD−1y (m > 0, 0 ≤ i ≤ m− 1).
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Then the steady-state boundary probability vector of the
system is

πi = πmFi(m > 0, 0 ≤ i ≤ m− 1),

where

Fi = (−1)m−i
m−1∏
y=i

BD−1y ,

πm satisfies πm(
m−1∑
i=0

Fi + (I −R)−1)e = 1,

πm(Fm−1C0 +A+RB) = 0.

In particular, when m = 0, it means that the input rate of
customers is not affected by the number of customers and
is constant at λ2. At this time, the block matrix in the first
row and first column of the state transfer rate matrix of the
system changes. The matrix B[R] becomes

B[R] =

(
A00 C
B RB +A

)
,

where

A00 =

(
−λ2 − η η
α1 −λ2 − α1

)
.

When the QBD process returns normally, the steady-state
distribution satisfies the system of equations (π0, π1)B[R] = 0,

π0e+ π1(I −R)−1e = 1,
πq = π1R

q−1, q ≥ 1.
(3)

Theorem 4. Let ϕ1 = ηµ − λ2η − λ2α2 , when m = 0,
the elements of the system steady-state boundary probability
vector

(
π0 π1

)
are as follows:

π00 =
α1 (ηµ− ηλ2 − λ2α2)

(η + λ2)µ (η + α1)
, (4)

π01 =
ηµ− ηλ2 − λ2α2

µ (η + α1)
, (5)

π10 =
ϕ1

(
λ2µα1 + ηλ2α2 + λ22α2 + λ2α1α2

)
(η + λ2)

2
µ2 (η + α1)

, (6)

π11 =
ϕ1

(
ηλ2 + λ22 + λ2α1

)
(η + λ2)µ2 (η + α1)

. (7)

Proof Using Eq. (3), we have π0 = −π1BA−100 ,
π0e+ π1(I −R)−1e = 1,
π0C + π1(RB +A) = 0.

(8)

Bringing A00, C, B, A, R into Eq. (8) yields

π00 + π01 −
(π10η + π11η + π10λ2)µ

ηλ2 − ηµ+ λ2α2
= 1,

π11µα1

α1λ2 + ηλ2 + λ22
= π00,

π11µ (η + λ2)

α1λ2 + ηλ2 + λ22
= π01,

π10 (−η − λ2) + π11α2 + π00λ2 = 0,

π10 (η + λ2)− π11 (α2 + µ) + π01λ2 = 0.

(9)

The result in Theorem 4 is obtained by solving Eq. (9).

V. SYSTEM STEADY-STATE PERFORMANCE INDICES

According to the steady-state probability expressions ob-
tained from the matrix analysis, we obtain the steady-state
performance indices of the queueing system with two input
rates and breakdown rates.

A. When m > 0, input rate and failure rate will change

1) Steady-state queue length distribution of the system

P (Q = q) =


πmFq

(
1
1

)
, 0 ≤ q ≤ m− 1,

πmR
q−m

(
1
1

)
, q ≥ m,

2) The availability of the service station

A =P (Y = 1)

=
m−1∑
i=0

πmFie1 +
∞∑
i=m

πie1

=
m−1∑
i=0

πmFie1

+ (πm + πmR+ πmR
2 + · · · )e1

=

m−1∑
i=0

πmFie1 + πm(I −R)−1e1, (10)

where e1 =
(

0 1
)>

.
3) The probability that the service station is in a fault state

P (Y = 0) =
m−1∑
i=0

πmFie2 + πm(I −R)−1e2,

where e2 =
(

1 0
)>

.
4) The mean queueing length in the steady-state system

E(L) =

m−1∑
i=0

iπmFie+

∞∑
i=m

iπie

=
[
mπm + (m+ 1)πmR+ (m+ 2)πmR

2 + · · ·
]
e

+
m−1∑
i=0

iπmFie

=

m−1∑
i=0

iπmFie+ πm(R(I −R)−2 +m(I −R)−1)e.

(11)

5) The mean waiting queue length in the steady-state
system

E(Lq) =
∞∑
i=1

(i− 1)πie

=
∞∑
i=1

iπie−
∞∑
i=1

πie

= E(L)− (1− π0e) .

6) The steady-state mean sojourn time of the system

W = (E(L) + 1)
1

µ
.
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B. When m = 0, the input rate will be fixed at λ2

1) Steady-state queue length distribution of the system

P (Q = q) =


π0

(
1
1

)
, q = 0,

π1R
q−1

(
1
1

)
, q ≥ 1.

2) The availability of the service station

A = P (Y = 1) =
∞∑
i=0

πie1 = π0e1 + π1(I −R)−1e1.

(12)

3) The probability that the service station is in a fault state

P (Y = 0) = π0e2 + π1(I −R)−1e2.

4) The mean queueing length in steady-state system

E(L) =
∞∑
i=0

iπie

= (π1 + 2π2 + 3π3 + · · ·) e
=
[
π1
(
I + 2R+ 3R2 + · · ·

)]
e

= π1(I −R)−2e. (13)

5) The mean waiting queue length in the steady-state
system

E(Lq) = E(L)− 1 + π0e.

6) The mean sojourn time in the steady-state system

W = (E(L) + 1)
1

µ
.

VI. SPECIAL CASES

This section gives the formulas for the availability and the
mean queue length in the steady-state system at the threshold
m = 0 and m = 1.

A. m = 0

1) When m = 0, the input rate of customers is fixed at
λ2. Using Eq. (4), Eq. (5), Eq. (6), Eq. (7) and Eq. (12), we
obtain the availability of the service station

A = π0e1 + π1(I −R)−1e1

=
ηµ+ λ2α1 − λ2α2

ηµ+ µα1
.

2) Using Eq. (6), Eq. (7) and Eq. (11), we obtain the mean
queueing length in steady-state system

E(L) =π1(I −R)−2e

=
λ2α1(λ2 − µ)

2
+ λ2α2

(
ηµ+ λ2µ+ µα1 − λ22

)
µ (η + α1) (µη − λ2η − λ2α2)

+
λ32 − (η + λ2)µλ2

(ηλ2 − ηµ+ λ2α2)µ
− λ22

(η + α1)µ

=
λ22 − ηµ− λ2µ
λ2η − µη + λ2α2

− λ2
η + α1

− 1.

B. m = 1

Customers’ input rates will change. The system steady-
state boundary probability vectors π0 and π1 are

π00 =
α1ϕ1

ϕ2 + ϕ3
,

π01 =
(η + λ1)ϕ1

ϕ2 + ϕ3
,

π10 =
λ1 (α1 (µ+ α2) + α2 (η + λ1))ϕ1

µ (η + λ2) (ϕ2 + ϕ3)
, (14)

π11 =
λ1 (η + α1 + λ1)ϕ1

µ(ϕ2 + ϕ3)
, (15)

where

ϕ1 = ηµ− λ2η − λ2α2,

ϕ2 = (η + λ1) (ηµ+ (η + α2) (λ1 − λ2)) ,

ϕ3 = α1 (ηµ+ λ1η + λ1µ+ λ1α2 − λ2η − λ2α2) .

The calculation method is the same as Theorem 4.
1) Using Eq. (10), Eq. (14) and Eq. (15), we obtain the

availability of the service station

A =
m−1∑
i=0

πmFie1 + πm(I −R)−1e1

=π1F0e1 + π1(I −R)−1e1

=− π1BD−10 e1 + π1(I −R)−1e1

=
λ1 (η (η + λ1) + α1 (η + λ2))ϕ1

(ηµ− (η + α2)λ2) (ϕ2 + ϕ3)

+
(η + λ1)ϕ1

ϕ2 + ϕ3
.

2) Using Eq. (11), Eq. (14) and Eq. (15), we obtain the
mean queueing length in steady-state system

E(L) =
µλ1α1 (η + µ+ α2 − λ2) (η + λ2)

ϕ1 (ϕ2 + ϕ3)

+
µλ1 (η + λ1)

(
η2 + α2η + α2λ2

)
ϕ1 (ϕ2 + ϕ3)

.

VII. NUMERICAL EXPERIMENTS

This section analyzes the effect of different threshold val-
ues m and variations of each parameter on the availability of
service station, the steady-state mean queue length and mean
sojourn time of the system through numerical experiments.

It is necessary to study the availability of the service sta-
tion if the service station may fail. Assuming that λ1 = 2.5,
µ = 4, η = 0.8, α1 = 0.01, m takes values of 0 and 1,
λ2 takes values of 1.5 and 3, and α2 varies in the range of
0.05 to 0.1. From Figure 2, when the threshold value m and
the second arrival rate λ2 are constant, A decreases with the
increase of the second failure rate α2. As α2 increases, the
possibility of service station failure is increasing, that is, the
availability in the steady-state system is decreasing. When
λ2= 1.5 < λ1, the larger the threshold m, the smaller the
availability of service station A. Because as the threshold m
increases, the steady-state mean queueing length increases,
resulting in the decrease of A. In contrast, when λ2= 3 >λ1,
as the threshold m increases, the availability A increases.
This is consistent with the actual situation.
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Assuming that λ1 = 2.5, µ = 4, η = 0.8, α1 = 0.01, m
takes values of 0 and 1, α2 takes values of 0.05 and 0.1,
and λ2 varies in the range of 0.5 to 1.5. Figure 3 depicts the
effects of the second input rate λ2, threshold m and busy
period failure rate α2 on E(L) in the system. When the
threshold m and the busy period failure rate α2 are constant,
E(L) increases with the increase of λ2, and the rising trend
is increasing. This is because as λ2 increases, more and more
customers enter the system, which increases the mean queue
length. When the second input rate λ2 and the threshold m
are constant, as α2 increases, E(L) is increasing. This result
is consistent with real-life situations. When the second input
rate λ2 and the busy period failure rate α2 are constant, as m
increases, E(L) is increasing. The larger the value of λ2, the
closer E(L) is of the two values of m. This is because the
closer λ2 is to λ1, the less E(L) is affected by the threshold
m. It must be noted here that due to λ1=2.5 > λ2, then the
mean queue length in steady state increases as m increases.

Assuming that λ1 = 2.5, µ = 4, α1 = 0.01, α2 = 0.05, m
takes values of 0 and 1, η takes values of 0.8 and 1.2, and λ2
varies in the range of 2.2 to 2.8. Figure 4 depicts the effect
of the second input rate λ2, the threshold m, and the repair
rate η on E(L) in the steady-state system. In Figure 4, on the
basis of satisfying the steady-state conditions, when λ1 = λ2,
E(L) is equal and no longer affected by the threshold m. If
λ1 < λ2, the steady-state mean queue length decreases as m
increases. The case of λ1 < λ2 is also usual in real life. In
addition, from Figure 4, E(L) decreases with the increase
of the repair rate η.

Assuming that λ1 = 2.5, µ = 4, η = 0.8, α1 = 0.01, m
takes values of 0 and 1, α2 takes values of 0.05 and 0.1,
and λ2 varies in the range of 0.5 to 1.5. Figure 5 depicts the
effect of the second input rate λ2, the threshold m and the
busy period failure rate α2 on the system mean sojourn time
W . The trend of the curves in Figure 5 is the same as that
in Figure 3, so the trend of W and E(L) is the same.

When m = 1, Figure 6 depicts the influences of the first
input rate λ1 and the service rate µ on E(L) of the system at
steady state. In Figure 6, when µ is constant, E(L) increases
with the increase of λ1. When λ1 is constant, E(L) decreases
with increasing µ. Figure 7 depicts the influences of α1 and
η on the mean queue length E(L). It can be seen that when
η is constant, E(L) increases with the increase of α1. When
α1 is constant, the trend of E(L) with η is the same as Figure
4. This is consistent with our intuition.

VIII. CONCLUSION

We study the queueing system with variable input rates
and failure rates. In this mode, the service station may break
down at any time and a repairman can fix it immediately.
Customer arrival is a Poisson process, and customer service
time is an exponential distribution. We construct a two-
dimensional Markov chain using the quasi-birth-and-death
processes theory. The constructed balance equation is de-
duced in detail. Meanwhile, we give the display results of
the mean queue length and mean sojourn time in steady state
for the number of customers thresholds m = 0 and m = 1.
The effects of different thresholds m and the change of each
parameter on the performance indexes are analyzed by nu-
merical examples. The results show that different thresholds
and parameters have significant effects on the mean queue

length and mean sojourn time in the steady-state system.
Comparing the model with the immutable input rate, the
model features in this paper are of strong general relevance
significance. In practical application, the service organization
can appropriately adjust the threshold m according to the
actual situation in order to maximize the benefits. Based
on the research in this paper, the model with variable input
rates and failure rates can be extended to the M/M/N (N>1)
queueing system in the future.
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