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Abstract—Bacteria or viruses that are spread by tiny respira-
tory droplets are known as airborne infections. These infectious
vehicles can move along air currents, stay in the air, or stick
to surfaces before being inhaled by another person. Airborne
transmission may happen across long ranges and time periods.
Increased infection rates or clusters of airborne infections
are linked to a lack of ventilation or low ventilation rates.
While normal people remain in the same room as infectors,
this research will utilize a mathematical model for estimating
the concentration of exhaled air in a space with an outlet
ventilation system, as well as the risk of infection. As a result,
the exhaled air concentration and infection risk are affected
by the actual concentration level, the number of users, and
the rate of ventilation. The adaptive Runge-Kutta technique
and the standard fourth-order Runge-Kutta technique are
used to estimate the model solution. Because the number of
individuals who stay in the space varies over time, the Lagrange
interpolating polynomial and cubic splines interpolation are
employed to represent the number of individuals in the space. A
good agreement solution is obtained using the adaptive Runge-
Kutta method with cubic spline interpolation. The proposed
strategy represents the balance in the air quality management
process between the number of individuals allowed to stay in
the space and the performance of the air ventilation system.
For the optimal outcomes, the proposed technique was capable
of converting field data from a the number of individuals using
cubic splines and adaptive RK methods. The model can also
be utilized as a part of an internet of things (IoT) system to
develop new approaches to controlling infection-free zones. We
demonstrate that the proposed strategy works in real-world
scenarios.

Index Terms—airborne, infectious, diseases, ventilation sys-
tem.

I. INTRODUCTION

BACTERIA or viruses that are spread by tiny respiratory
droplets are known as airborne infections. These infec-

tious vehicles can move along air currents, stay in the air,
or stick to surfaces before being inhaled by another person.
Airborne transmission may happen across long ranges and
time periods. Increased infection rates or clusters of airborne
infections are linked to a lack of ventilation or low ventilation
rates. TB, COVID-19, MERS, and SARS are all dangerous
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infectious illnesses that transmit through the air or aerosol in
a multitude of ways, including coughing, spitting, sneezing,
speaking, or through wounds.

In [1], they proposed the risk of inhalation of indoor
airborne infection by using the probability transmission
dynamic modeling method. Three examples were estimated
using Wells-Riley mathematical models: (1) CO2 exposure
concentrations in indoor settings based on epidemiological
data, (2) baseline reproduction numbers, and (3) local air
variability. The risk of infection in susceptible populations
under a variety of scenarios of exposure. Improved indoor
ventilation has been demonstrated to minimize the risk of
infection in studies. In [2], they proposed the Wells-Riley
mathematical model for predicting the risk of influenza
infection during train transportation. The marginal incidence
of infection rises as the number of people using public trans-
portation rises. Improving ventilation is an efficient method
of preventing influenza infection. In [3], they proposed an
assessment of the feasibility of using natural ventilation to
control infection in naturally ventilated hospital wards in
Hong Kong. A high rate of natural ventilation can reduce
cross-infection of airborne diseases. In [4], they proposed to
develop multilevel IAQ control strategies to reduce the risk
of infection in buildings and transport areas. A multi-level
IAQ control technique is evaluated for indoor environments,
including long-term care facilities such as schools, universi-
ties, retail stores, hospitals, and transport areas. Assessing the
effectiveness of IAQ control strategies can be used to help
address the current challenges of COVID-19. In [5], [6], they
proposed that as the exhaled air concentration in a room rises
in the presence of infectors, the probability of vulnerable
individuals contracting infectious diseases transmitted by the
air, this is because contaminated people’s exhaled air also
contains contagious airborne particles inside the nuclei with
droplets that can stay airborne for extended periods and infect
a susceptible person when inhaled. In [7], they propose a
mathematical model to estimate the risk of transmissible dis-
eases in the air. The calculations revealed that the probability
of infection increased when the numeral of ill people and
airborne viral infections increased.

In [8], they proposed a numerical model that can be used
to describe the dynamic dispersion of airborne infectious dis-
eases in an outpatient room. In [9], they proposed developing
a model for superspreading episodes of infectious diseases
based on the SARS epidemic. In [10], they proposed the
random forest method to fuse the WRF model, using the
atmospheric pollutant concentration and fundamental meteo-
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rological parameters training model, and add the atmospheric
thermal stability factor as an extra element to model and
forecast the municipal PM2.5 concentration. While normal
people do remain in the same room as infectors, this research
will utilize a mathematical model for estimating the concen-
tration of exhaled air in a space with an outlet ventilation
system, as well as the risk of infection.

II. GOVERNING EQUATION

CO2 concentration in the air of approximately 400 ppm
in a area, but when people enter it, exhaled air concentration
begins to rise, depending on the rate of ventilation each
person, the length of the room, and the proportion of persons
in the area [11],[12], and [13].

We suppose that an indoor area, such as a room with
a volume of V, begins the day with an environment CO2

concentration of CE roughly 400 ppm and is inhabited by the
number of individuals(n). Given the presence of infectors, the
exhale air concentration that may include airborne contagious
particles may tend to rise in the room, determined by the rate
of ventilation (Q) and n. We simply assume that persons in
the room make a significant contribution to the production
of CO2, which serves as an exhaled air marker. The general
equation of the accumulation rate exhaled air concentration
in a room with CE , is equivalent to the exhaled air rate
generated by inhabitants plus the rate of CE , minus Q
removes exhaled air:

V
dC

dt
= npCa +QCE −QC, (1)

where C is the exhale air concentration indoor(ppm), Ca is
a fraction of the CO2 contained in inbreathed air and p is
the rate of respiration in the room for each person(L/s). t
is the duration time and T is the stationery simulation time.
Initial condition C(0) = C0 where C0 is the latent CO2

concentration.
In this paper, we consider airborne infections generated

by inhabitants, and the value of Q is assumed by Qout, then
this value is named the outlet ventilation rate. In a simple
scenario, the number of people is varied and depends on
the time are assumed by n(t). The general equation of the
accumulation rate exhaled air concentration in a room with
CE in Eq.(1) can be written as:

V
dC

dt
= n(t)pCa −QoutC, (2)

for all 0 ≤ t ≤ T.

A. The percentage of exhaled air in an unstable state

In Eq.(2), calculation of the percentage of exhaled air in a
room with an outlet ventilation system under unsteady state
conditions, we get

f(t) =
C(t)

Ca
. (3)

B. The airborne infection particles concentration

In [14], [15], they proposed when a susceptible individual
inhales the infected particle, a limited amount of contam-
inated particles may reach the location of the respiratory
ailment. This is because the infected particle has varied sizes

and deposition percentages in different parts of the respira-
tory system. In determining the risk of airborne infection the
accumulation proportion of airborne infection particles in the
airways must also be considered.

Given (β−µ) is the rate of survival of airborne infection
particles generated by the infector that reaches its target the
infected area of the person who is vulnerable to infection
at a threshold value (particles per second) as illustrated in
Figure 1,

Fig. 1. Movement of airborne infectious particles.

where β is the infector’s production rate of total released
airborne infection particles and µ is the rate of infected
particles death in the air caused by the infector that cannot
be embedded in the alveoli layer.

The infection-causing concentration of airborne infection
particle, N(t), is expressed as [7]:

N(t) =
If(t)(β − µ)

np
, (4)

where I is the number of people infected inside the room.
Substituting Eq.(3) into Eq.(4), we obtain the concentration
of infectious airborne particles under unstable conditions,

N(t) =
IC(t)(β − µ)

npCa
. (5)

C. The number of airborne infection particle

Not that all infected particles can reach the alveolar cavity
and deposit there; let θ be the proportion of airborne infection
particles that penetrate and deposit at the host’s location
of the infected area. As a result, the number of airborne
infection particles(λ), inhaled by an individual susceptible
and resulting in infection is expressed as [7],

λ = ptθN, (6)

where the time consumed (t) in the room got to the moment
of infection in the room and (0 < θ < 1).

D. The probability of airborne infectors

In [7],[6] and [16], they proposed that TB transmission
is governed by a Poisson distribution, the probability of
airborne infectors is expressed as:

P (t) = 1− e−λ(t), (7)

where the probability (P ) of susceptible individuals with
airborne infectors risk.
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III. NUMERICAL TECHNIQUE

There will be no continuous approximation to the solution
C(t); instead, approximations to C will be constructed at
various values as in interval [0, T ], known as mush points.

Once the estimated solution at the points is determined, an
approximation can be used to find the approximate solution
at other points in the interval. We first make the stipulation
that the mesh points are distributed equally over the interval
[0, T ].

This condition is achieved by selecting a positive integer
N and the mesh points ti = a+ih, for each i = 0, 1, 2, ..., N.
The general distance between the points h = (T − 0)/N =
ti+1 − ti is called the step size.

A. The classical fourth-order Runge-Kutta method

The classical fourth-order Runge-Kutta method is ex-
pressed as [17],

C ∼= Ci, (8)

Ci+1 = Ci +
1

6
(k1 + 2k2 + 2k3 + k4)h, (9)

k1 = f(ti, Ci), (10)

k2 = f(ti +
1

2
h,Ci +

1

2
k1h), (11)

k3 = f(ti +
1

2
h,Ci +

1

2
k2h), (12)

k4 = f(ti + h,Ci + k3h), (13)

from Eq.(2), we get the classical fourth-order RK method

dC

dt
= f(ti, Ci), (14)

f(ti, Ci) =
1

V
(n(t)pCa −QoutCi). (15)

B. Adaptive Runge-Kutta method

This technique uses a Runge-Kutta method with local
truncation error of order five. The Adaptive Runge-Kutta
method is expressed as, [17],

C̃i+1 = Ci +
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5

+
2

55
k6, (16)

to calculate the local error in a four-order Runge-Kutta
technique given by

Ci+1 = Ci +
25

216
k1 +

1408

2565
k3 +

2197

4140
k4 −

1

5
k5, (17)

where the coefficient equations are

C ∼= Ci, (18)
k1 = hf(ti, Ci), (19)

k2 = hf(ti +
h

4
, Ci +

1

4
k1), (20)

k3 = hf(ti +
3h

8
, Ci +

3

32
k1 +

9

32
k2), (21)

k4 = hf(ti +
12h

13
, Ci +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3),

(22)

k5 = hf(ti + h,Ci +
439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4),

(23)

k6 = hf(ti +
h

2
, Ci −

8

27
k1 + 2k2 −

3544

2565
k3

+
1859

4104
k4 −

11

40
k5), (24)

from Eq.(2), we get the Adaptive Runge-Kutta method
method

dC

dt
= f(ti, Ci), (25)

f(ti, Ci) =
1

V
(n(t)pCa −QoutCi). (26)

C. Lagrange interpolating polynomial
Suppose we formulate a linear interpolating polynomial

as the weighted average of the two values that we are
connecting by a straight line [18]:

f(x) = L1f(x1) + L2f(x2), (27)

where the L1 and L2 are the weighting coefficients. It is
logical that the first weighting coefficient is the straight line
that is equal to 1 at x1 and 0 at x2:

L1 =
x− x2

x1 − x2
. (28)

Similarly, the second coefficient is the straight line that is
equal to 1 at x2 and 0 at x1:

L2 =
x− x1

x2 − x1
. (29)

Substituting these coefficients into Eq. (27),

f1(x) =
x− x2

x1 − x2
f(x1) +

x− x1

x2 − x1
f(x2), (30)

where the nomernclature f1(x) designates that this is a
first-order polynomial. Eq. (30) is referred to as the linear
lagrange interpolating polynomial. Such a second-order La-
grange interpolating polynomial can be written as

f2(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
f(x1)

+
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
f(x2) +

(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
f(x3).

(31)
Notice how the first term is equal to f(x1) at x1 and
is equal to zero at x2 and x3. The other terms work in
a similar fashion. Both the first-order and second-order
versions as well as higher-order Lagrange polynomials can
be represented concisely as,

fn−1(x) =
n∑

i=1

Li(x)f(xi). (32)
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D. Cubic splines interpolation

As the preceding example demonstrates, a spline defined
on an interval that is divided into n subintervals will require
determining 4n constants. To generate the cubic spline in-
terpolation for a given function f , the definition’s conditions
are applied to cubic polynomials [17],

Sj (x) = aj + bj (x− xj) + cj(x− xj)
2
+ dj(x− xj)

3
,

(33)

for each j = 0, 1, . . . , n − 1. Since Sj (xj) = aj = f (xj) ,
condition (c) can be applied to obtain,

aj+1 = Sj+1 (xj+1) = aj + bj (xj+1 − xj)

+cj(xj+1 − xj)
2
+ dj (xj+1 − xj) , (34)

for j = 0, 1, . . . , n− 2.
As the terms xj+1 − xj appear several times in this

progression, it is more comfortable to utilize the simplified
notation.

hj = xj+1 + xj ,

for each j = 0, 1, . . . , n− 1. If we also define an = f (xn) ,
then the equation

aj+1 = aj + bjhj + cjh
2
j + djh

3
j , (35)

holds for each j = 0, 1, . . . , n − 1. Similarly, define bn =
S′ (xn) and observe that

S′
j (x) = bj + 2cj (x− xj) + 3dj(x− xj)

2
.

Implies S′
j (x) = bj , for each j = 0, 1, . . . , n − 1. Using

condition (d), we get

bj+1 = bj + 2cjhj + 3djh
2
j , (36)

for each j = 0, 1, . . . , n − 1. The additional connection
here between coefficients of Sj is derived by defining
cn = S′′ (xn)/2 and applying condition (e). Then, for each
j = 0, 1, . . . , n− 1,

cj+1 = cj + 3djhj . (37)

Solving for dj in Eq.(37) and substituting this value into
Eqs.(35) and (36) gives, for each j = 0, 1, . . . , n − 1, the
new equations

aj+1 = aj + bjhj +
hj

2

3
(2cj + cj+1) , (38)

and

bj+1 = bj + hj (cj + cj+1) . (39)

The concluding coefficient relation is achieved by first
calculating the relevant equation in the formula of equation
(38), for bj ,

bj+1 =
1

hj
(aj+1 − aj)−

hj

3
(2cj + cj+1) , (40)

and then, with a decrease in the index, for bj−1. This gives

bj−1 =
1

hj−1
(aj − aj−1)−

hj−1

3
(2cj−1 + cj) .

Substituting these values into the equation derived from
Eq.(39), with the index reduced by one, gives the linear
system of equations,

hj−1cj−1 + 2 (hj−1 + hj) cj + hjcj+1 =
3

hj
(aj+1 − aj)

− 3

hj−1
(aj − aj−1)−

3

hj−1
(aj − aj−1) , (41)

for each j = 0, 1, . . . , n− 1.
This system involves only the {cj}nj=0 as unknowns. The

values of {hj}n−1
j=0 and {aj}nj=0 are given, respectively, by

the spacing of the nodes {xj}nj=0 and the values of f at the
nodes. So once the values of {cj}nj=0 are determined, it is
a straightforward affair to find the reminder of the constant
{bj}n−1

j=0 from Eq.(40) and {dj}n−1
j=0 from Eq.(37). Then we

can construct the cubic polynomials {Sj (x)}n−1
j=0 .

IV. NUMERICAL EXPERIMENTS AND RESULTS

Assuming that the respiration rate assumed by p = 0.12
(L/s) and a fraction of the Covid-19 concentration contained
inbreathed air Ca = 0.04. By employing the classical fourth-
order Runge-Kutta method Eqs.8-15 and the adaptive fourth-
order Runge-Kutta method Eqs.16-26.

The number of people in the room is represented using
the Lagrange interpolating polynomial and the cubic splines
interpolation since the number of people who stay in the
room varies over time.

A. Simulation 1: an ideal carbon dioxide concentration
measurement.

Table I, lists the model’s physical parameters. C0 = 0.01
is the ambient carbon dioxide concentration (ppm). The
analytical solution for this case can be obtained by [7] such
as,

C(t) = CE +
npCa

Q
[1− e−Qt/V ]. (42)

Table II presents the maximum error of the fourth-order
Runge-Kutta solution and the adaptive fourth-order Runge-
Kutta solution with the analytical solution. As seen in Fig-
ure 2, the adaptive fourth-order Runge-Kutta solution and
the fourth-order Runge-Kutta solution are compared to the
analytical solution.

TABLE I
PHYSICAL PARAMETERS.

n(t) CE V Q
50 0.004 75 8

TABLE II
THE MAXIMUM ERROR OF THE RK4 SOLUTION AND THE ADRK4

SOLUTION WITH THE ANALYTICAL SOLUTION.

△t Maximum error RK4 Maximum error ADRK4
0.100 9.6097× 10−13 1.1102× 10−15

0.050 5.9789× 10−14 1.3184× 10−16

0.025 3.7192× 10−15 1.3878× 10−16
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Fig. 2. The approximated air exhaled indoor concentration in a room
T = 180.

B. Simulation 2 : The concentration measurement of exhaled
air with n(t) is function.

The parameters are assumed in Table III. A number of
people are assumed by n(t) = 45 + 5 sin(πt) is illustrated
in Figure 3. Figure 4 shows the approximated solution.

TABLE III
PARAMETERS

CE V Qout C0

0.004 75 4 0.01

Fig. 3. A number of people in a room 0 ≤ t ≤ 25.

Fig. 4. The approximated air exhaled indoor concentration in a room with
n(t) is function △t = 0.025 T = 180.

C. Simulation 3 : The concentration measurement of exhaled
air with cubic splines interpolation of function n(t).

The parameters are assumed in Table IV. A number of
people are assumed by n(t) = 45 + 5 sin(πt). As seen in
Figure 5, the cubic spline interpolation is compared to the
function of n(t). Figure 6 shows the approximated solution.

TABLE IV
PARAMETER

CE V Qout C0

0.004 75 4 0.01

Fig. 5. The cubic splines interpolation is compared to the function of n(t)

Fig. 6. The approximated air exhaled indoor concentration in a room with
cubic splines interpolation of function n(t) △t = 0.025 T = 180.

D. Simulation 4 : The concentration measurement of exhaled
air with lagrange interpolation of function n(t).

The parameters are assumed in Table V. A number of
people are assumed by n(t) = 45 + 5 sin(πt). As seen
in Figure 7, the lagrange interpolation is compared to the
function of n(t). Figure 8 shows the approximated solution.

TABLE V
PARAMETER

CE V Qout C0

0.004 75 4 0.01
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Fig. 7. The lagrange interpolation is compared to the function of n(t)

Fig. 8. The approximated air exhaled indoor concentration in a room with
lagrange interpolation of function n(t) △t = 0.025 T = 180.

TABLE VI
THE ROOT MEAN SQUARE ERROR OF THE CUBIC SPLINES

INTERPOLATION AND THE LAGRANGE INTERPOLATION ARE COMPARED
TO THE FUNCTION OF n(t)

RMSE of the lagrange polynomial RMSE of the cubic splines
3.8748× 10−5 1.0157× 10−7

E. Simulation 5 : The risk of normal peoples who staying in
a room with infectors.

The initial condition is assumed by C0 = 0.01 and the
environmental carbon dioxide concentration(CE) is 0.004.
The size of the room is 75 (m3) and ventilation fan levels are
assumed in three cases by 0.18, 0.36, and 0.54 (m3/min).
As assumed in Table VII, the number of people changes over
time.

As seen in Figure 9, the cubic splines interpolation is
compared to the number of people. Figure 10 shows the
approximated air exhaled indoor concentration in a room
with cubic spline interpolation. Table VIII presents the
approximated air exhaled indoor concentration in a room
when ventilation fan levels are assumed in three cases.

TABLE VII
A NUMBER OF PEOPLE n(t)

t 0 20 40 60 80 100 120 140 160 180
n(t) 5 10 15 30 45 50 45 30 20 10

Fig. 9. The cubic spline interpolation is compared to the number of people

Fig. 10. The approximated air exhaled indoor concentration in a room
with cubic spline interpolation △t = 0.025 T = 180.

TABLE VIII
THE APPROXIMATED AIR EXHALED INDOOR CONCENTRATION IN A

ROOM

t C
Qout = 3 Qout = 6 Qout = 9

20 0.0082 0.0058 0.0044
40 0.0145 0.0092 0.0067
60 0.0267 0.0171 0.0126
80 0.0464 0.0290 0.0209
100 0.0637 0.0371 0.0258
120 0.0711 0.0380 0.0254
140 0.0642 0.0305 0.0192
160 0.0500 0.0211 0.0128
180 0.0352 0.0131 0.0076

Fig. 11. The percentage of exhaled air
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Fig. 12. The number of airborne infection particles

Fig. 13. The airborne infection particles concentration

Fig. 14. The probability of airborne infector

V. DISCUSSION

Simulation 1 compares the analytical solution with the
classical fourth-order Runge-Kutta method and the Adaptive
Runge-Kutta method. In Table II, the maximum error of the
classical fourth-order Runge-Kutta method is more than the
Adaptive Runge-Kutta method. Figure 2 shows the compar-
ison of both approximation techniques.

Simulation 2, in reality, people were constantly entering
and leaving our room, implying that n(t) is a function. Figure
3 shows the number of individuals in the room is between 40
and 50. The approximated air exhaled indoor concentration
in a room with n(t) is function as illustrated in Figure 4.

Simulation 3, the cubic spline interpolation is used to in-

terpolate the function n(t). Figure 5 shows the comparison of
the cubic spline interpolation and the exact solution. Figure 6
shows the approximated air exhaled indoor concentration in
a room with cubic spline interpolation of the function n(t).

Simulation 4, the Lagrange interpolation is used to in-
terpolate the function n(t). Figure 7 shows the comparison
of the Lagrange interpolation and the exact solution. Figure
8 shows the approximated air exhaled indoor concentration
in a room with the Lagrange interpolation of the function
n(t). Table VI shows the root mean square error of both
interpolation techniques.

Simulation 5, the number of people as illustrated in Table
VII and interpolated by the cubic spline interpolation. Figure
9 shows the comparison of the cubic spline interpolation and
the number of people. Figure 10 shows the approximated
air exhaled indoor concentration has reduced when outlet
ventilation has increased. Figures 11-14 shows the percentage
of exhaled air, the number of airborne infection particles, the
airborne infection particles concentration, and the probability
of airborne infector.

VI. CONCLUSION

This study will use a mathematical model to predict the
concentration of exhaled air in a space with an outlet venti-
lation system and the risk of infections when healthy people
remain in the same room as infected people. As a result,
the actual concentration level, the number of users, and the
ventilation rate all impact the exhaled air concentration and
infection risk. The adaptive Runge-Kutta approach and the
classic fourth-order Runge-Kutta method are all used to esti-
mate the model solution. The number of people in the room
is represented using the Lagrange interpolating polynomial
and the cubic splines interpolation since the number of indi-
viduals who stay in the room varies over time. The adaptive
Runge-Kutta technique with cubic splines interpolation turns
out to be a good agreement solution. The proposed strategy
represents the balance in the air quality management process
between the number of individuals allowed to stay in the
space and the performance of the air ventilation system. For
the optimal outcomes, the proposed technique was capable of
converting field data from a number of people using cubic
splines and adaptive RK methods. The model can also be
utilized as a part of an internet of things (IoT) system to
develop new approaches to controlling infection-free zones.
Due to the proposed numerical enhancement of the adaptive
Runge-Kutta technique with cubic spline interpolation, we
show that the suggested strategy is effective in real-world
scenarios.
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