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Abstract—We propose a generalized first progressive failure
hybrid censoring scheme in this paper, which guarantees the
time to complete the life test. We use classical and Bayesian
methods to calculate the unknown parameter’s point and
interval estimator of Lindley distribution under the scheme.
The maximum likelihood estimation is obtained by maximizing
the log-likelihood function. we calculate the asymptotic con-
fidence intervals and coverage probabilities of the parameter.
Additionally, there are two bootstrap confidence intervals by
bootstrap method. In Bayes theory, the Metropolis-Hastings
algorithm is applied to obtain the Bayes estimator and highest
posterior density credible intervals of the unknown parameter,
which has a gamma prior. The waiting time data set is
analysed by the mentioned method for illustration purposes,
Monte Carlo simulations experiment are designed to compare
the performance of the proposed point and interval estimate
methods.

Index Terms—Lindley distribution, generalized first-failure
PHC, maximum likelihood estimation, bootstrap confidence
interval, Bayes estimator.

I. INTRODUCTION

L Indley [1] first proposed the Lindley distribution (LD)
in connection with Bayesian statistics, and it is fitted a

counter data. As mentioned in the article, the probability den-
sity function (PDF) f(z, a) and the cumulative distribution
function (CDF) F (z, a) of LD are:

f(z, a) =
a2(1 + z)

1 + a
e−az (1)

F (z, a) = 1− 1 + a+ az

1 + a
e−az, z > 0, a > 0, (2)

where a is the unknown parameter of LD. Ghitany et al.
[2] discussed different properties of the LD. Krishna and
Kummar [3] discussed the properties and the reliability of
the LD under the progressively Type-II right censored data.
Al-Mutairi et al. [4] and Kumar et al. [5] studied the analysis
of strength stress model reliability parameter, when stress and
strength are independent Lindley random variables. Dube
et al. [6] studied the reliability characteristics of the LD
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under progressively first failure censored sample. Gupta and
Singh [7] derived the parameter estimation of the LD based
on hybrid censored data. In this paper, we investigate the
possibility of extending the parameter estimation of LD under
more general censoring scheme settings.

Due to time, cost or other data collection constraints,
Censored data are usually found in life testing. Type-I,
Type-II, first-failure censoring shemes are available to ap-
ply in life test. Balakrishnan and Aggarwala [8] proposed
progressive censoring, which allowed surviving units to be
removed from the test before the all products fail. First-
failure and progressive censoring were coupled to create
the progressively first-failure system by Wu and Kus [9].
Shorter test times and resource savings are benefits of the
first-failure censored sampling strategy, but its disadvantage
takes a long time to complete the life test. To overcome the
drawbacks, we propose a generalized first failure progressive
hybrid censoring (GFFPHC) scheme, which guaranteed the
life test is completed at a predetermined time. The GFFPHC
scheme’s life-testing can be summarized as follows: assume
that N independent groups with K items in each group are
put on test. Before the life-testing, we need to set:
(1) The integer m ≤ n and the time points T1 < T2;
(2) The GFFPHC scheme R = (R1, R2, · · · , Rm).
The failure number of observations up to time T1 and T2 is
denoted by D1 and D2, respectively, d1 and d2 represent the
observations of D1 and D2.

When the first component fails (express as X1:m:N :K)
and we remove corresponding group, R1 groups randomly
removing from the survival N − 1 groups. Similarly, when
X2:m:N :K occurs, we remove the corresponding group and
additional R2 groups randomly removing from remaining
N −R1−2 groups and so forth. For convenience, Xi:m:N :K

can be represented as Xi, (i = 1, 2, ..., N). Combined with
the censoring scheme, there will be the following cases:

(1) If Xm < T1, when the mth failure unit occurs, the test
continue but without removing other groups. Up to T1, the
test terminates and removes all the remaining survival units.
That is Rm = Rm+1 = · · · = Rd1 = 0;

(2) If T1 < Xm < T2, the test is terminated at Xm.
(3) If Xm > T2, the test is terminated at T2.
The GFPHC test will be completed at T2, which indicates

the longest time that researchers allow the experiment to run.
Furthermore, the failure samples obtained in the above

three cases can be expressed as:
Case I: X1, X2, · · · , Xm, Xm+1, · · · , Xd1 , Xm <
T1, d1 ≤ m+Rm,
Case II: X1, X2, · · · , Xm, T1 < Xm < T2,
Case III: X1, X2, · · · , Xd2 , Xm > T2, 0 < d2 < m.
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The likelihood function can be expressed as

L(θ|x)=



Cd1K
d1

d1∏
i=1

f(xi) (1− F (xi))
K(Ri+1)−1

(1− F (T1))KRd1 , if xm < T1,

CmK
m
m∏
i=1

f(xi) (1− F (xi))
K(Ri+1)−1,

if T1 < xm < T2,

Cd2K
d2

d2∏
i=1

f(xi) (1− F (xi))
K(Ri+1)−1

(1− F (T2))KR
d2
, if xm > T2,

(3)

where Cm = N(N − R1 − 1)(N − R1 − R2 − 2) · · · (N −

R1−· · ·−Rm−1−m+ 1), Rd1 = N −d1−
m−1∑
j=1

Rj , Rd2 =

N − d2 −
d2∏
j=1

Rj , Cd1 , Cd2 can be written in a similar way

taking m = d1,m = d2.
Therefore, the above cases can be combined as

L(a|x) =CDK
D

D∏
i=1

f(xi) (1− F (xi))
K(Ri+1)−1

(1− F (T1))
KR

d
′
1 (1− F (T2))

KR
d
′
2 (4)

Here, D = d1, Rd′1
= Rd1 , Rd′2

= 0 for case I, D =
m,Rd′1

= 0, Rd′2
= 0, for case II and D = d2, Rd′1

=
0, Rd′2

= Rd2 , for case III.
The remainder of this paper is organized as follows.

Section II includes MLE, asymptotic confidence interval
(ACI) and bootstrap confidence intervals of parameter. The
Bayes estimation along with its highest posterior density
(HPD) credible interval of the parameter are calculated in
Section III. A dataset as an example to show that the LD is
a suitable distribution to fit the data in Section IV. In Section
V, Monte Carlo simulation experiment are presented. Section
VI presents the conclusion.

II. MAXIMUM LIKELIHOOD ESTIMATION

Let X1, X2, · · · , XD, be a GFFPHC sample from LD,
with a censoring scheme R. Based on Equation (4), the
likelihood function is

L(a|x)=CDk
D

D∏
i=1

a2(
1

1+a
)k(Ri+1)(1+xi)e

−k(Ri+1)xia

(1 + a+ axi)
k(Ri+1)−1(

1 + a+ aT1
1 + a

)
kR

d
′
1

e
−kR

d
′
1
T1a

(
1 + a+ aT2

1 + a
)
kR

d
′
2 e
−kR

d
′
2
T2a

(5)

From Equation (5), we obtain the log-likelihood function
as follows:

l(a|x) = log(CDK
D) +

D∑
i=1

log(1+xi)−a
D∑
i=1

K(Ri+1)xi

+2D log(a)+
D∑
i=1

(K(Ri+1)−1) log(1+a+axi)

−
D∑
i=1

K(Ri+ 1) log(1+a)+KRd′1
log(

1+a+aT1
1+a

)

−aKRd′1T1+KRd′2
log(

1 + a+ aT2
1 + a

)−aKRd′2T2.
(6)

So the log-likelihood equation is

∂l

∂a
=

2D

a
−
D∑
i=1

K(Ri + 1)xi+
D∑
i=1

(K(Ri + 1)−1)
1+xi

1+a+axi

−
D∑
i=1

K
(Ri+1)

1+a
−KRd′1T1+KRd′1

(
1+T1

1+a+aT1
− 1

1+a
)

+KRd′2
(

1+T2
1+a+aT2

− 1

1+a
)−KRd′2T2 = 0. (7)

It is difficult to calculate the exact solution of (7). Therefore,
we intend to evaluate the MLE by solving the likelihood
equation by Newton-Raphson method.

A. Asymptotic confidence intervals estimation of paramater

The exact distribution of the parameter a’s MLE cannot
be determined. So, the asymptotic properties of MLE can be
used to establish the ACI for a. A two-sided 100(1 − β)%
confidence interval for a, which can be obtained by using
the asymptotic normality distribution of MLE, is given by
â ± Zβ/2

√
var(â), where Zβ/2 is the upper β

2 th percentile
of standard normal distribution, and the asymptotic variance
of â is var(â) = −I−1(â). The I(â) is the approximate
Fisher information matrix, and defined as

I(â) =
∂2l

∂a2
|a=â (8)

Using the Monte Carlo simulations obtains coverage proba-
bility (CP) of a

CPa = P (| (â−a)√
var(â)

| ≤ Zα/2)

The second derivatives in Equation (6) is given as follows

∂2l

∂a2
=−

D∑
i=1

(K(Ri+1)−1)
(1+xi)

2

(1+a+axi)2
+

D∑
i=1

K(Ri+1)

(1+a)2

− 2D

a2
−KRd′1 [

(1 + T1)2

(1 + a+ aT1)2
− 1

(1 + a)2
]

−KRd′2 [
(1 + T2)2

(1 + a+ aT2)2
− 1

(1 + a)2
]. (9)

B. Bootstrap confidence intervals

Efron [10] introduced the percentile bootstrap (Boot-p)
approach, and Hall [11] proposed the bootstrap-t method
(Boot-t). Boot-p and Boot-t are the two forms of confidence
intervals based on parametric bootstrap methods that are
offered in this subsection. The following are the necessary
steps for using the parametric bootstrap method:
Boot-p method
(1) Calculate â based on the GFFPHC sample by using
Equation (7).
(2) For given R = (R1, R2, · · · , Rm), T1 and T2 generate
a bootstrap sample (X1, X2, · · · , XD) from f(x, â).
Obtaining the bootstrap estimate of a saying â∗, based on
the bootstrap sample.
(3) Repeat (2) NP times.
(4) Assuming â∗’s CDF is G1(x) = P (â∗ < x). For
a fixed x value, â∗Btp(x) = G−11 (x) is defined. The
approximate 100(1− β)% confidence interval of a is given
by (â∗Btp(

β
2 ), â∗Btp(1−

β
2 )).
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For the Bootstrap-t method, Steps (1) and (2) follow the
boot-p approach that was previously mentioned.
(3) let T ∗ = â∗−â√

var(â∗)
.

(4) Repeat steps 2 and 3 NT times.
(5) Similar to Bootstrap-p method, assuming T̂ ∗’s CDF is
G2(y) = P (T̂ ∗ < y) For a fixed y value defines â∗Bt(y) =
â+G−12 (y)

√
var(â). The two-sided 100(1−β)% ACI of a

is obtained by (â∗Bt(
β
2 ), â∗Bt(1−

β
2 )).

III. BSYESIAN ESTIMATION

In this section, the Bayesian estimation (BE) of unknown
parameter from LD is considered based on GFFPHC sample.
Assume that a has a Gamma prior:

a ∼ π(a) =
bνaν−1e−ba

Γ(ν)
; a > 0.

where ν and b are non-negative known constants. Thus, The
posterior density for a be given as follows

π(a|x) ∝ a2D+ν−1e
−(K

∑D
i=1(Ri+1)xi+b+KR

d
′
1
T1+KR

d
′
2
T2)a

(1 + a)
−K(

∑D
i=1(Ri+1)+R

d
′
1
+R

d
′
2
)

(1 + a+ aT1)
KR

d
′
1 (1 + a+ aT2)

KR
d
′
2

D∏
i=1

(1 + a+ axi)
K(Ri+1)−1 (10)

In this paper, the BE has been obtained under the squared
error (SE), the Linex and the general entropy Loss function
(LF). The symmetric SELF is widely employed in the Bayes
inference. The parameter’s BE is the posterior mean of
parameter under the SELF. Hence, the BE of a’s any function
ψ(a) under the SELF can be obtained by

ψ̂BS(a) =E(ψ(a)|x) =

∫∞
0
ψ(a)π(a|x)da∫∞
0
π(a|x)da

. (11)

In reliability analysis and life test, the nature of the LF
is not always symmetric, so the SELF is unsuitable to use
in some situations. In the asymmetric case, Varian [12]
introduced the asymmetric Linex LF. The Linex LF is :

G(τ̂ , τ) = ec(τ̂−τ) − c(τ̂ − τ)− 1, c 6= 0,

here τ ’s estimator is τ̂ . The magnitude of c indicates the
asymmetry degree, and the sign of c indicates the asymmetry
direction. The BE of a ψ(a) under the Linex LF, is given the
following

ψ̂BL(λ) = −1

c
log[E(e−cψ(λ)|x)]

= −1

c
log[

∫∞
0
e−cψ(λ)π(λ|x)dλ∫∞
0
π(λ|x)dλ

]. (12)

The Linex LF applies to situations where overestimation
gives rise to consequences. The Linex LF is not appropriate
to estimate scale parameters,see [13,14]. Therefore, a more
applicable alterative to the modified Linex LF, called the
general entropy LF, was proposed by [13].

The general entropy LF is written as

G(µ̂, µ) = (
µ̂

µ
)q − log(

µ̂

µ
)q − 1, q 6= 0.

Based on the general entropy LF, the BE of a ψ(λ) can
be obtained by

ψ̂BGE(a) = [E(ψ(a)−q|x)]−
1
q

= [

∫∞
0
ψ(a)−qπ(a|x)da∫∞
0
π(a|x)da

]−
1
q . (13)

It is not possible to compute Equations (11), (12) and
(13) analytically. We generate samples through Metropolis-
Hastings (MH) algorithm from the Equations (10) and then
compute the BE. Specific steps are as follows:
Step 1. Setting initial value a0. Let i = 1.
Step 2. Generate a∗ from N(ai−1, Va).
Step 3. Compute the acceptance probability
ρa=min[1, π(a∗|x)/π(ai−1|x)] .
Step 4. Generate random number u from uniform distribution
U(0, 1).
Step 5. If u < ρa, ai = a∗, else ai = ai−1. Let i = i+ 1.
Step 6. Repeat step 2–step 5 Z times. Obtain the BE of
ψ = λ based on three LFs as

ψ̂BS =
1

Z −N

Z∑
j=N+1

ψj ,

ψ̂BL = log[
1

Z −N

Z∑
j=N+1

e−cψj ]−1/c,

ψ̂BGE = [
1

Z−N

Z∑
j=N+1

ψ−qj ]−
1
q ,

(14)

where N is called burn in period, the BE under three different
LFs expressed as BS, BL and BGE respectively .

A. HPD credible interval of parameter

We establish the HPD credible interval of a using MH
algorithm. The order values of a1, a2, · · · , aM are denoted
as a(1) < a(2) <, · · · , < a(M). The 100(1-β)% HPD credible
interval for a is constructed by using the algorithm given in
[15], and denotes as (a(i), a(i+[(1−β)M ])), [y] is the integer
part of y.

IV. DATA ANALYSIS

This section uses a dataset as an example for illustrative
purposes. It represents the waiting time (minutes) listed in
Table I for 100 bank customers. Ghitany et al. [2] demon-
strated that the LD fit the data set very satisfactorily. Next,
we divide the data set into 50 groups with 2 items in each
group, and the following first failure censored sample (FFCS)
is obtained: 0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1,
3.2, 3.3, 3.5, 3.6, 4.0, 4.3, 4.4, 4.4, 4.7, 4.7, 4.9, 5.0, 5.3,
5.5, 5.7, 6.1, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.6, 7.7, 8.0, 8.6,
8.6, 8.9, 8.9, 9.5, 9.6, 9.7,11.0,11.2,11.9,13.6,18.1,19.9,21.9.

We obtained three GFFPHC samples based on the above
FFCS from the following censoring schemes (CS):
Scheme 1: The complete data set where K = 2,m =
50, R = (0, 0, · · · , 0).
Scheme 2: The GFFPHC sample, K = 2,m = 30, R =
(10, 0, · · · , 10).
Scheme 3: The GFFPHC sample, K = 2,m = 30, R =
(0, 0, · · · , 10, · · · , 10).
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Scheme 4: The GFFPHC sample, K = 2,m = 30, R =
(0, 0, · · · , 20).

The MLEs and BEs of the parameter are calculated under
complete data and GFFPHC samples. For GFFPHC samples,
we set T1 = 8, T2 = 15 and T1 = 10, T2 = 19. In the
BE, we use non-informative priors (a = b = 0) because
we have no any prior information about the parameter for
real data set. All intervals mentioned in the paper for the
parameter are obtained under different CSs. These estimates
are listed in Tables II and III. From Table II, the results of
Bayesian estimate based on the censoring scheme 2 are very
close to those based on the complete sample, the difference
between Bayesian estimates of based on censoring scheme 4
and based on complete sample are the largest, the Bayesian
estimates based on censored samples are smaller than those
based on complete sample.

TABLE I
AN DATASET REPORTED IN[12]

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7
2.9 3.1 3.2 3.3 3.5 3.6 4.0 4.1 4.2 4.2
4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9
5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3
6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 8.0
8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6
9.7 9.8 10.7 10.9 11.0 11.0 11.1 11.2 11.2 11.5
11.9 12.4 12.5 12.9 13.0 13.1 13.3 13.6 13.7 13.9
14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19.0
19.9 20.6 21.3 21.4 21.9 23.0 27.0 31.6 33.1 38.5

TABLE II
THE MLES AND BE OF THE PARAMETER FOR TABLE 1

Bayesian

SE Linex GE

T1 T2 Sch MLE q=-1 c=-1 c=1 q=-2 q=1

0 ∞ 1 0.1866 0.1868 0.1868 0.1867 0.1872 0.1859
8 15 2 0.1876 0.1866 0.1869 0.1864 0.1880 0.1840

3 0.1721 0.1721 0.1722 0.1719 0.1729 0.1703
4 0.1374 0.1373 0.1374 0.1373 0.1379 0.1362

10 19 2 0.1827 0.1829 0.1831 0.1827 0.1839 0.1810
3 0.1721 0.1718 0.1720 0.1717 0.1728 0.1699
4 0.1374 0.1374 0.1375 0.1373 0.1380 0.1363

V. SIMULATIONS

In this section, we report the results of Monte Carlo simu-
lations, these results compare the performance of the MLEs
and BEs under different GFFPHC samples. The Monte Carlo
simulations have been performed by using different values
of N,m and K, and by choosing a = 1, T1 = 0.8, T2 = 1.5
in all cases. Three different censoring schemes are used and
given as follows:
Scheme I: R1 = Rm = (n−m)/2, Ri = 0, (i 6= 1, i 6= m).
Scheme II: Rm/2 = Rm = (n−m)/2, Ri = 0, (i 6= m

2 , i 6=
m).
Scheme III: Rm = n−m,Ri = 0, (i 6= m).

We obtain BEs under the BS, BL and BGE. In the BE, we
have chosen the hyper-parameters by moment method, that is
the prior distribution means are exactly equal to the true value
of corresponding parameters (ν = b = 1). Computing the BE
and 95% HPD credible intervals using the MH technique,

based on 5000 MCMC samples and discard the first 1000
values as ”burn-in”. For comparision purpose, we calculate
MLEs and the 95% ACIs, and calculate two 95% Boot
confidence intervals using 1000 re-sampling. We simulate
the whole process 1000 times and calculate biases and mean
squares errors (MSEs) of different estimates. we get 95% the
average of interval lengths and the CPs of the parameter by
numerical simulation test. In the BE, the CPs and average
credible lengths are independent of the LFs. Tables IV-V list
the results of numerical simulation. From Tables IV-V, we
can draw the following conclusions:

(1) From the results of the report, we observe that the
biases and MSEs of the parameter decrease as the values of
N and m increase, and the average lengths of the ACI/HPD
credible intervals decrease when the values of N and m
increase. Also, the biases and MSEs for all estimates based
on GFFPHC scheme with K = 5 are smaller than those
for GFPHC scheme with K = 3 in most cases. As the K
increases, the average length of interval estimations narrows
down.

(2) In simulations experiment, the MLEs outperform the
BEs in respect of the biases. For point estimation, the change
bias and MSEs of MLEs and BEs for a under three censoring
schemes are no significantly different. Tables IV-V show the
BEs of the parameter is sensitive to the values of c and q
based on the asymmetric LSs.

(3) We can observe that CPs for a are always close to
the level of 95% in interval estimation. Boot-t confidence
intervals are be superior to Boot-p confidence intervals and
ACI in term of average interval lengths. For three censoring
schemes, we can easily notice that scheme III gives the
smallest the average interval, and the scheme I gives the
greatest the interval lengths. Among all the interval estimates,
the performances of the HPD credible intervals is optimal.

VI. CONCLUSIONS

In this paper, we design a new life test scheme called
GFPHCS. The classical estimates and BEs the unknown
parameter of LD have been obtained based on the GFFPHCS.
We compute BE of the unknown parameter under square
error, Linex and general entropy LFs. The MLEs cannot be
obtained in analytical expression form, but can be derived
by the numerical method. The parameter’s ACI and the
corresponding CPs are derived by using the observed Fisher’s
information matrix. We construct two bootstrap confidence
intervals, and the corresponding CPs are computed. Also,
BEs and the corresponding HPD credible interval for the pa-
rameter a are computed using Metropolis-Hastings method.
From our study, we find that MLE for a is better in term of
biases. And the MLE calculation is simple, so we recommend
ML method for a. For interval estimate of a, HPD credible
interval is recommended.
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TABLE IV
BIASES AND MSES (IN THE PARENTHESE) OF a’S BE FOR DIFFERENT LF

SE Linex GE

K N m Sch MLE q=-1 c=-1 c=1 q=-2 q=1

3 30 20 I 0.026938 0.026969 0.039936 0.014450 0.039015 0.002776
(0.02568) (0.02451) (0.02666) (0.02281) (0.02589) (0.02264)

II 0.022749 0.022816 0.035515 0.010555 0.034648 -0.000932
(0.02698) (0.02574) (0.02782) ( 0.0241) (0.02703) (0.02403)

III 0.023509 0.023546 0.034841 0.012591 0.034189 0.002184
(0.02334) (0.02241) (0.02394) (0.0212) (0.02337) (0.02118)

40 30 I 0.022459 0.022603 0.031390 0.014026 0.030890 0.005985
(0.01899) (0.01842) (0.01959) (0.01744) (0.01921) (0.01726)

II 0.021355 0.021345 0.030027 0.012867 0.029556 0.004875
(0.01743) (0.01692) (0.018) (0.01604) (0.01766) (0.01587)

III 0.0147866 0.0149056 0.0230814 0.0069102 0.0227341 -0.0007948
(0.01562) (0.01521) (0.016) (0.01458) (0.01572) (0.01456)

50 30 I 0.0159875 0.0160960 0.0242745 0.0080975 0.0239204 0.0004028
(0.01546) (0.01504) (0.01584) (0.0144) (0.01556) (0.01436)

II 0.017567 0.017598 0.025581 0.009789 0.025233 0.002291
(0.01494) (0.01454) (0.01532) ( 0.01506) (0.01506) (0.01385)

III 0.009553 0.009837 0.016473 0.003320 0.016273 -0.003066
(0.01374) (0.0134) (0.01387) (0.01303) (0.01368) (0.0131)

40 I 0.013496 0.013877 0.020373 0.007494 0.020112 0.001375
(0.0135) (0.01322) (0.01382) (0.01272) (0.01363) (0.01264)

II 0.015764 0.015936 0.022426 0.009562 0.022150 0.003481
(0.01379) (0.01349) (0.01413) (0.01296) (0.01393) (0.01286)

III 0.0119690 0.0120232 0.0183151 0.0058373 0.0180886 -0.0001386
(0.01274) (0.01244) (0.01296) (0.01201) (0.01278) (0.01197)

60 40 I 0.013137 0.013194 0.019504 0.006992 0.019272 0.001015
(0.01248) (0.01222) (0.01275) (0.01179) (0.01258) (0.01174)

II 0.014591 0.014741 0.020975 0.008613 0.020740 0.002720
(0.01235) (0.01211) (0.01264) (0.01168) (0.01248) (0.01161)

III 0.003474 0.003772 0.009218 -0.001593 0.009104 -0.006913
(0.01079) (0.01059) (0.01086) (0.01038) (0.01074) (0.01047)

50 I 0.008461 0.008714 0.013864 0.003638 0.013707 -0.001288
(0.01122) (0.01104) (0.01141) (0.01073) (0.01128) (0.01071)

II 0.007297 0.007326 0.012414 0.002308 0.012272 -0.002585
(0.01018) (0.01001) (0.01034) (0.009737) (0.01022) (0.009726)

III 0.0096056 0.0098143 0.0148723 0.0048263 0.0147183 -0.0000106
(0.01017) (0.01003) (0.01038) (0.009744) (0.01027) (0.009705)

5 30 20 I 0.0004591 0.0008665 0.0116306 -0.00958 0.0112243 -0.0199264
(0.01804) (0.01739) (0.01831) (0.01675) (0.01788) (0.01708)

II -0.00428 -0.004047 0.006447 -0.014237 0.006102 -0.024419
(0.01763) (0.01708) (0.01787) (0.01656) (0.01746) (0.01695)

III 0.006695 0.007059 0.016155 -0.001814 0.015804 -0.010493
(0.01694) (0.01643) (0.01724) (0.01581) (0.0169) (0.01594)

40 30 I 0.0149385 0.0150058 0.022894 0.0072861 0.02254 -0.0001079
(0.01647) (0.01603) (0.01686) (0.01535) (0.01656) (0.0153)

II 0.009850 0.009853 0.017561 0.002305 0.017268 -0.005022
(0.01458) (0.01417) (0.01485) (0.01364) (0.0146) (0.01366)

III 0.0003546 0.0008566 0.0075864 -0.00575 0.0074245 -0.0123113
(0.01189) (0.01165) (0.01202) (0.01139) (0.01185) (0.01152)

50 30 I 0.010050 0.010403 0.017273 0.003661 0.017033 -0.002891
(0.01379) (0.01348) (0.01404) (0.01304) (0.01383) (0.01305)

II 0.0133692 0.0133359 0.0201137 0.0066832 0.0198529 0.0002686
(0.01375) (0.01349) (0.0141) (0.01301) (0.01389) (0.01297)

III 0.006607 0.006676 0.012114 0.001317 0.011969 -0.003934
(0.0113) (0.01111) (0.01145) (0.01083) (0.01132) (0.01086)

40 I 0.0116822 0.0117486 0.0177941 0.0058050 0.0175916 0.0000448
(0.01091) (0.01067) (0.01112) (0.01031) (0.01098) (0.01028)

II 0.010371 0.010567 0.016536 0.004695 0.016339 -0.001003
(0.01201) (0.01173) (0.01218) (0.01137) (0.01203) (0.01134)

III 0.002267 0.002474 0.007853 -0.002827 0.007736 -0.008074
(0.01053) (0.01035) (0.01062) (0.01014) (0.0105) (0.0102)

60 40 I 0.002266 0.002769 0.008154 -0.002535 0.008032 -0.007772
(0.01076) (0.01059) (0.01087) (0.01037) (0.01075) (0.01043)

II 0.006696 0.006850 0.012178 0.001600 0.012038 -0.003546
(0.01028) (0.0101) (0.01041) (0.009844) (0.0103) (0.009858)

III 0.007411 0.007680 0.012202 0.003214 00.012093 -0.001159
(0.009227) (0.009087) (0.009336) (0.008884) (0.009249) (0.008882)

50 I 0.0095361 0.0097822 0.014927 0.0047103 0.014769 -0.0002073
(0.01066) (0.01047) (0.01083) (0.01016) (0.01071) (0.01013)

II 0.007687 0.007674 0.012512 0.002900 0.012387 -0.001766
(0.00898) (0.00885) (0.009126) (0.008626) (0.009035) (0.008614)

III 0.0082063 0.0083094 0.0128412 0.0038332 0.0127279 -0.0005438
(0.009275) (0.009178) (0.00944) (0.008963) (0.009349) (0.009349)
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TABLE V
THE ALS AND CPS (IN THE PARENTHESE) OF a FOR DIFFERENT METHODS

K N m Sch ACI Boot-p Boop-t HPD
3 30 20 I 0.6267 (0.959) 0.6332 (0.947) 0.615 (0.956) 0.6093 (0.962)

II 0.6188 (0.95) 0.6229 (0.945) 0.605 (0.941) 0.6033 (0.949)
III 0.5871 (0.95) 0.592 (0.941) 0.5829 (0.944) 0.572 (0.949)

40 30 I 0.5157 (0.949) 0.5303 (0.937) 0.5119 (0.952) 0.5056 (0.947)
II 0.5129 (0.965) 0.5256 (0.956) 0.5082 (0.955) 0.5029 (0.962)
III 0.4992 (0.965) 0.5005 (0.952) 0.4945 (0.961) 0.4895 (0.958)

50 30 I 0.4993 (0.96) 0.5008 (0.959) 0.4952 (0.954) 0.4899 (0.959)
II 0.4935 (0.959) 0.4959 (0.962) 0.4889 (0.961) 0.4843 (0.954)
III 0.4505 (0.943) 0.4572 (0.948) 0.4515 (0.941) 0.4431 (0.951)

40 I 0.444 (0.953) 0.4572 (0.945) 0.4422 (0.949) 0.4357 (0.948)
II 0.4435 (0.95) 0.4573 (0.941) 0.4422 (0.944) 0.4351 (0.948)
III 0.4382 (0.943) 0.4408 (0.947) 0.4345 (0.938) 0.4296 (0.944)

60 40 I 0.4385 (0.945) 0.4409 (0.946) 0.4345 (0.938) 0.4313 (0.946)
II 0.4357 (0.949) 0.4379 (0.949) 0.4323 (0.948) 0.4287 (0.942)
III 0.4082 (0.945) 0.4093 (0.955) 0.4063 (0.943) 0.4023 (0.949)

50 I 0.3957 (0.944) 0.407 (0.94) 0.3949 (0.937) 0.3893 (0.946)
II 0.394 (0.957) 0.4051 (0.948) 0.3931 (0.944) 0.3875 (0.953)
III 0.3931 (0.95) 0.3989 (0.944) 0.3917 (0.947) 0.3861 (0.947)

5 30 20 I 0.5716 (0.969) 0.5348 (0.984) 0.5418 (0.951) 0.5569 (0.971)
II 0.5651 (0.959) 0.5279 (0.98) 0.5357 (0.95) 0.5496 (0.963)
III 0.5261 (0.959) 0.5093 (0.976) 0.5157 (0.957) 0.5137 (0.956)

40 30 I 0.4899 (0.955) 0.4722 (0.961) 0.4718 (0.959) 0.4788 (0.949)
II 0.4843 (0.958) 0.4673 (0.963) 0.4662 (0.962) 0.4735 (0.958)
III 0.4526 (0.966) 0.4491 (0.978) 0.4453 (0.962) 0.4439 (0.964)

50 30 I 0.4571 (0.943) 0.4519 (0.962) 0.4503 (0.952) 0.4485 (0.941)
II 0.4546 (0.951) 0.4473 (0.972) 0.447 (0.96) 0.4451 (0.952)
III 0.4074 (0.949) 0.4112 (0.964) 0.4075 (0.952) 0.4001 (0.951)

40 I 0.4294 (0.969) 0.4235 (0.966) 0.4189 (0.968) 0.4213 (0.967)
II 0.4268 (0.96) 0.4196 (0.952) 0.4155 (0.965) 0.4184 (0.956)
III 0.4057 (0.955) 0.4055 (0.956) 0.4006 (0.953) 0.398 (0.952)

60 40 I 0.405 (0.946) 0.4065 (0.955) 0.955 (0.96) 0.3983 (0.944)
II 0.4037 (0.954) 0.4037 (0.957) 0.399 (0.955) 0.3966 (0.949)
III 0.3724 (0.951) 0.3768 (0.952) 0.3721 (0.954) 0.3655 (0.947)

50 I 0.3962 (0.954) 0.4078 (0.947) 0.3957 (0.949) 0.3903 (0.949)
II 0.3843 (0.965) 0.3828 (0.963) 0.3782 (0.96) 0.3779 (0.961)
III 0.3723 (0.949) 0.3734 (0.953) 0.3688 (0.956) 0.3659 (0.946)
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