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Abstract—For a graph G given three integers a ≥ b ≥ i ≥ 0
and a certain vertex subset S of V (G), we say G is i-weak
(a : b)-choosable about set S if for any list assignment L of G
with the size of each list is a there is a function so that each
vertex v of S is given i colors from L(v) while each vertex u
of V (G) \ S is given b colors from L(v) satisfying that each
pair adjacent vertices have disjoint colors. In this paper, for
S = {v : v ∈ V (G), d(v) = 4}, we prove that every 1-planar
graph without 4- and 5-cycles is i-weak (4b + i : b)-choosable
about set S. And we prove that every 1-planar graph without
4-vertices, 4- and 5-cycles is 4-choosable.

Index Terms—1-planar graph, cycle, fractional choosability,
discharging.

I. INTRODUCTION

ALl graphs are finite and simple in this paper. The
undefined but used notations could be found in [1].

A set coloring is a function that assigns each vertex of G
a color set so that none of adjacent vertices have common
colors. A function L is called a list assignment for a graph
G = (V (G), E(G)) if each vertex v of V (G) is assigned
a color set L(v). If there is a function which is a special
set coloring that assigns a b-element subset of L(v) to each
vertex v of G, then G admits a (L : b)-coloring and we say
G is (L : b)-colorable.

If G is (L : b)-colorable for any list assignment L =
{L(v) : |L(v)| = a, v ∈ V (G)}, then G is (a : b)-
choosable. G is (a : b)-colorable if G has a (L : b)-coloring
provided that L(v) = {1, 2, . . . , a} for each v ∈ V (G).
It is easy to find that the (a : b)-choosability is more
difficult to reach than the (a : b)-colorability. The minimum
fraction a

b such that G is (a : b)-colorable is called the
fractional chromatic number of G denoted by χf (G). While
G is (a : 1)-choosable or (a : 1)-colorable, it means that
G is proper vertex a-choosable or a-colorable. Denote the
minimum number a that G is proper vertex a-colorable by
χ(G). Obviously, χf (G) is no more than χ(G) for any graph
G. G is (c1, c2, . . . , ck)-colorable while there is a function
V (G) → [k] such that ∆(G[Vi]) ≤ ci, where G[Vi] denotes
the monochromatic induced subgraph of color i.
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A graph which can be drawn in the plane with no two
edges intersect is a planar graph. We say a graph is a 1-
planar graph if it has a planar drawing so that each of its
edges is crossed at most once besides its ends. Obviously,
1-planar graph is a generalization of planar graph. Such a
planar drawing is called a plane graph or 1-plane graph
respectively.

Steinberg conjectured that every planar graph without 4-
and 5-cycles is 3-colorable in 1976 (see [2]). Though this
conjecture is proved false by Addad et al. [3], there are many
coloring results about planar graphs motivated by it. Borodin
et al. proved that every planar graph without 4-,. . .,7-cycles
is 3-colorable in [4]. But whether any planar graphs without
4-, 5- and 6- cycles are 3-colorable is still unknown. Borodin
et al. showed that every planar graph without 5- and 7-cycles
and without adjacent triangles is 3-colorable (see [5]). Hill
et al. [6] showed that every planar graph without 4- and 5-
cycles is (3,0,0)-colorable, while under the same condition it
is also (2,0,0)-colorable in [7] and is (1,1,0)-colorable in [8]
by Chen et al. and Wu et al. respectively.

The Steinberg’s conjecture also promoted the following
results about fractional coloring. Wu et al. proved that every
planar graph without 4- and 6-cycles is (7 : 2)-colorable in
[9]. Dvořák and Hu [10] showed that every planar graph
without 4- and 5-cycles is (11 : 3)-colorable in 2019.

Different from the Four-Color Theorem, every 1-planar
graph is 6-colorable (see [11]). In [12], [13], Song et al.
respectively showed that every 1-planar graph is 5-colorable
under the condition of without 4- and 5-cycles or without 4-
cycles and adjacent 5-vertices. Chu et al. proved that every 1-
planar graph with girth at least 7 is (1,1,1,0)-colorable in [14]
and also (2,0,0,0)-colorable in [15]. The coloring problems
of 1-planar graphs have been widely studied recently, such
as equitable coloring in [16], [17] , k-(2,1)-total choosability
in [18] and total coloring in [19], [20].

Let us consider a problem now. Assume we are conference
sponsors who need to arrange the scheduled meetings. There
are n listeners but some of them cannot attend the same
meeting. Listeners who belongs to set M only need to join
i meetings while the others want to take part in at least b
meetings with b ≥ i. How many meetings do we need to
hold? To solve this problem, we construct a graph G with n
vertices representing the listeners. Two vertices are adjacent
if their corresponding listeners could not attend common
meetings. Let S denote the set of vertices whose counterpart
is in M . So the problem is turned to find the smallest integer
a so that G is i-weak (a : b)-colorable about set S which is
defined as following.

Based on such a problem, we defined a new coloring now.
Given three integers a ≥ b ≥ i ≥ 0 and a certain vertex
subset S of V (G), G is i-weak (a : b)-choosable about set
S if for any list assignment L of G with the size of each list
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is a there is a function so that each vertex v of S is given i
colors from L(v) while each vertex u of V (G)\S is given b
colors from L(v) satisfying that each pair adjacent vertices
have disjoint colors. For a graph G and a list assignment L =
{L(v) = {1, 2, . . . , a}, v ∈ V (G)}, if G admits a function
which satisfies the condition defined above about set S, then
we say this function is a i-weak (a : b)-coloring about set S
of G and G is i-weak (a : b)-colorable about set S.

Based on the definitions above, we mainly prove the
following result.

Theorem 1.1 For S = {v : v ∈ V (G), d(v) = 4}, every
1-planar graph without 4- and 5-cycles is i-weak (4b+i : b)-
choosable about set S.

Corollary 1.2 and Corollary 1.3 are special cases of
Theorem 1.1.

Corollary 1.2 For S = {v : v ∈ V (G), d(v) = 4}, every
1-planar graph without 4- and 5-cycles is 1-weak (4b+1 : b)-
choosable about set S.

Corollary 1.3 For S = {v : v ∈ V (G), d(v) = 4}, every
1-planar graph without 4- and 5-cycles is 1-weak (9 : 2)-
choosable about set S.

The following Theorem 1.4 is a result in the case that S
is empty under the condition of Theorem 1.1.

Theorem 1.4 Every 1-planar graph without 4-vertices, 4-
and 5-cycles is 4-choosable.

II. PRELIMINARIES

We say vertex x is a k-vertex or k+-vertex if its degree is
k or at least k respectively. These definitions are also applied
to faces. Making any crossing of the 1-plane graph G to a
4-vertex leads to the associated plane graph G× of G. We
define the vertices of G× which do not appear in G as cross
vertices, other vertices are called true vertices. The white dots
and black dots shown in the following figures are respected
the cross vertices and true vertices in G× respectively.

A 4-face in G× is ordinary or special if it is incident with
exactly one or two cross vertices respectively. Let m3(v)
(resp. ms(v)) denote the number of 3-faces (resp. special 4-
faces) of G× incident with v for any v ∈ G×. The existence
of 4- and 5-cycles is called the impossible event.

By the definition of 1-planar graph, we can directly find
the following claim.

Claim 2.1 ([21]) There are not two adjacent cross vertices
in G×.

Since the absence of 4- and 5-cycles in G, here comes the
following claim.

Claim 2.2 The two subgraphs shown in Figure 1 could
not appear in G×.

(1) (2)

Figure 1 Two subgraphs could not exist in G×

III. PROOF OF THEOREM 1.1

We prove Theorem 1.1 by contradiction. Let G be a
minimal counterexample of Theorem 1.1 which means that

there is no other counterexample with vertices less than G.
Then G has neither of 4-, 5-cycles and G is not i-weak
(4b+ i : b)-choosable about set S. The following discussions
about G in this part and the next part are all about the one
we just assumed.

Lemma 3.1 The minimum degree of G is at least 5.
Proof: Suppose not, G contains a vertex v with degree

no more than 4. By minimality, G′ = G − {v} is i-weak
(4b + i : b)-choosable about set S. For any L = {L(v) :
|L(v)| = 4b + i, v ∈ V (G)}, there is a i-weak (4b + i : b)-
coloring ϕL about set S in G. Let us discuss in two cases.

If v has less than 4 neighbors, then v still has |L(v) \⋃
w∈NG× (v) ϕL(w)| ≥ 4b + i − 3b = b + i ≥ b col-

ors now. Otherwise v belongs to S, v remains |L(u) \⋃
w∈NG× (u) ϕL(w)| ≥ 4b+ i−4b = i colors which could be

used. In either case, we can extend ϕL to G, a contradiction.

We are going to use the discharging method on G× to
prove that no counterexample of Theorem 1.1 exists. Let us
set the initial charges of G× by ch0(v) = 1

2d(v)−3 for each
vertex v of V (G×), and ch0(f) = d(f) − 3 for any face f
which belongs to F (G×).

By Euler’s formula we have |V (G×)| − |E(G×)| +
|F (G×)| = 2, thus the following equation is established.∑

v∈V (G×)

(
1

2
d(v)− 3) +

∑
f∈F (G×)

(d(f)− 3) = −6

The symbol ch(x) denotes the final charge of any x ∈
V (G×)∪F (G×) after the following discharging rules below.
Note that the discharging rules could not change the sum of
the charges of V (G×) ∪ F (G×), thus the sum of the final
charges should still be –6.∑

x∈V (G×)∪F (G×)

ch0(x) =
∑

x∈V (G×)∪F (G×)

ch(x) = −6

The discharging rules are given as follows.
R1. Each 4+-face f of G× sends to each incident cross

vertex v:
(a) 1/4 for m3(v) = 0.
(b) 1/3 for m3(v) = 1.
(c) 1/2 for m3(v) = 2.
R2. Each 4+-face f of G× sends to each incident 5-vertex

v:
(a) 1/4 if f is an ordinary 4-face.
(b) 1/8 if f is a special 4-face.
(c) 3/8 if f is a 5-face.
(d) 1/2 if f is a 6+-face.
After setting the discharging rules, we are going to check

the final charges of V (G×)∪F (G×). Check the final charges
of vertices in G× firstly.

It is obvious that the minimum degree of G× is at least
4 by Lemma 3.1. The following three lemmas show that
ch(v) ≥ 0 for any v of V (G×). The upper bounds of the
number of 3-faces and special 4-faces incident with v are
based on Claim 2.1, Claim 2.2 and the absence of 4- and
5-cycles in G.

Lemma 3.2 If v is a 4-vertex of G×, then ch(v) ≥ 0.
Proof: Note that ch0(v) = −1 and m3(v) ≤ 2. Classify

v by the number of 3-faces incident with it.
(1) If m3(v) = 0, then ch(v) = −1 + 4 × 1/4 = 0 by

R1(a).
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(2) If m3(v) = 1, then ch(v) = −1 + 3 × 1/3 = 0 by
R1(b).

(3) If m3(v) = 2, then ch(v) = −1 + 2 × 1/2 = 0 by
R1(c).

Lemma 3.3 If v is a 5-vertex of G×, then ch(v) ≥ 0.
Proof: Note that ch0(v) = −1/2 and m3(v) ≤ 4.

(1) If m3(v) = 0, then ch(v) ≥ −1/2 + 5 × 1/8 =
1/8 > 0 by R2.

(2) If m3(v) = 1, then ms(v) ≤ 3 and ch(v) ≥ −1/2 +
1/4 + 3× 1/8 = 1/8 > 0 by R2.

(3) If m3(v) = 2, then ms(v) ≤ 2 and ch(v) ≥ −1/2 +
1/4 + 2× 1/8 = 0 by R2.

(4) If m3(v) = 3, then ms(v) ≤ 1.
Case 1: v is not incident with any special 4-faces.
ch(v) ≥ −1/2 + 2× 1/4 = 0 by R2.
Case 2: v is incident with exactly one special 4-face f .

Then we discuss the condition of the remaining unknown
face f ′ incident with v and is neither a 3-face nor f . Since
m3(v) = 3 and ms(v) = 1, then f ′ is either a 5+-face or an
ordinary 4-face.

Case 2.1: f ′ is a 5+-face, then ch(v) ≥ −1/2 + 1/8 +
3/8 = 0 by R2(a), R2(c) and R2(d).

Case 2.2: f ′ is an ordinary 4-face. Note that v is incident
with f , f ′ and three 3-faces. Considering the two faces f1,
f2 adjacent to f and incident with v, f1 and f2 are either
two 3-faces or one is 3-face and another one is f ′. Suppose
f1, f and f2 are counterclockwise in the plane (see Figure
2(1)).

Case 2.2.1: Both f1 and f2 are 3-faces. The Figure 2(2)
shows that G has at least one 4-cycles.

Case 2.2.2: By symmetry, suppose f1 is a 3-face, f2 is f ′.
As is shown in the Figure 2(3), one 5-face appears in G.

Both the cases above contradict the fact that the impossible
event could not occur. So Case 2.2 could not happen. Thus
ch(v) ≥ 0 for any 5-vertex with m3(v) = 3.

(1) (2) (3)

2 22

f ff

ff
f ff f1 1

1

Figure 2 d(v) = 5, m3(v) = 3, ms(v) = 1, f is an ordinary
4-face

In fact, if m3(v) = 3 and ms(v) = 1, the Figure 3(1)
shows the only possibility. If f ′ is a 3- or 4-face shown in
the Figure 3(2-3), here comes a 4-face in G. Thus f ′ must
be a 5+-face.

fff

(1) (2) (3)

’ ’ ’

Figure 3 d(v) = 5, m3(v) = 3, ms(v) = 1

(5) If m3(v) = 4, the only case is shown in the following
Figure 4(1). Consider the condition of the face f incident
with v but is not a 3-face. Since the absence of 4-cycles in
G, Figure 4(2-3) could not happen, then f must be a 6+-face.
Thus ch(v) = −1/2 + 1/2 = 0 by R2(d).

(1) (2) (3)

f ff

Figure 4 d(v) = 5, m3(v) = 4

Lemma 3.4 If v is a 6+-vertex of G×, then ch(v) ≥ 0.

Proof: There is no discharging rule about v, so ch(v) =
ch0(v) = 1

2d(v)− 3 = 1
2 (d(v)− 6) ≥ 0.

The following three lemmas show that ch(f) ≥ 0 for any
f ∈ F (G×).

Lemma 3.5 If f is a cross 4-face of G×, then ch(f) ≥ 0.

Proof: Note that ch0(f) = 1. According to Claim 2.1, f
is incident with either one or two cross vertices which means
that f is either ordinary or special.

(1) f is an ordinary 4-face, then the only cross vertex
incident with f is not incident with any 3-faces. Otherwise,
as illustrated by the following Figure 5(2-3), the impossible
event happens, a contradiction.

Thus ch(f) ≥ 1−1/4−3×1/4 = 0 by R1(a) and R2(a).

(1) (2) (3)

Figure 5 d(f) = 4, f has only one cross vertex

(2) f is a special 4-face. Suppose v and u are the two
cross vertices incident with f . Note that each of v and u is
at most incident with two 3-faces. So we discuss the number
of 3-faces incident with the cross vertices v and u.

Case 1: Both of v and u are incident with at most one
3-face. Then ch(f) ≥ 1− 2× 1/3− 2× 1/8 = 1/12 > 0 by
R1(a), R1(b) and R2(b).

Case 2: One of v and u is incident with two 3-faces. In
general, suppose v is such a vertex. Then u could not incident
with a 3-face as the Figure 6(2-4) show below. Otherwise no
matter how the 3-face incident with u appears, the impossible
event happens, a contradiction.

Then ch(f) ≥ 1 − 1/4 − 1/2 − 2 × 1/8 = 0 by R1(a),
R1(c) and R2(b).
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v v vv

u u u u

(1) (2) (3) (4)

Figure 6 d(f) = 4, m3(v) = 2

Lemma 3.6 If f is a 5-face of G×, then ch(f) ≥ 0.
Proof: Note that ch0(f) = 2. According to Claim 2.1,

there are less than three cross vertices incident with f .
(1) There is exactly one cross vertex v incident with f

shown in Figure 7(1). In this case, m3(v) ≤ 1. If not, Figure
7(2) shows that a 5-cycle will occur in G. ch(f) ≥ 2−1/3−
4× 3/8 = 1/6 > 0 by R1(a), R1(b) and R2(c).

v v

(2)(1)

Figure 7 d(f) = 5, f has exactly one cross vertex v

(2) There are exactly two cross vertices v and u incident
with f .

Case 1: m3(v) ≤ 1 and m3(u) ≤ 1. ch(f) ≥ 2 − 2 ×
1/3− 3× 3/8 = 5/24 > 0 by R1(a), R1(b) and R2(c).

Case 2: Generally suppose v is incident with two 3-faces,
then m3(u) ≤ 1. Otherwise, G will contain a 5-cycle, as
shown in Figures 8(2-3) and 8(5-6). Thus ch(f) ≥ 2−1/3−
1/2− 3× 3/8 = 1/24 > 0 by R1(a), R1(b) and R2(c).

(1) (2) (3)

v v v

u uu

v v v

u u u

(4) (5) (6)

Figure 8 d(f) = 5, m3(v) = 2

Lemma 3.7 If f is a 6+-face of G×, then ch(f) ≥ 0.
Proof: By the discharging rules, f sends at most 1/2

charges to each of its incident vertices. Thus ch(f) ≥

ch0(f)− 1
2d(f) = d(f)− 3− 1

2d(f) = 1
2 (d(f)− 6) ≥ 0.

According to Lemma 3.2–Lemma 3.7, every x of V (G×)∪
F (G×) satisfies ch(x) ≥ 0. Thus the final sum of the charges
of V (G×) ∪ F (G×) is non-negative which contradicts the
fact that it should be −6. Thus there is no counterexample
G existing which makes the Theorem 1.1 valid.

IV. PROOF OF THEOREM 1.4

We prove Theorem 1.4 by contradiction. Suppose G is
a counterexample of Theorem 1.4 with vertices as few as
possible, then G has no 4-vertices. To prove Theorem 1.4,
we need to prove Lemma 4.1 firstly.

Lemma 4.1 The minimum degree of G is at least 5.
Proof: Suppose not, G contains a vertex v with degree

less than 4. By minimality, G′ = G− v is 4-choosable. For
any list assignment L = {L(v) : |L(v)| = 4, v ∈ V (G)},
there is a function ϕL which is a 4-coloring of G′. Then
v still have |L(v) \

⋃
u∈NG× (v) ϕL(u)| ≥ 4 − 3 = 1

colors which could be used. So we can extend ϕL to G,
a contradiction.

The proof of the rest of Theorem 1.4 is done in the same
way as in Theorem 1.1, and we’re going to omit it here.
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