A Special Fractional Choosability of 1-planar Graphs Without 4- and 5-cycles

Mengjiao Li, Lei Sun* and Wei Zheng

Abstract—For a graph G given three integers $a \geq b \geq i \geq 0$ and a certain vertex subset S of $V(G)$, we say G is i-weak $(a:b)$-choosable about set S if for any list assignment L of G with the size of each list is a there is a function so that each vertex v of S is given i colors from $L(v)$ while each vertex u of $V(G) \setminus S$ is given b colors from $L(v)$ satisfying that each pair adjacent vertices have disjoint colors. In this paper, for $S = \{v : v \in V(G), a(v) = 4\}$, we prove that every 1-planar graph without 4- and 5-cycles is i-weak $(4i + i : b)$-choosable about set S. And we prove that every 1-planar graph without 4-vertices, 4- and 5-cycles is 4-choosable.

Index Terms—1-planar graph, graph, fractional choosability, discharging.

I. INTRODUCTION

A LI graphs are finite and simple in this paper. The undefined but used notations could be found in [1].

A set coloring is a function that assigns each vertex of G a color set so that none of adjacent vertices have common colors. A function L is called a list assignment for a graph $G = (V(G), E(G))$ if each vertex v of $V(G)$ is assigned a color set $L(v)$. If there is a function which is a special set coloring that assigns a b-element subset of $L(v)$ to each vertex v of G, then G admits a ($L:b$)-coloring and we say G is ($L:b$)-colorable.

If G is ($L:b$)-colorable for any list assignment $L = \{L(v) : v \in V(G)\} = a, v \in V(G)$, then G is ($a:b$)-choosable. G is ($a:b$)-colorable if G has a ($L:b$)-coloring provided that $L(v) = \{1,2,\ldots,a\}$ for each $v \in V(G)$.

It is easy to find that the ($a:b$)-choosability is more difficult to reach than the ($a:b$)-colorability. The minimum fraction $\frac{a}{b}$ such that G is ($L:b$)-colorable is called the fractional chromatic number of G denoted by $\chi_f(G)$. While G is ($a:1$)-choosable or ($a:1$)-colorable, it means that G is proper vertex a-choosable or a-colorable. Denote the minimum number a that G is proper vertex a-colorable by $\chi(G)$. Obviously, $\chi_f(G)$ is no more than $\chi(G)$ for any graph G. G is (c_1,c_2,\ldots,c_k)-colorable while there is a function $V(G) \to [k]$ such that $\Delta(G[V_i]) \leq c_i$, where $G[V_i]$ denotes the monochromatic induced subgraph of color i.

A graph which can be drawn in the plane with no two edges intersect is a planar graph. We say a graph is a 1-planar graph if it has a planar drawing so that each of its edges is crossed at most once besides its ends. Obviously, 1-planar graph is a generalization of planar graph. Such a planar drawing is called a plane graph or 1-plane graph respectively.

Steinberg conjectured that every planar graph without 4- and 5-cycles is 3-colorable in 1976 (see [2]). Though this conjecture is proved false by Addad et al. [3], there are many coloring results about planar graphs motivated by it. Borodin et al. proved that every planar graph without 4-, 7-cycles is 3-colorable in [4]. But whether any planar graphs without 4-, 5- and 6- cycles are 3-colorable is still unknown. Borodin et al. showed that every planar graph without 5- and 7-cycles and without adjacent triangles is 3-colorable (see [5]). Hill et al. [6] showed that every planar graph without 4- and 5-cycles is ($3,0,0$)-colorable, while under the same condition it is also ($2,0,0$)-colorable in [7] and is ($1,1,0$)-colorable in [8] by Chen et al. and Wu et al. respectively.

The Steinberg’s conjecture also promoted the following results about fractional coloring. Wu et al. proved that every planar graph without 4- and 6-cycles is ($7 : 2$)-colorable in [9]. Dvořák and Hu [10] showed that every planar graph without 4- and 5-cycles is ($11 : 3$)-colorable in 2019.

Different from the Four-Color Theorem, every 1-planar graph is 6-colorable (see [11]). In [12], [13], Song et al. respectively showed that every 1-planar graph is 5-colorable under the condition of without 4- and 5-cycles or without 4-cycles and adjacent 5-vertices. Chu et al. proved that every 1-planar graph with girth at least 7 is ($1,1,1,0$)-colorable in [14] and also ($2,0,0,0$)-colorable in [15]. The coloring problems of 1-planar graphs have been widely studied recently, such as equitable coloring in [16], [17], k-($2,1$)-total choosability in [18] and total coloring in [19], [20].

Let us consider a problem now. Assume we are conference sponsors who need to arrange the scheduled meetings. There are n listeners but some of them cannot attend the same meeting. Listeners who belongs to set M only need to join i meetings while the others want to take part in at least b meetings with $b \geq i$. How many meetings do we need to hold? To solve this problem, we construct a graph G with n vertices representing the listeners. Two vertices are adjacent if their corresponding listeners could not attend common meetings. Let S denote the set of vertices whose counterpart is in M. So the problem is turned to find the smallest integer a so that G is i-weak $(a:b)$-choosable about set S which is defined as following.

Based on such a problem, we defined a new coloring now. Given three integers $a \geq b \geq i \geq 0$ and a certain vertex subset S of $V(G)$, G is i-weak $(a:b)$-choosable about set S if for any list assignment L of G with the size of each list...
is a there is a function so that each vertex \(v \) of \(S \) is given \(i \) colors from \(L(v) \) while each vertex \(u \) of \(V(G) \setminus S \) is given \(b \) colors from \(L(v) \) satisfying that each pair adjacent vertices have disjoint colors. For a graph \(G \) and a list assignment \(L = \{ L(v) = \{1, 2, \ldots, a \}, v \in V(G) \} \), if \(G \) admits a function which satisfies the condition defined above about set \(S \), then we say this function is a \(i \)-weak \((a : b)\)-coloring about set \(S \) of \(G \) and \(G \) is \(i \)-weak \((a : b)\)-colorable about set \(S \).

Based on the definitions above, we mainly prove the following result.

Theorem 1.1 For \(S = \{ v : v \in V(G), d(v) = 4 \} \), every 1-planar graph without 4- and 5-cycles is \(i \)-weak \((4b + i : b)\)-choosable about set \(S \).

Corollary 1.2 and **Corollary 1.3** are special cases of **Theorem 1.1**.

Corollary 1.2 For \(S = \{ v : v \in V(G), d(v) = 4 \} \), every 1-planar graph without 4- and 5-cycles is \(i \)-weak \((4b + i : b)\)-choosable about set \(S \).

Corollary 1.3 For \(S = \{ v : v \in V(G), d(v) = 4 \} \), every 1-planar graph without 4- and 5-cycles is \(i \)-weak \((9 : 2)\)-choosable about set \(S \).

Theorem 1.4 Every 1-planar graph without 4-vertices, 4- and 5-cycles is 4-choosable.

II. Preliminaries

We say vertex \(x \) is a \(k \)-vertex or \(k^+\)-vertex if its degree is \(k \) or at least \(k \) respectively. These definitions are also applied to faces. Making any crossing of the 1-plane graph \(G \) to a 4-vertex leads to the associated plane graph \(G^x \) of \(G \). We define the vertices of \(G^x \) which do not appear in \(G \) as cross vertices, other vertices are called true vertices. The white dots and black dots shown in the following figures are respected the cross vertices and true vertices in \(G^x \) respectively.

A 4-face in \(G^x \) is ordinary or special if it is incident with exactly one or two cross vertices respectively. Let \(m_3(v) \) (resp. \(m_4(v) \)) denote the number of 3-faces (resp. special 4-faces) of \(G^x \) incident with \(v \) for any \(v \in G^x \). The existence of 4- and 5-cycles is called the impossible event.

By the definition of 1-planar graph, we can directly find the following claim.

Claim 2.1 ([21]) There are not two adjacent cross vertices in \(G^x \).

Since the absence of 4- and 5-cycles in \(G \), here comes the following claim.

Claim 2.2 The two subgraphs shown in Figure 1 could not appear in \(G^x \).

III. Proof of Theorem 1.1

We prove Theorem 1.1 by contradiction. Let \(G \) be a minimal counterexample of Theorem 1.1 which means that there is no other counterexample with vertices less than \(G \). Then \(G \) has neither of 4-, 5-cycles and \(G \) is not \(i \)-weak \((4b + i : b)\)-choosable about set \(S \). The following discussions about \(G \) in this part and the next part are all about the one we just assumed.

Lemma 3.1 The minimum degree of \(G \) is at least 5.

Proof: Suppose not, \(G \) contains a vertex \(v \) with degree no more than 4. By minimality, \(G' = G \setminus \{ v \} \) is \(i \)-weak \((4b + i : b)\)-choosable about set \(S \). For any \(L = \{ L(v) : |L(v)| = 4b + i, v \in V(G) \} \), there is an \(i \)-weak \((4b + i : b)\)-coloring \(\varphi_L \) about set \(S \) in \(G \). Let us discuss in two cases.

If \(v \) has less than 4 neighbors, then \(v \) still has \(|L(v) \setminus \bigcup_{u \in N_G(v)} \varphi_L(w)| \geq 4b+i-3b = b+i \geq b \) colors now. Otherwise \(v \) belongs to \(S \), \(v \) remains \(|L(u) \setminus \bigcup_{u \in N_G(v)} \varphi_L(w)| \geq 4b+i-4b = i \) which could be used. In either case, we can extend \(\varphi_L \) to \(G \), a contradiction.

We are going to use the discharging method on \(G^x \) to prove that no counterexample of Theorem 1.1 exists. Let us set the initial charges of \(G^x \) by \(\chi_0(v) = \frac{1}{2}d(v) - 3 \) for each vertex \(v \) of \(V(G^x) \), and \(\chi_0(f) = d(f) - 3 \) for any face \(f \) which belongs to \(F(G^x) \).

By Euler’s formula we have \(|V(G^x)| = |E(G^x)| + |F(G^x)| = 2 \), thus the following equation is established.

\[
\sum_{v \in V(G^x)} \frac{1}{2}d(v) - 3 + \sum_{f \in F(G^x)} (d(f) - 3) = -6
\]

The symbol \(\chi(x) \) denotes the final charge of any \(x \in V(G^x) \cup F(G^x) \) after the following discharging rules below. Note that the discharging rules could not change the sum of the charges of \(V(G^x) \cup F(G^x) \), thus the sum of the final charges should still be \(-6\).

\[
\sum_{x \in V(G^x) \cup F(G^x)} \chi_0(x) = \sum_{x \in V(G^x) \cup F(G^x)} \chi(x) = -6
\]

The discharging rules are given as follows.

R1. Each 4\(^+\)-face \(f \) of \(G^x \) sends to each incident cross vertex \(v \):
(a) \(1/4 \) for \(m_3(v) = 0 \).
(b) \(1/3 \) for \(m_3(v) = 1 \).
(c) \(1/2 \) for \(m_3(v) = 2 \).

R2. Each 4\(^+\)-face \(f \) of \(G^x \) sends to each incident 5-vertex \(v \):
(a) \(1/4 \) if \(f \) is an ordinary 4-face.
(b) \(1/8 \) if \(f \) is a special 4-face.
(c) \(3/8 \) if \(f \) is a 5-face.
(d) \(1/2 \) if \(f \) is a 6\(^+\)-face.

After setting the discharging rules, we are going to check the final charges of \(V(G^x) \cup F(G^x) \). Check the final charges of vertices in \(G^x \) firstly.

It is obvious that the minimum degree of \(G^x \) is at least 4 by Lemma 3.1. The following three lemmas show that \(\chi(v) \geq 0 \) for any \(v \) of \(V(G^x) \). The upper bounds of the number of 3-faces and special 4-faces incident with \(v \) are based on Claim 2.1, Claim 2.2 and the absence of 4- and 5-cycles in \(G \).

Lemma 3.2 If \(v \) is a 4-vertex of \(G^x \), then \(\chi(v) \geq 0 \).

Proof: Note that \(\chi_0(v) = -1 \) and \(m_3(v) \leq 2 \). Classify \(v \) by the number of 3-faces incident with it.

(1) If \(m_3(v) = 0 \), then \(\chi(v) = -1 + 4 \times 1/4 = 0 \) by R1(a).
Lemma 3.3 If \(v \) is a 5-vertex of \(G^x \), then \(ch(v) \geq 0 \).

Proof: Note that \(ch(v) = -1/2 \) and \(m_3(v) \leq 4 \).

(1) If \(m_3(v) = 0 \), then \(ch(v) \geq -1/2 + 5 \times 1/8 = 1/8 \geq 0 \) by \(R2 \).

(2) If \(m_3(v) = 1 \), then \(m_3(v) \leq 3 \) and \(ch(v) \geq -1/2 + 1/4 + 3 \times 1/8 = 1/8 \geq 0 \) by \(R2 \).

(3) If \(m_3(v) = 2 \), then \(m_3(v) \leq 2 \) and \(ch(v) \geq -1/2 + 1/4 + 2 \times 1/8 = 0 \) by \(R2 \).

(4) If \(m_3(v) = 3 \), then \(m_3(v) \leq 1 \).

Case 1: \(v \) is not incident with any special 4-faces.

Then we discuss the condition of the remaining unknown face \(f' \) incident with \(v \) and is neither a 3-face nor \(f \). Since \(m_3(v) = 3 \) and \(m_3(v) = 1 \), then \(f' \) is either a 5\(^{+}\)-face or an ordinary 4-face.

Case 2.1: \(f' \) is a 5\(^{+}\)-face, then \(ch(v) \geq -1/2 + 1/4 + 3 \times 1/8 = 1/8 \geq 0 \) by \(R2(a) \), \(R2(c) \) and \(R2(d) \).

Case 2.2: \(f' \) is an ordinary 4-face. Note that \(v \) is incident with \(f, f' \) and three 3-faces. Considering the two faces \(f_1, f_2 \) adjacent to \(f \) and incident with \(v, f_1 \) and \(f_2 \) are either two 3-faces or one is 3-face and another one is \(f' \). Suppose \(f_1, f \) and \(f_2 \) are counterclockwise in the plane (see Figure 2(1)).

Case 2.2.1: Both \(f_1 \) and \(f_2 \) are 3-faces. The Figure 2(2) shows that \(G \) has at least one 4-cycles.

Case 2.2.2: By symmetry, suppose \(f_1 \) is a 3-face, \(f_2 \) is \(f' \). As is shown in the Figure 2(3), one 5-face appears in \(G \).

Both the cases above contradict the fact that the impossible event could not occur. So Case 2.2 could not happen. Thus \(ch(v) \geq 0 \) for any 5-vertex with \(m_3(v) = 3 \).

Lemma 3.4 If \(v \) is a 6\(^{+}\)-vertex of \(G^x \), then \(ch(v) \geq 0 \).

Proof: There is no discharging rule about \(v \), so \(ch(v) = ch_0(v) = \frac{1}{2}d(v) - 3 = \frac{1}{2}(d(v) - 6) \geq 0 \).

The following three lemmas show that \(ch(f) \geq 0 \) for any \(f \in F(G^x) \).

Lemma 3.5 If \(f \) is a cross 4-face of \(G^x \), then \(ch(f) \geq 0 \).

Proof: Note that \(ch_0(f) = 1 \). According to Claim 2.1, \(f \) is incident with either one or two cross vertices which means that \(f \) is either ordinary or special.

(1) \(f \) is an ordinary 4-face, then the only cross vertex incident with \(f \) is not incident with any 3-faces. Otherwise, as illustrated by the following Figure 5(2-3), the impossible event happens, a contradiction.

Thus \(ch(f) \geq 1 - 1/4 - 3 \times 1/4 = 0 \) by \(R1(a) \) and \(R2(a) \).

(2) \(f \) is a special 4-face. Suppose \(v \) and \(u \) are the two cross vertices incident with \(f \). Note that each of \(v \) and \(u \) is at most incident with two 3-faces. So we discuss the number of 3-faces incident with the cross vertices \(v \) and \(u \).

Case 1: Both of \(v \) and \(u \) are incident with at most one 3-face. Then \(ch(f) \geq 1 - 2 \times 1/3 - 2 \times 1/8 = 1/12 \geq 0 \) by \(R1(a) \), \(R1(b) \) and \(R2(b) \).

Case 2: One of \(v \) and \(u \) is incident with two 3-faces. In general, suppose \(v \) is such a vertex. Then \(u \) could not incident with a 3-face as the Figure 6(2-4) show below. Otherwise no matter how the 3-face incident with \(u \) appears, the impossible event happens, a contradiction.

Then \(ch(f) \geq 1 - 1/4 - 1/2 - 2 \times 1/8 = 0 \) by \(R1(a), R1(c) \) and \(R2(b) \).
Figure 6 $d(f) = 4$, $m_3(v) = 2$

Lemma 3.6 If f is a 5-face of G^*, then $ch(f) \geq 0$.

Proof: Note that $ch_0(f) = 2$. According to Claim 2.1, there are less than three cross vertices incident with f.

1. There is exactly one cross vertex v incident with f shown in Figure 7(1). In this case, $m_3(v) \leq 1$. If not, Figure 7(2) shows that a 5-cycle will occur in G. $ch(f) \geq 2 - 1/3 - 4 \times 3/8 = 1/6 > 0$ by $R1(a)$, $R1(b)$ and $R2(c)$.

2. There are exactly two cross vertices v and u incident with f.

Case 1: $m_3(v) \leq 1$ and $m_3(u) \leq 1$. $ch(f) \geq 2 - 2 \times 1/3 - 3 \times 3/8 = 5/24 > 0$ by $R1(a)$, $R1(b)$ and $R2(c)$.

Case 2: Generally suppose v is incident with two 3-faces, then $m_3(u) \leq 1$. Otherwise, G will contain a 5-cycle, as shown in Figures 8(2-3) and 8(5-6). Thus $ch(f) \geq 2 - 1/3 - 1/2 - 3 \times 3/8 = 1/24 > 0$ by $R1(a)$, $R1(b)$ and $R2(c)$.

Figure 7 $d(f) = 5$, f has exactly one cross vertex v

Figure 8 $d(f) = 5$, $m_3(v) = 2$

Lemma 3.7 If f is a 6^+-face of G^*, then $ch(f) \geq 0$.

Proof: By the discharging rules, f sends at most $1/2$ charges to each of its incident vertices. Thus $ch(f) \geq ch_0(f) - \frac{1}{2}d(f) = d(f) - 3 - \frac{1}{2}d(f) = \frac{1}{2}(d(f) - 6) \geq 0$.

According to Lemma 3.2–Lemma 3.7, every x of $V(G^*) \cup F(G^*)$ satisfies $ch(x) \geq 0$. Thus the final sum of the charges of $V(G^*) \cup F(G^*)$ is non-negative which contradicts the fact that it should be -6. Thus there is no counterexample G existing which makes the Theorem 1.1 valid.

IV. PROOF OF THEOREM 1.4

We prove Theorem 1.4 by contradiction. Suppose G is a counterexample of Theorem 1.4 with vertices as few as possible, then G has no 4-vertices. To prove Theorem 1.4, we need to prove Lemma 4.1 firstly.

Lemma 4.1 The minimum degree of G is at least 5.

Proof: Suppose not, G contains a vertex v with degree less than 4. By minimality, $G' = G - v$ is 4-choosable. For any list assignment $L = \{L(v) : |L(v)| = 4, v \in V(G)\}$, there is a function φ_L which is a 4-coloring of G'. Then v still have $|L(v) \setminus \bigcup_{u \in N_G(v)} \varphi_L(u)| \geq 4 - 3 = 1$ colors which could be used. So we can extend φ_L to G, a contradiction.

The proof of the rest of Theorem 1.4 is done in the same way as in Theorem 1.1, and we’re going to omit it here.

REFERENCES

