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Abstract—The present article is a theoretical attempt to
perceive an analytical solution of an incompressible micropolar
fluid through a non-Newtonian liquid sphere by adopting
Mehta-Morse boundary condition. The framework of the flow is
divided into two regions in which the non-Newtonian character-
istic of Reiner-Rivlin liquid regulates the inner flow. However,
the micropolar fluid keeping the microlevel properties of the
fluid, regulates the outer flow surrounding the Reiner-Rivlin
liquid sphere. An asymptotic series expansion involving the
stream functions in terms of non-dimensional parameter S has
been employed to derive the expression of the flow field for the
Reiner-Rivlin liquid; however, an analytical expression has been
derived for outer flow involving modified Bessel functions and
Gagenbauer’s polynomials. The graphical analysis demonstrat-
ing the superior outcomes of numerous parameters like cross-
viscosity, solid volume fraction, micropolar parameter, and the
coupling number on the drag coefficient are conducted, and
outcomes are discussed comprehensively. The notable detection
of the present work is that the drag is more resistance for
an impermeable sphere as compared to a Reiner-Rivlin liquid
sphere. With the rising value of permeability parameter, a
continuous reduction in the drag force experienced by the
sphere is observed however, an increasing value of the coupling
number contributes to increase in the drag force experienced
by sphere. The findings of the present work may leave valuable
outcomes in analyzing the considerable industrial and clinical
applications such as petroleum reservoir rocks, filtration process
for wastewater treatment, and the flow of blood through
the lungs, and the design of the digestive system. However,
experimental verification is required for the proposed work.

Index Terms—Reiner-Rivlin liquid, Brinkman equation, Mi-
cropolar parameter, Axisymmetric flow, Coupling number, Drag
force.

I. INTRODUCTION

F LUID mechanics has recently undergone new devel-
opments, mostly focusing on the structures within a

fluid. Newtonian law does not hold suitable for natural
calamities, for example, volcanic lava, and for industrial
applications such as include fluids, polymer fluids, drilling
mud, cosmetics, food products, and exotic lubricants. Hence
researchers across the globe have started to work on di-
verse flow problems, which are associated with several non-
Newtonian fluids.
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The simplest theory considered for structural fluid is
the micropolar theory attributed to Eringen [4] who de-
veloped the fluid mechanics in an article entitled “Simple
Microfluids”. Micropolar fluids sustain couple stresses and
body couples and show microrotational effects and inertia
of microrotation. As the consequence of simple microfluids,
he [5] developed a sub-class of fluids which is known as
micropolar fluids that ignore microelement deformation but
still allow micro-motion of the particle. The problem related
to micropolar fluid with low Reynolds number flow through
the solid sphere was solved by Rao and Rao [12] in which
they found that the drag is higher in the case of micropolar
fluid than that on a Newtonian fluid sphere. The drag of
an axially symmetric body in viscous flow whose general
expression was studied by Ramkissonon and Majumadar
[9]. Neifer and Kaloni [8] explored the problems in two
sections, in one section, the motion of the clear fluid through
the micropolar fluid, and in the other section, the motion
of the micropolar fluid through the clear fluid. Selvi [14]
studied the analytical solution of micropolar fluid through
a non-Newtonian fluid enclosed by porous medium. They
concluded that the non-Newtonian liquid sphere is greater
resistance to compare than classical fluid resistance. Selvi
[15] researched the drag experienced on flow within the
Reiner-Rivlin liquid sphere.

The cell model technique is a valuable tool to analyze
the flow through a swarm of particles of even nano-size
as it is complicated to apply the traditional methods of
reflection, etcetera to study the flow through such cases.
This method considers randomly oriented particles through
which the flow is to be analyzed. Instead of reviewing every
particle, an identical particle confined within a hypotheti-
cal cell is chosen. The importance of the cell surface is
that the suitable boundary conditions on the cell surface
are imposed, which considers the effect of other particles
on the particle concerned. In this way, despite ignoring
the other particles, we take into account the interaction
of these particles on the particle-in-cell. Specific boundary
conditions were recommended at the imaginary surface of
the cell model. One of the real-time practical applications
is to monitor blood flow through the arterial wall. Mehta
and Morse [7] considered as the most important boundary
condition as we are much fascinated by the flow behavior
on a large scale. Non-Newtonian liquid sphere in a spherical
container was obtained by Ramkissoon and Rahaman [11].
They found the drag exerted by the outer sphere. Saad [13]
analysed the problem of a (micropolar fluid) non-Newtonian
liquid through a clear fluid sphere with the help of cell
models. Shukla [18] solved the problem of a non-Newtonian
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fluid past a coated film with no spin boundary condition.
To the excellent and informative knowledge of authors and
beliefs, the mathematical equations governing the flow of
a Reiner-Rivlin liquid sphere enfolded in the micropolar
fluid involving the Mehta-Morse boundary condition have
not been solved earlier.

In the proposed work, the analytical expressions have been
executed to understand the flow of micropolar fluid through
a non-Newtonian nature of Reiner-Rivlin liquid by taking the
Mehta-Morse/Cunningham condition. The asymptotic series
expansions in terms of stream functions have been utilized
to solve the governing equation regulating the inner flow
of Reiner-Rivlin fluid. Due to the presence of microlevel
properties in the micropolar fluid, the coupled equations in
terms of velocity and angular velocity of the micropolar fluid
have been analytically derived for suitable boundary condi-
tions involving the modified Bessel functions and Gagen-
bauers polynomials. The expressions for drag force and drag
coefficient have been established. The drag force and drag
coefficient dependence on the numerous parameters such as
micropolar parameter, coupling number, dimensionless pa-
rameter S, and the volume fraction are presented pictorially.
A comparative analysis has been done replicating in the
bounded and unbounded medium of micropolar fluid through
a Reiner-Rivlin liquid sphere. These results are compared
with the corresponding earlier results.

The proposed study is separated into VII sections in
which Section- II includes the model description and prob-
lem formulation describing the statement of the problem,
governing equations, non-dimensionalization, and their so-
lutions. Section- III demonstrates the appropriate boundary
conditions delineating the conditions on the inner surface
and the hypothetical cell surface. Section- IV reveals the
calculations of the hydrodynamical quantities like drag force
and drag coefficient. The limiting cases of the present study
are discussed in Section- V. Based on the mathematical
expressions of the flow quantities and numerical values of the
parameters, Section- VI deals with the graphical analysis of
the remarkable outputs. Section- VII delineates the summary
and primary determinations of the present study.

II. PROBLEM FORMULATION AND MODEL
DESCRIPTION

A. Statement of the Problem and Model Description

The flow of non-Newtonian characteristic of Reiner-Rivlin
fluid sphere of radius ′a′ embedded in the micropolar fluid
of radius ′b′ is shown in Fig. 1. The flow pattern is taken
as steady, asymmetric, and incompressible by neglecting the
body force and couple. The particle geometry is considered
as a sphere, and hence the spherical polar coordinate sys-
tems (r, θ, φ) have been utilized to formulate the governing
equations for micropolar and Reiner-Rivlin fluids. The char-
acteristic (uniform) velocity U acting along the Z−direction
of the fluid flow while taking O as the origin of the sphere
is demonstrated in Fig. 1. The flow regime is separated into
two regions: Region-I keeping (a ≤ r ≤ b) reveals the flow
of non-Newtonian Reiner-Rivlin fluid inside the micropolar
fluid, and Region-II keeping (r ≤ a) replicates the flow of
micropolar fluid outside the Reiner-Rivlin liquid sphere. The
radius ′b′ of the hypothetical cell is chosen as the ratio of

particle to cell volume and is equal to the particle volume
fraction γ.

a

b

O

Z

UZ

I

II

Fig. 1. Schematic representation motion of Reiner-Rivlin liquid cell of
radius a covered by a micropolar fluid cell of radius b.

B. Governing Equations

The equations governing the flow of micropolar fluid for
outer region are described below

∇× ~q(1) = 0, (1)

κ∇× ~ω(1) − (µ1 + κ)∇×∇× ~q(1) = ∇p(1), (2)

(α+β+γ)∇(∇.~ω(1))+κ∇×~q(1)−γ∇×∇×~ω(1) = 2κ~ω(1),
(3)

where p and ~q are flow parameters of the micropolar fluid
describing the pressure, and velocity vector, respectively, κ
denotes vertex viscosity and ~ω(1) referred as microrotation
vector. The following inequalities are satisfied which has
already been reported by Srinivascharya and Rajyalakshmi
[17],

κ ≥ 0, 3α+β+γ ≥ 0, 2µ1+κ ≥ 0, γ ≥ |β (4)

For region II, the state equations for the isotropic non-
Newtonian liquid is described as below

τij = −p(2)δij + 2µ2dij + µcdikdkj , (5)

where µ2 is the apparent viscosity coefficient, and dij =
1
2

(
u
(2)
ij + u

(2)
j,i

)
. τij denotes the stress tensor, µc represents

a cross viscosity of Reiner-Rivlin liquid. However, p(2) is
pressure, and δij denotes the Kronecker delta, respectively.

In order to find the solution of equations regulating the
flow Reiner-Rivlin liquid embedded in the micropolar fluid,
the following dimensionless variables are introduced. The
dimensional and non-dimensional quantities/parameters are
expressed with and without the tilde symbols, respectively.
The non-dimensional variables are expressed in the following
form:

R = ar, qθ = Uqθ , qR = Uqr , dij =
U

a
dij ,

τij = µi
U

a
τij , ψ = Ua2ψ, p = µi

U

a
p, (6)

where U is the current velocity flow mentioned above.
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The stream function operates independently of the azimu-
tal angle φ in all regions: ψ = ψ(r, θ) as the flow is axially
symmetric.

q(i) = q(i)r (r, θ)er + q
(i)
θ (r, θ)eθ, (7)

The equations regulating the flow are coupled and complex
to solve directly. In order to ensure the simplicity of the
governing equations, the stream function and their derivatives
are introduced in the following forms:

qθ =
1

r sin θ

∂ψ

∂r
and qr = −

1

r2 sin θ

∂ψ

∂θ
(8)

The pressure has been excluded from Eq. (2), for this reason
the equation for the stream function in Region- I is derived
as below

E4(E2 −m2)ψ(1) = 0, (9)

where E2 = ∂
∂r2 + sin θ

r2
∂
∂θ

(
1

sin θ
∂
∂θ

)
is the Stokes operator,

m2 = a2κ(2µ1+κ)
γ(µ1+κ)

is the micropolar parameter describing the
microrotation of the fluid particle and N = µ1

µ1+κ
, (0 ≤ N ≤

1) is the coupling number.
The analytical solution for the external flow field is ob-

tained as

ψ(1)(r, ζ) =
[
A1r

2 +
B1

r
+ C1r

4 +D1r +

E1y−2(mr) + F1y2(mr)
]
G2(ζ), (10)

where A1, B1, C1, D1, E1 and F1 are arbitrary constants.
The functions y−2(mr) and y2(mr) are the modified Bessel
functions and G2(ζ) is the Gagenbauer’s polynomial.

Using Eq. (3), the microspin component is obtained below

v
(1)
φ =

1

2r sin θ

[
E2ψ(1) +

γ(µ1 + κ)

κ2
E4ψ(1)

]
(11)

By entering the values of ψ(1) into Eq. (11) the microrotation
component is obtained under.

v
(1)
φ =

1

2

[
5C1r −D1r

−2 +
m2

N

(
E1y−2(mr) +

F1y2(mr)
)]

sin θ. (12)

The solutions for the pressure and the stream function within
the liquid core (the Reiner-Rivlin droplet) are very difficult
to find analytically. To determine the asymptotic solutions
for the stream function and the pressure, the power series
expansions in terms of the small parameter S are introduced
in the following form:

ψ(2) = ψ0+ψ1S+ψ2S
2+. . . , p(2) = p0+p1S+p2S

2+....
(13)

Ramkissoon [10] has already derived the differential equa-
tions for the zeroth ψ0, first ψ1 and second ψ2 order stream
functions

E4ψ0 = 0, E4ψ1 = 8r sin2 θ cos θ, E4ψ2 =
32

3
r2 sin2 θ,

(14)
Partial solutions of Eq.(14) may be represented as

ψ0 = (r4 − r2) sin2 θ, ψ1 =
2

21
r5 sin2 θ cos θ,

ψ2 =
2

63
r6 sin2 θ. (15)

Ramkissoon [10] demonstrated that the flow within the
sphere containing a Reiner-Rivlin liquid. The stream function
is given with the following expression:

ψ(2)(r, ζ) = ψ0+ψ1S+ψ2S
2+
∞∑
n=2

[
anr

n + bnr
n+2
]
Gn(ζ).

(16)
After substituting of the expressions of stream functions
ψ0, ψ1, ψ2 into Eq. (16), the explicit expression of stream
function ψ2 is derived in terms of Gagenbauer’s polynomial

ψ(2)(r, ζ) =
[
(a2 − 2)r2 + (b2 + 2)r4 +

4

63
S2r6

]
G2(ζ) +

[
a3r

3 + (b3 +
4

21
S)r5

]
G3(ζ) +

∞∑
n=4

[
anr

n + bnr
n+2
]
Gn(ζ). (17)

III. BOUNDARY CONDITIONS

In order to find out the closed form of the solutions by
eliminating the arbitrary constants, the suitable boundary
conditions are specified on the inner and hypothetical cell
surfaces. The unknown constants involved in the solutions
(Eqs. (10) and (17)) for the stream functions can be deter-
mined from the following boundary conditions.

A. Conditions on the inner surface at r = a

No penetration, the continuous tangential velocities and
the continuity of tangential stresses are considered on the
inner surface of the cell at r = a as follows

q(1)r = 0 i.e., ψ
(1)
θ = 0. (18)

q(2)r = 0 i.e., ψ
(2)
θ = 0. (19)

q
(1)
θ = q

(2)
θ i.e., ψ(1)

r = ψ(2)
r . (20)

and the continuity of the shear stresses τ (1)rθ = τ
(2)
rθ which is

equivalent to the mathematical expression given below

−λ (2−N)

1−N
∂ψ(1)

∂r
+

λ

1−N
∂2ψ(1)

∂r2
= −2∂ψ

(2)

∂r
+
∂2ψ(2)

∂r2
(21)

The no-spin condition on the micro-rotation velocity is
considered, i.e.,

v
(1)
φ = 0. (22)

B. Conditions on the hypothetical cell surface at r = l( ba )

The conditions on the hypothetical cell surface are defined
as

q(1)r = cos θ, i.e.,
∂ψ(1)

∂θ
= r2 sin θ cos θ, (23)

Mehta and Morse [7] assumed homogeneity on the cell
surface,

q
(1)
θ = − sin θ i.e.,

∂ψ(1)

∂r
= r sin2 θ. (24)

Introducing all the boundary conditions from the Eqs. (18) to
(24) into the Eqs. (10) and (17), the solutions of the equations
governing the flow of non-Newtonian Reiner-Rivlin fluid
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embedded in micropolar fluid are reduced into the following
algebraic linear equations:

A1 +B1 + C1 +D1 + E1y−2(m) + F1y2(m) = 0, (25)

a2 + b2 =
−4
63
S2, (26)

2A1 −B1 + 4C1 +D1 + E1

[
m2y−1(m)− y−2(m)

]
+

F1

[
m2y1(m)− y2(m)

]
− 2a2 − 4b2 = 4 +

8

21
S2, (27)

λ

1−N

[
A1(−2 + 2N) +B1(4−N) + C1(4 + 4N) +

D1(−2 +N) + E1

(
(4−N +m2)y−2(m) +

y−1(m)(−2m2 +m2N)
)
+ F1

(
(4−N +m2)y2(m) +

y1(m)(−2m2 +m2N)
)]

+ 2a2 − 4b2 = 12 +
8

7
S2, (28)

5C1 −D1 +
m2

N
[E1y−2(m) + F1y2(m)] = 0, (29)

A1l
2+B1l

−1+C1l
4+D1l+E1y−2(ml)+F1y2(ml) = l2,

(30)

2A1l −B1l
−2 + 4C1l

3 +D1 + E1

(
m2y−1(ml)− l−1

y−2(ml)
)
+ F1

(
m2y1(ml)− l−1y2(ml)

)
= 2l, (31)

5C1l −D1l
−2 +

m2

N
[E1y−2(ml) + F1y2(ml)] = 0. (32)

The set of Eqs. (25) to (32) are solved using the Mathe-
matica software. The analytical expressions are obtained for
all unknown constants A1, B1, C1, D1, E1, F1, a2, b2. These
expressions are not presented here because of their cum-
bersomeness. Thus the non-dimensional stream functions in
regions I and II can be written respectively like Eq. (10)

ψ(1)(r, ζ) =
[
A1r

2 +
B1

r
+ C1r

4 +D1r + E1y−2(mr) +

F1y2(mr)
]
G2(ζ), 1 ≤ r ≤ γ−1 (33)

and

ψ(2)(r, ζ) =
[
(a2 − 2)r2 + (b2 + 2)r4 +

4

63
S2r6

]
G2(ζ) +

[
a3r

3 + (b3 +
4

21
S)r5

]
G3(ζ) +

∞∑
n=4

[
anr

n + bnr
n+2
]
Gn(ζ). r ≤ 1 (34)

IV. CALCULATION OF THE DRAG FORCE

The drag force F exerted on a micropolar fluid sphere
is estimated using the formula described by Srinivasacharya
and Murthy [16]

F = 2πU(2µ1 + κ)α2 lim
r→∞

r3
[ψ(1) − ψ(1)

∞

ω̃2

]
, (35)

where ψ(1)
∞ = 1

2Ur
2 sin2 θ and ω̃ = r sin θ.

Evaluating the above formula we found that

F = 2πUa(2µ1 + κ)α2D1. (36)

The drag coefficient DN is determined by the following
expression:

DN =
F

−2πµ1Ua
, (37)

DN =
2πUa(2µ1 + κ)α2D1

−2πµ1Ua
, (38)

DN = (2µ1 + κ)α2D1. (39)

V. LIMITING CASES:

Case- I: If l→ 0, m→ 0, N → 0, then in the case of
unbounded medium, the micropolar fluid sphere becomes a
Reiner-Rivlin liquid sphere. The force applied to the droplet
is obtained as,

F =
−2aπUµ1

3(1 + λ)

[
32

63
S2 + 6λ+ 9

]
, λ = µ1/µ2, (40)

where the expression of the force agreed with the result
obtained by Ramkissoon [10].
Case- II: If m → ∞, N → 0, then in case of spherical
container, the micropolar fluid turns into a perfect Reiner-
Rivlin spherical liquid. The force applied to the droplet is
obtained as,

F =

8aπUµ1

[
16S2

(
2− 5γ + 3γ5/3

)
+ 189

(
3 + 3γ5/3(−1 + γ) + 2λ

) ]

189
(
−1 + γ1/3

)3 [4γ(−1 + λ) + 4(1 + λ) + γ2/3

(−3 + 6λ) + γ1/3(3 + 6λ)

] ,
(41)

where the equation (41) is previously derived by Ramkissoon
and Rahaman [11].
Case(III): If S → 0, then the Reiner-Rivlin liquid sphere
behaves like a clear fluid sphere of radius ′a′ in an infinite
expanse, and hence the expression of drag force is obtained
as

F =
8πµ1Ua[3 + 2λ+ 3γ5/3(−1 + λ)]

(−1 + γ1/3)3

[
4γ(−1 + λ) + 4(1 + λ)

+ γ2/3.(−3 + 6λ) + γ1/3(3 + 6λ)

] ,
(42)

where the equation (42) is obtained earlier by Jaiswal and
Gupta [6].
Case- IV: If λ→ 0, then the Reiner-Rivlin spherical liquid
sphere becomes a impermeable and solid sphere, Thus the
expression of the drag force is obtained as

F =
24πµ1Ua[1 + γ1/3 + γ2/3 + γ + γ4/3](
−1 + γ1/3

)3
(4 + 7γ1/3 + 4γ2/3)

, (43)

where the force agreed with the result obtained by Mehta
and Morse [7].

Case- V: If γ → 0, the drag on a solid sphere of
radius ′a′ in an infinite expanse of fluid is given as

F = 24πµ1Ua. (44)

The earlier result is shown by Stokes [19].
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Fig. 2. Plot of non-dimensional drag DN versus the cross-viscosity S for
several aspect of the solid volume fraction γ

VI. RESULTS AND DISCUSSION

The analytical expressions of the drag force and drag
coefficients are derived for the flow a Reiner-Rivlin liquid
sphere embedded in a micropolar fluid sphere with zero-
spin and Mehta-Morse boundary conditions. The impact
of m(micropolar parameter), N (coupling number), cross-
viscosity S and the viscosity coefficient λ on the drag
coefficient for each of the problem are described and its
variations are depicted in Figs. 2-5.

The impact of particle volume fraction γ on the drag coef-
ficient DN with the dimensionless cross-viscosity S is shown
in Fig. 2 while keeping the fixed values of other parameters
like m (micropolar parameter), viscosity coefficient λ, N
(coupling number). It is perceived from the figure that an
increase in the dimensionless cross-viscosity parameter S,
the drag coefficient slightly increases for different values of
the particle volume fraction γ. It is also noticed that a rising
particle volume fraction enhances the drag coefficient DN .
This physically means that as the particle volume fraction
increases, the fluid viscosity increases, and hence the fluid
resistance increases due to the higher viscosity. It is important
aspect to notice that for every corresponding small values of
separation parameter, the drag effects on it is almost constant
over the entire range of cross-viscosity. Here, the specific
value of cross-viscosity (S = 0) replicates that the case of
Newtonian fluid.

Fig. 3 demonstrates the effect of viscosity coefficient λ
on the drag coefficient DN with cross-viscosity parameter
S. The drag increases slightly as dimensionless parameter
increases which can explicitly seen from the figure. It is
perceived from the figure that the drag increases gradually
with increasing values of S between 0 and 1 and growth
rate is slightly higher for smaller viscosity ratio (λ = 0.0).
It is also noticed that a rapid reduction is observed with
rising viscosity ratio and the reduction rate become smaller
for larger viscosity ratio λ. When λ = 0, it behaves as
rigid sphere and the effective viscosity is the same as the
clear viscosity when λ = 1. Physically it implies that the
relative viscosity keeps on increasing the drag coefficient gets
reduced. It’s noteworthy to note that the drag experienced by
a Reiner-Rivlin liquid sphere is less resistive than the drag
experienced by a rigid spherical.

Λ=0

Λ=0 .5 Λ=1
Λ=1 .5

0.0 0.5 1.0 1.5 2.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

S

D
N

Fig. 3. The graph of dimensionless drag DN with cross-viscosity S for
different values of classical viscosity ratio λ.
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Fig. 4. Dependence of drag DN versus the solid volume fraction γ for
several aspect of coupling number N .
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Fig. 5. Variation of drag DN versus the micropolar parameter m for
different values of the coupling number N .

The impact of coupling number N on the drag coeffi-
cient with particle volume fraction is illustrated in Fig. 4.
It is observed that an increasing particle volume fraction
contributes to enhance the drag coefficient gradually for the
lower and moderate values of the particle volume fraction
however a rapid growth in drag coefficient is observed
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for larger particle volume fraction (0.65 ≤ γ ≤ 1.0).
It is also noted that a rising coupling parameter leads to
enhance the drag coefficient DN for particle volume fraction
(0.65 ≤ γ ≤ 1.0). For smaller and moderate values of
separation parameter γ, the drag increases gradually with
equal amount for all values of coupling number N . It is a
remarkable observation that the drag of Reiner-Rivlin liquid
sphere is comparatively low when compared with the drag
of micropolar fluid sphere.

The dimensionless drag DN with micropolar parameter
m is demonstrated in Fig. 5 for different values of coupling
parameter N . It is observed that as the micropolar parameter
increases, the drag decreases and the rate of decrement is
higher for larger coupling number. Another observation is
that an enhancement in the value of the drag coefficient is
perceived with rising coupling number for the fixed value
of the micropolar parameter which manifests that an effect
of microlevel parameters leads to significant enhancement
in microrotational viscosity. The non-dimensional drag co-
efficient, on the other hand, grows rapidly as the coupling
number N increases, and the liquid sphere experiences more
drag as vortex viscosity increases. It is also notice that the
drag shows nonlinear behaviour with a coupling number for
higher values of the coupling parameter N except N = 0.01.

VII. SUMMARY AND CONCLUDING REMARKS

The flow of non-Newtonian behavior of Reiner-Rivlin fluid
sphere embedded in the micropolar fluid has been studied in
the present work by considering the zero-spin and Mehta-
Morse conditions on the surface of the liquid sphere.The
mathematical equations governing the flow of micropolar
fluid enfolded over the non-Newtonian Reiner-Rivlin liquid
are solved using an asymptotic series expansion in terms
of the non-dimensional parameter S and hence the expres-
sions of drag force and drag coefficients are demonstrated
in closed form of m (micropolar parameter), N (coupling
number), separation parameter γ, cross-viscosity S and the
viscosity coefficient λ. Graphical representation revealing the
significant results of non-dimensional drag force and drag
coefficient on the cell surface are shown and explained in
detail. The characteristic of the flow quantities are analyzed
by comparing the numerical values of the drag with the
particular parameters.

The following remarkable observations are pointed out and
mentioned below:

1) It is perceived that the drag coefficient DN is higher
for the micropolar fluid sphere in comparison to the
Reiner-Rivlin liquid sphere.

2) Additionally, it has been found that a liquid Reiner-
Rivlin sphere’s drag coefficient DN is significantly
lower than that of a permeable sphere.

3) It is observed that the particle volume fraction in-
creases, the fluid viscosity increases and hence the fluid
resistance increases due to the higher viscosity.

These results drawn here could be of substantial influence
to explore the critical industrial and clinical applications like
petroleum reservoir rocks, filtration process for wastewater
treatment, physiological fluid flow through lungs and the
design of the digestive system. The present work is required
to validate experimentally for future development of the
clinical or filtration processes.
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