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Abstract—School bus routing problem (SBRP) has been
studied for decades. Many successful approaches based on
heuristics or metaheuristics have been developed for various
SBRP problems. However, developing an effective algorithm
for SBRP is still a very challenging task. This paper developed
a Q-learning-based selection hyper-heuristic to solve basic and
open single-school SBRP problems, which both aim to minimize
the total travel distance. The proposed algorithm took a Q-
learning algorithm as the high-level strategy to select a low-
level heuristic from a set of low-level heuristics, which are
dependent on the problem domain. The selected low-level
heuristic was regarded as an action and then executed to
improve the current solution. In each stage of the optimization
process, the best action with the best cumulative rewards will
be chosen to get better results. The presented algorithm was
implemented and some experiments were carried out on some
Capacitated vehicle routing problem (CVRP) instances and
SBRP benchmark instances. Experiment results on two types
of instances demonstrate that our proposed hyper-heuristic
algorithm is more competition than existing approaches.

Index Terms—Q-learning, hyper-heuristic, school bus routing
problem, vehicle routing, heuristic.

I. INTRODUCTION

PROVIDING a safe, reliable, and low-cost school bus
transportation system for the students in compulsory

education is the main problem faced by school administrators
and school bus service providers. However, planning a school
bus routing system is very complex and challengeable. On
one hand, school bus routes planning involves many factors
such as schools, bus stations, students, school buses, and
road networks. On the other hand, the differences in problem
characteristics and planning objectives in the practical appli-
cation will also lead to more complex problems. Therefore,
the development of an efficient route generation algorithm is
still the focus of current research [1].

School bus routing problem (SBRP) is closely related to
vehicle routing problem (VRP), which also can be considered
as an application branch of VRP. SBRP aims to find an
optimal scheduling plan, which uses a fleet of school buses to
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pick up the students from the bus stations and send them to
the designated school or send the students from their school
to the bus stations while satisfying the bus capacity, school
time windows and other constraints. SBRP is a well-known
NP-hard combinatorial optimization problem. Since provided
by [2], SBRP has been widely studied. The recent review of
SBRP could be seen in [3] and [4].

The commonly used solution approaches for SBRP consist
of exact algorithm, heuristic algorithm, and metaheuristic
algorithm [3]. Exact algorithms such as dynamic program-
ming, column generation and cutting planes, can solve small-
scale instances optimally, but they are very time-consuming.
For middle or large problems, heuristic and metaheuristic
approaches are utilized. Traditional heuristic methods are
commonly used to obtain an initial solution or improve the
solution by using some neighborhood operators. Metaheuris-
tics have a special scheme to avoid trapping local optima,
and they can find a near-optimal solution in a logical time.
The metaheuristics include iterated local search (ILS), hill-
climbing, simulated annealing, genetic algorithm, ant colony
optimization, and so on. Metaheuristics or hybrid metaheuris-
tics have been widely used in SBRP [4],[5],[6],[7],[8].

The successful algorithms mentioned above have greatly
promoted the development of research on SBRP problems.
However, metaheuristics trend to be problem-specific based
on the No-free-lunch theorem [9]. The well-designed algo-
rithm for a certain SBRP problem is difficult to solve another
SBRP problem, because it needs to be redesigned to get
better performance. Furthermore, the algorithm inevitably
requires complex parameter settings and adjustments. Thus,
it is very important and meaningful to develop a unified
effective methods for SBRP problems in various application
scenarios.

Hyper-heuristic is a general-purpose heuristic algorithm,
which uses a high-level strategy (HLS) to conduct a set of
low-level heuristics (LLH). The hyper-heuristic manipulates
a set of pre-designed low-level heuristics instead of oper-
ating directly on solutions [10]. It has the advantages of
simple parameter tuning, easy design and implementation.
For hyper-heuristic, LLH is dependent on the problem do-
main and HLS is responsible for managing or manipulating
intelligently existing low-level heuristics to solve problems.
Hyper-heuristic can solve cross-domain problems and various
variants of the same problem [10],[11]. Recently, some
hyper-heuristic algorithms have been applied to solve VRP
problems [12],[13],[14]. It shows the hyper-heuristic has the
potential to solve SBRP, because SBRP is regarded as a
special variant of VRP.

This paper tries to design a selection hyper-heuristic
algorithm (denoted as HHQL), which can solve the route
planning problem for a single-school SBRP. The selection
method based on Q-learning [15] is used to choose the
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low-level heuristics, and a Montel Carlo acceptance rule is
used to accept the neighborhood solution obtained by the
selected low-level heuristic. The proposed algorithm is tested
on benchmark instances, and the experimental results reveal
that our proposed algorithm can find a good solution in a
limited time and has good stability.

The rest of the paper is organized as follows. Section
II describes the research problem in this paper. Section III
introduces the Q-learning algorithm. The designed hyper-
heuristic algorithm is shown in section IV. Computational
experiments and results analysis are given in Section V.
Finally, Section VI summarizes this paper and draws a
conclusion.

II. PROBLEM DESCRIPTION

In this paper, we focus on a homogeneous single-school
SBRP in different application scenarios. There are two kinds
of single-school SBRP problems. For a basic single-school
SBRP, all the school buses return to the depart station
after they serve all the students. It is a variant of classical
capacitated VRP (CVRP). When the school buses do not
return to the depart station, the single-school SBRP is a case
of open VRP. In this paper, we take the basic single-school
SBRP and open single-school SBRP into account.

We assume that the school node is the depart station. There
are a set of buses located at the school, and the fleet types
of them are the same. For anyone school bus, it has a certain
capacity. There are some students at every student station.
When the school bus serves the student station, it needs
some service time related to the number of students. For
any two nodes, there is a travel cost between them. The
constraints are defined as follows. Every school bus starts
from the school and ends at the school node or other position.
The student station must be served only once by a school
bus. At any time, the total number of students on the bus
must not exceed the capacity of the school bus. For every
student, his riding time on the bus must be less than or equal
to the constraint of maximum student’s riding time. For a
school bus transportation system, the cost is the first and main
objective considered by buses service providers. Because
the purchase cost of school buses is given in advance,
the daily operation cost that is the total travel distance is
mainly considered. Therefore, the optimization objective is
to minimize the total travel distance. The formulation of this
problem is similar to the model that was built in [4].

III. Q-LEARNING ALGORITHM

Q-learning is one of the most efficient methods of rein-
forcement learning techniques [15]. Q-learning is made up of
five components, which are agent, environment, state, action,
and reward. The agent interacts with the environment, where
the agent can select actions, and the environment gives a
response to the agent. The interaction process will execute it-
eratively until it reaches a final state. Q-learning aims to learn
the value of state-action pair called Q-value. For every state-
action pair, Q(s, a) represents the expected reward for state s
and action a respectively. Assume that S = {s1, s2, ..., sn}
is a set of possible states, A = {a1, a2, ..., am} denotes a
set of actions that can be selected. At state st, the agent
performs the action at, and then the immediate reinforcement

reward rt will be obtained. The learning rate α is a number
between 0 and 1, which is used to balance exploration and
exploitation. γ is a discount factor, which represents the
influence of future rewards. The Q-table stores cumulative
rewards that are used to evaluate the best state-action pair.
The Q-value at time t denotes Qt(st, at), and the value of
Qt+1(st, at) is computed by a Q-functions as in the equation
(1).

Qt+1(st, at) = Qt(st, at) + α{rt+
γargmaxQt+1(st+1, a)−Qt(st, at)}

(1)

As mentioned above, the function structure of the Q-
learning can be descried in the following.

(1) Initialize the Q-value randomly or zero for each state-
action pair.

(2) Denote the current state as st.
(3) Choose an action at using the action strategy.
(4) Execute the selected action at, receive the reward rt

and determine the next state st+1.
(5) Update the value of Qt+1(st, at) using the equation(1).
(6) Set St = St+1, and then go to step(3) until the

termination condition is satisfied.

IV. PROPOSED HYPER-HEURISTIC ALGORITHM

In this section, we will describe the Q-learning-based
hyper-heuristic for solving the single-school SBRP. First, the
overall framework of our proposed hyper-heuristic algorith-
m is described. Then, a set of problem-specific low-level
heuristics are designed which are used as the actions in the Q-
learning algorithm. Finally, we introduce the implementation
of the high-level strategy, including the action selection
method, reward evaluation function, and neighborhood ac-
ceptance rule.

A. Overall Description of HHQL

The proposed hyper-heuristic HHQL is a single-solution-
based hyper-heuristic. The HHQL algorithm starts with an
initial solution, and iteratively chooses a low-level heuristic
to execute, and then decides to accept or reject the solution
found by the selected low-level heuristic during the opti-
mization process. Thus, the key to HHQL is the design of
low-level heuristics, selection strategy and acceptance rules.
Algorithm 1 describes the overall framework of HHQL.

In Algorithm 1, step (1) and (2) initialize the values of
parameters. The initial solution is obtained by the cheapest
insertion method in step (3). The main loop of the proposed
algorithm is step (4) ∼ step (28), which consists of three
phases. In the first phase, an action will be chosen by the ε-
greedy selection strategy in step (5) ∼ step (9). The selected
action, that is, low-level heuristic is executed during an
episode. Then the global best solution will also be updated
in the second phase, which is described in step (10) ∼ step
(21). Additionally, when the low-level heuristic based on
ruin-and-recreate principle is chosen, the execution procedure
of it must be take the destruction factor and the maximum
trail number into account. At the last phase, the state-action
pair Qt+1(st, at) are calculated and the current state will
be updated from step (22) to step (26). These three phases
will be literately executed until the algorithm meets the
termination condition.
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Algorithm 1 HHQL
Input: the maximum iteration maxiter, the neighbor list

size nb, learning rate α, the discount factor γ, the length
of episode ep, the destruction factor ρ and maximum trail
number iter.
Output: the best solution S∗.
1: S = S∗ = NULL; Initialize the set of state and action

list A; Set iteration number t = 1; ε = 0.9;
2: Initialize the value of every state-action pair in Q table

to zero;
3: Get an initialization solution S by cheapest insertion

method;
4: while t≤maxiter do
5: if random number rand < ε then
6: select an action at randomly from A;
7: else
8: select an action at with the max Q-value at current

state st in the Q-table;
9: end if

10: for int j = 0; j < ep; j ++ do
11: if at is ruin-and-recreate low-level heuristic then
12: Sn =AppliedLLH(S, at, nb, ρ, iter);
13: else
14: Sn =AppliedLLH(S, at, nb);
15: end if
16: if Sn meets the acceptance rule then
17: accept Sn, at the same time update the global

best solution S∗;
18: else
19: reject Sn;
20: end if
21: end for
22: calculate the reward r and get the next state st+1;
23: find the maximum value of Qt(st+1, a) of all the

actions, ∀a ∈ A;
24: update the learning rate α;
25: update the Qt+1(st, at) value by the equation(1) and

set st = st+1;
26: S = Sn;
27: t++;
28: end while

B. Actions

The low-level heuristic is dependent on the solving prob-
lem, with affects the efficiency of the hyper-heuristic algo-
rithm. For single-school SBRP, we design seven simple and
easy-to-implement heuristics to improve the neighborhood
solution. The set of low-level heuristics are made up of
six regular neighborhood operators and one neighborhood
operator based on the ruin-and-recreate principle. These low-
level heuristics are regarded as different actions in the Q-
learning algorithm. Additionally, every low-level heuristics
must be used to produce a feasible solution without violating
any constraints.

The seven low-level heuristics are described in the follow-
ing. For some low-level heuristics, they include inter-route
and intra-route two operations. The intra-route operation
does not require checking the constraints, and the inter-
route operation must be check the constraints and produce
a feasible solution. Meanwhile, to illustrate the function of

these low-level heuristics, we take two routes R1 {0-1-2-3-4-
5-s} and R2 {0-6-7-8-9-s} as examples. In the route, 0 and
s indicate the depot and the school respectively, the other
numbers represent the student stations.

(1) One-point-move (LLH1): Remove one student station
from a route and then insert it into another position of the
same route or another route. For example, if the student
station 1 is removed and then inserted behind the student
station 3 on the same route R1, the route R1 is changed into
R

′

1 {0-2-3-1-4-5-s}. If the student station 1 is shifted from
route R1 to the behind student station 7 on the route R2. The
routes R1 and R2 will change into R

′

1 {0-2-3-4-5-s} and R
′

2

{0-6-7-1-8-9-s}.
(2) Two-point-swap (LLH2): Select two different student

stations from the same route or two different routes, and
swap them. When we exchange two student stations 2 and 4
in the route R1, the new route is R

′

1 { 0-1-4-3-2-5-s }. We
select the station 3 from route R1 and station 7 from R2 and
then swap them. The new routes R

′

1 and R
′

2 are denoted as
{ 0-1-2-7-4-5-s } and {0-6-3-8-9-s}.

(3) 2-opt (LLH3): From a route, select two non-adjacent
edges, reverse the nodes between the two edges, and then
generate a new route. Suppose two edges 0-1 and 4-5 on the
route R1 are broken, and the new route R

′

1 is {0-1-3-2-4-5-
s} after the use of the 2-opt operation.

(4) Cross (LLH4): For two different routes, select an edge
from each route, and then cross them. For example, we cross
the edge 2-3 on the route R1 and edge 7-8 on the route R2,
and the new routes are changed into R

′

1 {0-1-2-8-9-s} and
R

′

2 {0-6-7-3-4-5-s}.
(5) Or-opt (LLH5): Remove some student stations from

one route and then insert them into another route. The
number of student stations is usually an integer number
between 2 and 4. Suppose the number of shifted stations
is 2. When we shift stations 1 and 2 behind station 4 on the
route R1, the new route R

′

1 is {0-3-4-1-2-5-s}. When these
two stations are shifted into behind station 8 on the route
R2, the two routes are changed into R

′

1 {0-3-4-5-s} and R
′

2

{0-6-7-8-1-2-9-s}.
(6) Two-edge-swap (LLH6): Select two edges from two

different routes, and swap them to generate two new routes.
For example, we swap the edge 2-3 on the route R1 and
edge 7-8 on the route R2, the new routes are changed into
R

′

1 {0-1-7-8-4-5-s} and R
′

2 {0-6-2-3-9-s}.
(7) Ruin-and-recreate (LLH7): For a solution, the ruin

procedure is first executed, which selects some stations and
then removes them from the current solution to get a partial
solution. In the repair procedure, it tries to insert the removed
stations into the partial solution to get a whole solution. The
example of ruin-and-recreate low-level heuristic is shown in
Fig. 1. As shown in Fig. 1(a), the original solution is made
up of three routes, which includes 9 student stations. When
the stations 1, 4, 5, 7 are removed from the solution, the
partial solution is generated shown in Fig. 1(b). Then the
removed stations are reinserted into the partial solution to
procedure a whole solution (Fig. 1(c)).

The parameters of the ruin-and-recreate heuristic consist
of the maximization iteration number and the degree of
destruction. In general, the degree of destruction is a number
between 0 and 1, which determines the number of removed
stations. The destroy procedure and repair procedure will be
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Fig. 1. an example of ruin-and-recreate low-level heuristic

iteratively executed many times until it meets the termination
condition. This low-level heuristic can enlarge the solution
space, which helps to find better neighborhood solutions.

C. Action Selection Strategy

In the learning process, a suitable action selection strategy
can effectively balance exploration and exploitation. We use
the ε-greedy policy to choose the action, which is defined in
equation (2), Where k is a random number with [0, 1]. When
k is smaller than ε, the action will be randomly selected
from the action list. Otherwise, the action which makes the
Q-value Q(st, at) having the largest value, is selected. The
value of ε is dynamically changed by equation (3), where
tc is the current evaluation, and tmax is the total evaluation
time.

at =

{
random, k < ε

argmaxQ(st, a), ∀a ∈ A, k ≥ ε
(2)

ε = 1− tc
tmax

(3)

D. Reward Function

In Q-learning, the environment will respond a reinforce-
ment signal, after an action was executed. The reinforcement
signal r can be used to evaluate the performance of an
action. For SBRP studied in this paper, minimizing the total
travel distance is the main optimization objective. Thus, the
improved degree of objective value can be a measure of
evaluation. We use the improvement percentage defined in
equation (4) as the reward or penalty signal.

r =
fnew − fcur

fcur
× 100 (4)

Where fcur is the objective value before executing the
action, fnew is the fitness of the new obtained solution by
the low-level heuristic.

E. Q-function Parameters

There are two parameters in the Q-function defined in
equation (1), and they are learning rate α and discount
factor γ. For learning rate α, it represents the probability
of accepting new information or maintaining the existing
information. If α is a high value, it means that the new infor-
mation tends to replace the existing information; Otherwise,
it encourages more exploitation on the existing information.

Inspired by [16], we also dynamically control the value of
α by the equation (5). The value of the learning rate α
will be decreased to encourage more exploitation during the
optimization process.

α = 1− (0.9× tc
tmax

) (5)

The discount factor γ denotes the influence of the long-
term reward. A high γ value shows that the future rewards
are more important than the current reward. If γ is low, the
learning process will be more concerned about the current
reward. In our proposed HHQL, the value γ is set to 0.8
after some experiments.

F. Acceptance Mechanism

The acceptance mechanism determines to accept or refuse
the new solution found by the selected low-level heuristic,
which is an action. To keep the diversity of solutions, we
adopt Montel Carlo acceptance rules [17] to evaluate the
new solution, which is a kind of non-deterministic acceptance
rule. If the new solution outperforms the current solution, it
is always accepted. The worse solutions that will be accepted
must meet the equation (6).

k < e−δ, k ∈ [0, 1] (6)

Where k is a random number between 0 and 1, δ is the
change of objective value between the current solution and
the new solution. Equation (6) indicates the worse solution
will be accepted with a certain probability. As the objective
value of the solution reduces, the probability of accepting a
worse solution will decrease.

V. COMPUTATIONAL EXPERIMENTS

In this section, we conduct some experiments to evaluate
the effectiveness of our proposed algorithm. First, we take the
traditional CVRP with the standard benchmarks to verify the
performance of the HHQL algorithm, because the problem
issued in this paper is the same as the CVRP problem by up-
dating the constraints condition. Then, we solve the SBRP by
HHQL and compare it with some SBRP algorithms. Finally,
we evaluate the performance of learning mechanism. The
proposed algorithm was implemented based on the SBRP
framework proposed by [22] and executed on a computer
with an i7-6700 central processing unit at 3.4GHz and 8GB
RAM.
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A. Parameter Settings
In the proposed algorithm, many parameters need to be

determined to get the best result. The maximization iteration
number maxiter is set to 1000, the size of neighborhood list
nb is set to 30. When the problem scale is smaller than 30,
nb is the number of stations. The destruction factor ρ in
the ruin-and-recreate low-level heuristic is set to 0.2 and the
max trail number iter is 50. For Q-learning, there are four
parameters including the learning factor α, discount factor γ
, episode ep , and ε-greedy ε. The initial value of learning
factor α and parameter ε are set to 1 and 0.9 respectively. The
value of learning factor α and ε both are updated dynamically
during the optimization process. After some experiments, the
discount factor γ and the length of episode ep are set to 0.8
and 5 separately.

B. Experiment Results on CVRP
In this part, we modified the proposed algorithm to fit

the CVRP by setting the service time of every student
station to zero and ignoring the maximum ridding time
constraint. We selected two groups of standard benchmark
instances to investigate the effectiveness of the proposed
HHQL algorithm. The first group of instances is the same as
that used in [18], which is composed of three instances from
Set A [19], two instances from Set B [19] and seven CMT
instances [20]. The second group of instances have twelve
instances from Set E [19]. These benchmark instances can be
downloaded from the website (https://neo.lcc.uma.es). Each
instance is executed 10 times.

TABLE I shows the result of instances in the first group
obtained by our proposed algorithm and the other three
algorithms, which are ACO&DE [18], LNS-ACO [21], and
ILS [22] respectively. The columns Stops and BKS are the
problem scale and the best-known solution. The column
Best denotes the best solution obtained by the corresponding
algorithm. Column Gap is the deviation percentage of the
best solution and the best-known solution. The results shown
in bold represent the best-known solution.

As shown in TABLE I, the HHQL outperforms other
three algorithms, and the average deviation is just 0.43%.
Among these algorithms, the performance of the ACO&DE
algorithm is the worst. The LNS-ACO and ILS algorithms
have the same average deviation of 0.47%. For the five
small instances, all the algorithms can find the best-known
solutions. While for the seven CMT instances, although
the LNS-ACO can get 5 best-known solutions, the average
deviation of all the instances is higher than the HHQL
algorithm. The results reveal that the HHQL algorithm has
good adaptability.

Next, we executed the HHQL algorithm to solve the Set
E instances. Besides, we also compared it with the state-
of-art CVRP algorithms, such as SC-ESA [23], LNS-ACO
[21], CVRP-FA [24], ILS [22], SA [25], and ISA-CO [26].
The results of instances in set E are shown in TABLE II. In
TABLE II, column BKS represents the best-known solutions,
and other columns denote the deviation percentage relative
to the best-known solution by the algorithms. If the value of
the deviation percentage is null, it means that the value does
not be provided by the corresponding literature. Meanwhile,
the results shown in bold indicate the algorithm find the best-
known solution of the corresponding instance.

Fig. 2. the success rate of all the algorithms on set E

We can find from the TABLE II and Fig. 2 that the HHQL
obtain the lowest average deviation value, just only 0.08%.
Among these algorithms, the algorithms such as SC-ESA,
LNS-ACO, CVRP-FA and ILS obtain 4 best-known solutions
of 8 instances, and their success rate is 0.5. The SA algorithm
finds 3 best-known solutions of 9 instances, whose success
rate is 0.44. The ISA-CO and HHQL both solve 11 instances,
and their success rates are 0.55 and 0.82 respectively. From
these results, we can conclude that our proposed algorithm
is effective.

C. Experiment Results on SBRP

In this section, we evaluate the performance of the pro-
posed algorithm solving for SBRP. The difference between
the SBRP issued in this paper and CVRP is that each
stop station has a service time estimated by the number
of students, expect for the students maximum ridding time
constraints. This maximum ridding time constraint requires
that the ridding time on the school bus of each student cannot
exceed a predefined value. We use 12 benchmark instances
proposed by [4] to test HHQL. In simple terms, the capacity
of school bus is 66 and the speed of bus is 20 mile per hour.
The maximum riding time is 2700 s, and the total distance
are represented in miles.

To evaluate the performance of the HHQL algorithm,
we compared it with two state-of-the-art single-solution
metaheuristics: iterated local search (ILS) [22] and variable
neighborhood search (VNS) [27]. For a fair comparison, we
re-implemented these two metaheuristics algorithms based
on the same SBRP framework [22]. They had the same
parameters settings as the HHQL algorithm, and were also
executed on the same computer. In additional, they used
the same neighborhood operators as the low-level heuristics
designed in HHQL. Because the computation time of three
algorithms were basically the same, the computation time
did not compare each other no longer.

First, we employed the HHQL algorithm to solve the
basic SBRP, in which each school bus starts from the depot
and ends to the school after it serves students. TABLE III
shows the results obtained by the proposed algorithm and
two single-solution metaheuristics including ILS [22] and
VNS [27]. Columns Stops denotes the problem scale of the
instance. Columns TD and AvgTD are the total travel distance
and the average total travel distance. Columns G1 and G2
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TABLE I
RESULTS ON THE FIRST GROUP OF INSTANCES

Instance Stops BKS
ACO&DE LNS-ACO ILS HHQL

Best Gap(%) Best Gap(%) Best Gap(%) Best Gap(%)

A-n32-k5 32 784 784 0.00 784 0.00 784 0.00 784 0.00
A-n33-k5 33 661 661 0.00 661 0.00 661 0.00 661 0.00
A-n33-k6 33 742 742 0.00 742 0.00 742 0.00 742 0.00
B-n31-k5 31 672 672 0.00 672 0.00 672 0.00 672 0.00
B-n34-k5 34 788 788 0.00 788 0.00 788 0.00 788 0.00

CMT1 50 524.61 524.61 0.00 524.61 0.00 524.61 0.00 524.61 0.00
CMT2 75 835.26 841.38 0.73 835.26 0.00 835.26 0.00 835.26 0.00
CMT3 100 826.14 832.62 0.78 826.14 0.00 827.39 0.15 827.39 0.15
CMT4 150 1028.42 1048.33 1.94 1046.90 1.80 1038.51 0.98 1035.71 0.71
CMT5 200 1291.45 1314.24 1.76 1341.40 3.87 1343.51 4.03 1341.71 3.89
CMT11 120 1042.11 1056.26 1.36 1042.11 0.00 1047.08 0.48 1046.45 0.42
CMT12 100 819.56 835.25 1.91 819.56 0.00 819.56 0.00 819.56 0.00
Average 834.55 841.64 0.71 840.25 0.47 840.25 0.47 839.81 0.43

TABLE II
RESULTS ON THE SECOND GROUP OF INSTANCES

Instance Stops BKS SC-ESA LNS-ACO CVRP-FA ILS SA ISA-CO HHQL

E-n22-k4 22 375 0.00 0.00 0.00 0.00 1.60 0.00 0.00

E-n23-k3 23 569 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E-n30-k4 30 503 0.00 0.00 0.59 0.00 0.00 0.00

E-n33-k4 33 835 0.48 0.00 0.00 0.00 0.00 0.00 0.00

E-n51-k5 51 521 0.00 0.00 0.00 0.00

E-n76-k7 76 682 2.05 1.91 0.15 0.44 2.20 0.15 0.00

E-n76-k8 76 735 1.09 1.22 0.27 2.40 0.00 0.00

E-n76-k10 76 830 0.60 0.00 0.36 0.12

E-n76-k14 76 1021 0.00 0.88 0.78 1.76 2.45 0.29 0.00

E-n101-k8 101 815 2.21 0.25 0.00

E-n101-k14 101 1067 1.41 1.41 1.03 1.31 0.75

Average 0.63 0.68 0.27 0.44 1.21 0.21 0.08

TABLE III
RESULTS OF THE BASIC SBRP

Instance Stops
ILS VNS HHQL Gap(%)

TD AvgTD TD AvgTD TD AvgTD G1 G2

C01 70 363.00 370.11 363.17 370.33 362.71 363.93 0.08 0.13

C02 35 245.58 245.60 245.58 249.15 245.58 245.58 0.00 0.00

C03 30 202.98 203.45 202.98 204.29 202.19 202.19 0.39 0.39

C04 23 143.22 143.33 143.22 143.31 143.22 143.22 0.00 0.00

C05 75 385.68 392.79 386.49 391.25 385.67 386.17 0.00 0.21

C06 17 101.83 102.00 101.83 101.98 101.83 101.83 0.00 0.00

R01 38 185.73 190.88 185.77 186.22 185.73 185.73 0.00 0.02

R02 40 193.18 194.62 193.33 195.44 193.18 193.18 0.00 0.08

R03 51 214.92 217.22 214.91 219.01 214.91 215.48 0.00 0.00

R04 35 215.22 218.82 215.22 219.03 215.22 215.22 0.00 0.00

R05 42 189.67 192.35 189.67 190.55 189.29 189.29 0.20 0.20

R06 44 186.30 194.34 186.99 190.98 185.77 185.77 0.29 0.65

Average 41.67 218.94 222.13 219.10 221.79 218.78 218.97 0.08 0.14
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TABLE IV
RESULTS OF OPEN BI-OBJECTIVE SBRP

Instance
ILS VNS HHQL

N TD N TD N TD

C01 16 194.52 16 194.90 16 194.27
C02 12 126.66 12 126.66 12 126.66
C03 9 104.82 10 104.22 9 104.82
C04 7 74.04 7 74.04 7 74.04
C05 18 203.65 18 203.65 18 203.65
C06 6 53.38 6 53.49 6 53.38
R01 9 103.19 10 97.19 9 103.19
R02 9 104.81 9 107.02 9 104.81
R03 13 119.78 13 118.31 13 118.31
R04 10 115.59 10 115.59 10 115.59
R05 9 102.24 9 102.24 9 102.24
R06 9 101.42 9 101.81 9 100.42

Average 10.58 117.01 10.75 116.59 10.58 116.78

indicate the improve percentage of HHQ compared with ILS
and VNS algorithms respectively.

As reported in TABLE III, the HHQL algorithm has the
lowest average total travel distance among of three algo-
rithms. Compared with ILS and VNS, the HHQL algorithm
decreased the total travel distance by 0.08% and 0.14% on
average. For 12 instances, the HHQL algorithm finds 12 best
solutions, while the ILS algorithm and VNS algorithm get 6
and 4 best solutions respectively. Furthermore, for the HHQL
algorithm, there are 8 instances whose best solution is equals
to the average solution. It can be seen that HHQL is very
stable.

Further, we used our algorithm to solve the open SBRP, in
which each bus need not return to the school. There are two
kinds of solutions for open SBRP. One is to first minimize the
number of routes and then reduce the total travel distance in
the process of optimization. It means that the routes number
objective has higher priority than the total travel distance
objective. The other is to directly obtain the solution with the
lowest total travel distance. Thus, we carried out experiments
on these two cases respectively.

TABLE IV and TABLE V give the results of three
algorithms on two open SBRP problems. Columns N and
TD represent the total route number and total travel distance
respectively. Columns G1 and G2 denote the improvement
percentage of the HHQL algorithm compared with the ILS
algorithm and the VNS algorithm respectively.

We can have some findings from the TABLE IV and TA-
BLE V. For an open bi-objective SBRP, the HHQL algorithm
and ILS algorithm can both find best total route number
when the total route number objective is the first optimization
objective. The average total route number of them are both
10.58, which is better than that of the VNS algorithm.
The HHQL algorithm finds lower total travel distance on
average than the ILS algorithm, when they have the same
route numbers. Thus, the HHQL algorithm outperforms the
ILS algorithm and VNS algorithms. For an open SBRP just
considering the total travel distance optimization objective,
the HHQL algorithm still has the lowest average total travel
distance. Compared with the ILS algorithm and the VNS al-
gorithm, the HHQL algorithm improves by 0.48% and 0.67%

TABLE V
RESULTS OF OPEN SBRP WITH ONE OPTIMIZATION OBJECTIVE

Instance ILS VNS HHQL G1(%) G2(%)

C01 194.47 198.34 194.27 0.10 2.05

C02 126.66 126.74 126.66 0.00 0.07

C03 104.22 104.31 104.22 0.00 0.08

C04 74.04 74.04 74.04 0.00 0.00

C05 203.65 204.23 203.65 0.00 0.29

C06 53.54 53.44 52.29 2.33 2.14

R01 96.23 97.71 96.23 0.00 1.51

R02 103.71 103.71 103.71 0.00 0.00

R03 118.31 120.24 117.96 0.30 1.90

R04 115.59 115.59 115.59 0.00 0.00

R05 102.24 101.13 101.13 1.09 0.00

R06 101.81 99.83 99.83 1.95 0.00

Average 116.21 116.61 115.80 0.48 0.67

Fig. 3. the number of best solutions found by three algorithms

respectively. For instance C06, the maximum improvement
percentages are separately 2.33% and 2.14%. All in all,
these results on two tables demonstrate the effectiveness and
performance of our proposed algorithm.

Further, we calculated the number of best solutions ob-
tained by three algorithms on three types of SBRP problems.
The results are shown in Fig. 3. Seen from the Fig. 3, the
HHQL finds all the best solutions of three SBRP problems
and the success rates are 1. While for ILS and VNS, the ILS
algorithm is better than the VNS algorithm, whose maximal
success rate is 0.75. In total, the HHQL algorithm is very
effective.

D. Performance Analysis of Q-learning Mechanism

In this section, we evaluate the performance of Q-learning
mechanism used in our proposed algorithm. First, we con-
structed two algorithms named as HHSR and HHRW, which
employed random selection strategy and roulette wheel selec-
tion strategy to select low-level heuristics respectively. The
two algorithms differed from the HHQL algroithm only in
the selection strategy. Second, we conducted an experiments
on two CVRP instance sets,including the instances (denoted
as group1) in TABLE I and those (denoted as group2) in
TABLE II. Finally, we used these two algorithms to solve
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(a) success rate (b) average deviation

Fig. 4. success rate and average deviation of three algorithms on two groups

TABLE VI
COMPARISON OF THREE ALGORITHMS ON DIFFERENT INDICATORS

Problem Type Indicator HHSR HHRW HHQL

basic SBRP ATD 219.24 219.19 218.78

bi-objective open SBRP
AN 10.83 10.83 10.58

ATD 116.37 116.43 116.78

open SBRP ATD 115.93 11.5.94 115.8

three types of SBRP problems and recorded the experiment
results.

Fig. 4 shows the success rate and average deviation of
three algorithms on two instances sets. As shown in Fig. 4,
the HHQL algorithm has the highest success rate, which are
0.82 and 0.67 respectively. The HHSR algorithm and HHRW
algorithm have the same success rate, which represents that
they have the same ability to find the best-known solutions.
While for the average deviation, the HHQL algorithm also
outperforms other two algorithms.

Furthermore, we adapted average route number (AN) and
average total distance (ATD) two indicators to show the
performance of these three algorithms on three types of
SBRP problems. The results are shown in TABLE VI. As
reported in TABLE VI, the HHQL still outperforms the
HHSR algorithm and HHRW algorithm. For basic SBRP
problem and open SBRP problem, the HHQL algorithm finds
the best average total distance. While for bi-objective open
SBRP problem, the HHQL algorithm finds the best average
route number. For three types of SBRP problems, the HHQL
algorithm is more competitive than other algorithms.

In general, the HHQL algorithm uses the Q-learning
algorithm to select the best suitable low-level heuristic at
each iteration, which can take advantage of the historical
performance of them. Meanwhile, the Q-learning algorithm
also directs the hyper-heuristic algorithm toward the direction
of the best solution avoiding uncertainty and randomness in
the search of the algorithm.

VI. CONCLUSION

This paper proposed a selection hyper-heuristic (HHQL)
for single-school SBRP with two different problem charac-
teristics. The proposed algorithm adapted a Q-learning algo-
rithm, which is a kind of reinforcement learning algorithm,

as high-level strategy to manage a set of problem-dependent
low-level heuristics. The low-level heuristic, which is con-
sidered as an action, with maximum reward will be chosen to
improve the solution at the stage of optimization process. The
HHQL is first used to solve the CVRP, and the experiment
results show that HHQL outperforms other state-of-the-art
CVRP algorithms. For two single-school SBRP problems,
the HHQL algorithm also has better performance compared
with existing SBRP metaheuristics. Additionally, the exper-
iment results also reveal that the Q-learning-based selection
strategy used in the proposed algorithm is more competitive
than random selection and roulette wheel selection strategies.

In future, we will do more works to improve the effec-
tiveness of our proposed algorithm. At the same time, we
will extend the proposed algorithm to other complex SBRP
problems.
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[26] İ. Ïlhan, “An improved simulated annealing algorithm with crossover
operator for capacitated vehicle routing problem,” Swarm and Evolu-
tionary Computation, vol. 64, 100911, 2021.

[27] P. Hansen, N. Mladenovic, “Variable neighborhood search: principles
and applications,” European Journal of Operational Research, vol. 130,
no. 3, pp. 449-467, 2001.

IAENG International Journal of Applied Mathematics, 52:4, IJAM_52_4_08

Volume 52, Issue 4: December 2022

 
______________________________________________________________________________________ 




