
 

 
Abstract—This paper demonstrates a novel simple 

metaheuristic algorithm, the cone search (CS). This name 
comes from the distinct strategy of CS in searching the sub-
optimal solution. In the early iteration, its local search space is 
wide to facilitate exploration. The local search space is reduced 
linearly during the iteration so that the exploration changes to 
exploitation gradually. As a swarm intelligence, CS contains 
several autonomous agents and a collective intelligence called 
memory. This memory consists of several best solutions. In this 
work, CS is challenged to find the global optimal of 23 
benchmark functions. In the simulation, CS is compared with 
four metaheuristic algorithms: particle swarm optimization 
(PSO), marine-predators algorithm (MPA), Komodo mlipir 
algorithm (KMA), and pelican optimization algorithm (POA). 
The result shows that CS performs well in solving these 23 
functions. Moreover, it can find the global optimal of six fixed-
dimension multimodal functions: Branin, six hump camel, 
Hartman 6, Shekel 5, Shekel 7, and Goldstein price. CS beats 
PSO, MPA, KMA, and POA in solving 23, 22, 21, 22 functions 
respectively. 
 

Index Terms—Metaheuristic, multi-agent, optimization, 
swarm intelligence. 
 

I. INTRODUCTION 

ETAHEURISTIC method is an approximate and 
stochastic based method that has been used 

extensively in many optimization problems, such as 
manufacturing, transportation, education, and so on. As an 
optimization method, its objective is to find the optimal 
solution within the solution space. In recent days, there are a 
lot of of metaheuristic algorithms. Every algorithm has its 
own strategy. Some algorithms are inherited or modified 
from the previous algorithms. 

Ironically, there are two criticisms due to the massive 
development of new metaheuristic algorithms. The first 
critic is the use of metaphors, especially nature-based 
metaphors [1]. The use of metaphors might hide the true 
novel strategy of the algorithm. The second critic is beating 
competition among algorithms [2]. 

In the early era of metaheuristic algorithms, the 
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development of algorithms was not so massive as today. 
Several well-known algorithms were developed during this 
period, such as evolutionary programming [3], genetic 
algorithm [4], simulated annealing [5], tabu search [6], 
particle swarm optimization [7], ant colony optimization [8], 
variable neighborhood search [9], and so on. There is a clear 
distinction among these algorithms although only a few 
algorithms were proposed in this period. From 2000 to 2010, 
the adoption of metaphors triggered many researchers to 
propose metaphors-based algorithms. There were many 
nature-inspired algorithms during this period, such as sheep-
flocks heredity model [10], bacterial foraging optimization 
[11], invasive weed optimization [12], cat swarm 
optimization [13], firefly algorithm [14], paddy field 
algorithm [15], and so on. After 2010, there was a huge 
blow in the use of animals as metaphors of the algorithms. 
Several animal names were adopted as name of algorithms, 
such as wolf [16], penguins [17], grey wolf [18], chicken 
[19], buffalo [20], lion [21], dolphin [22], and so on. Besides 
animal and plant, several algorithms used other nature 
mechanics as metaphors, such as water [23], virus [24], 
cloud [25], gravity [26], and so on. 

In the earlier era, many studies in metaheuristic 
algorithms focused on the objective. The main objectives of 
metaheuristic algorithm are to find the sub-optimal solution 
[27] and to escape from the local optimal trap [28]. This 
consideration is based on the nature of metaheuristic 
algorithm that adopts stochastic approach. As a stochastic-
based algorithm, it does not ensure that the global optimal 
solution can be found [29]. This circumstance is different 
from the exact method where the global optimal solution is 
guaranteed to find [29]. Fortunately, the metaheuristic 
method is powerful and flexible enough to solve the large 
problem space and complex problems where the exact 
method is impossible to conduct because of the excessive 
computational consumption [29]. In metaheuristic 
algorithm, a better solution is found during the iteration. 

The local optimal trap is a classic problem in 
metaheuristic studies. In general, improvement is still 
conducted in the metaheuristic process if the new solution is 
better than the current one. This improvement is usually 
called intensification or exploitation [30]. Local search is 
commonly used in this phase. The optimal solution is 
assumed to be found if a better solution cannot be found. 
Unfortunately, in many problems, namely multimodal or 
non-convex problems, the problem space contains many 
optimal solutions [31]. One solution is the global optimal 
solution while others are local optimal [31]. Diversification 
or exploration avoids this trap by finding other alternatives 
within the problem space [30]. 

As explained previously, many shortcoming algorithms 
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focused on beating other previous algorithms rather than 
proposing new ways in finding the sub optimal solution and 
escaping from the local optimal. The examples are as 
follows. Suyanto et al. [32] compared his proposed 
algorithm, the komodo mlipir algorithm (KMA), with 
genetic algorithm (GA), success-history based parameter 
adaptation differential evolution (SHADE), equilibrium 
optimizer (EO), marine-predators algorithm (MPA), and 
slime mold algorithm (SMA). Dehghani et al. [33] proposed 
a dart game optimizer (DGO) and compared it with GA, 
particle swarm optimization (PSO), gravitational search 
algorithm (GSA), teaching learning-based optimization 
(TLBO), grey wolf optimizer (GOA), whale optimization 
algorithm (WOA), and MPA [33]. Dehghani et al. [34] 
proposed shell game optimization (SGO) and compared its 
performance with GA, PSO, GSA, TLBO, spotted hyena 
optimizer (SHO), and emperor penguin optimizer (EPO). 
From these three examples, it is shown that GA is a favorite 
algorithm to beat.  

The popularity of old-fashioned algorithm, such as GA, 
SA, and PSO, is still high although they were beaten many 
times by many shortcoming algorithms. Many studies in 
optimization still use these algorithms today. These 
algorithms were improved, modified, and combined with 
other algorithms many times and implemented in many 
areas. Many studies were conducted in improving the GA in 
its certain operators: encoding, selection, crossover, or 
mutation [35]. GA has many variants, such as binary GA 
[36] and non-dominated sorting GA (NSGA II) [37]. 

SA is the other example of an efficient and easy to 
implement algorithm [38]. Many studies were conducted to 
modify this algorithm. Several examples of its modified 
version are cloud-theory based simulated annealing [39], 
curious simulated annealing [38], fast simulated annealing 
[40], and sequential Monte Carlo simulated annealing [41].  

PSO is the other old-fashioned algorithm that is widely 
used and modified until today. In its original form, its 
strategy is very simple. There are several agents or particles 
that fly within the solution space to find a better solution 
[42]. Its movement depends on its location and speed. Its 
next speed is determined by four aspects: current speed, 
local best solution, global best solution, and certain 
probabilistic value [42]. PSO has several variants, such as 
cooperative PSO [43], adaptive PSO [44], and multi-
objective PSO [45]. 

Based on this explanation, studies to develop 
metaheuristic algorithm is still challenging. Meanwhile, 
hiding behind metaphors should be avoided. Moreover, 
proposing a simple algorithm may be better so that it can be 
implemented and improved widely rather than proposing a 
complex algorithm. 

This work proposes a metaheuristic optimization model in 
which diversification and intensification are conducted 
based on the iteration. In the beginning, diversification is 
conducted. The diversification is reduced gradually as the 
iteration increases. On the other side, the intensification is 
conducted gradually. This mechanism is conducted by 
setting the observation range wide enough in the 
initialization phase. Then, this observation range is reduced 
linearly until the lowest observation range is reached. 

CS is a swarm-based intelligence. The system contains 

several agents [46]. Each agent works autonomously. 
Meanwhile, there is a centralized collective intelligence that 
is shared among agents [46]. 

The remainder of this paper is organized as follows. The 
model of CS, which consists of conceptual model, 
mathematical model, and the algorithm is explained in 
section two. The simulation was conducted to evaluate the 
performance of CS, and the result is described in section 
three. Section four discusses a deeper analysis due to the 
simulation result and the findings. This work is then 
summarized and concluded in section five. 

II. PROPOSED MODEL 

A. Conceptual Model 

Cone search is a metaheuristic algorithm that adopts 
swarm intelligence. It contains several agents whose 
objective is to find the best solution. Each agent finds the 
better solution by finding an alternative solution within its 
observation range. The observation range must be inside the 
search space or problem space.  

The illustration of the agent’s observation range and the 
search space is shown in Fig. 1. Fig. 1 illustrates a single 
dimension search space. In Fig. 1, the search space is wide 
enough. Contrary, the agent’s observation range is narrow 
so that it cannot cover the whole search space. The agent’s 
location is in the middle of the agent’s observation range. 
 

 
Fig. 1.  Illustration of the observation range and the search space. 
 

The observation range size is dynamic during the 
iteration. In the beginning, the observation range is wide. 
Then, it decreases linearly during the iteration. The 
observation range is narrow when the maximum iteration is 
reached. The motivation of this mechanism is as follows. In 
the beginning, the algorithm focuses on diversification. That 
is why the observation range should be wide enough to 
obtain any possible solutions. A wide observation range is 
also designed to avoid local optimal trap in the early 
iteration period.  

Intensification is conducted gradually as the iteration 
goes. Narrower observation range is designed to limit the 
possible solution and achieve convergence The algorithm 
focuses on improving the solution by searching for possible 
alternatives near the current solution. This strategy becomes 
the main concept of CS and main distinction with other 
metaheuristic algorithms. The illustration of this dynamic 
observation range is shown in Fig. 2.  
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Fig. 2. Dynamic observation range. 
 

This strategy is very different from many common 
algorithms. In general, iteration does not correlate with 
diversification or intensification. The example is as follows. 
In PSO, intensification and diversification are conducted 
simultaneously by combining the local best and global best 
in single formulae to determine the agent’s movement [7]. 
In invasive weed optimization, intensification and 
diversification are conducted simultaneously in every 
iteration by spreading new weed within the problem space 
based on normal distribution [12]. In GA, intensification and 
diversification are conducted in every iteration. The cross-
over represents the intensification, while mutation represents 
the diversification [4]. 

Simulated annealing (SA) is an algorithm in which 
iteration affects the diversification. In SA, diversification is 
easy to conduct in early iteration when the temperature is 
still high [5]. Diversification becomes more difficult as the 
iteration declines. In SA, diversification is conducted by 
accepting a worse solution by certain probabilistic 
calculations [5].  

Each agent generates several candidates in every iteration. 
These candidates are uniformly distributed within the 
agent’s current observation range. Then, the fitness score of 
these candidates is calculated based on the fitness function. 
The candidate whose fitness score is the best becomes the 
agent’s best candidate. This best candidate is then sent to the 
memory for memory updating. This process is conducted for 
all agents in every iteration. 

Memory is an entity whose role is to store a certain 
number of best solutions. It has a fixed capacity. In the 
beginning, this memory is empty. The memory will be 
updated every time an agent sends a solution to memory. If 
the number of solutions is below the memory capacity, a 
solution sent to it will be stored immediately. Otherwise, the 
memory will select its current worst solution. If this worst 
solution is worse than the incoming solution, this worst 
solution will be replaced. Otherwise, the incoming solution 
will be rejected. 

The agent’s next step is moving to a new location after it 
sends its best candidate to the memory. This process 
depends on the fitness score of its current location and its 
current best candidate. If its current best candidate is better 
than its current location, it becomes the agent’s next 
location. Otherwise, the agent will pick one solution in the 
memory randomly as its next location. The motivation is as 

follows. If the agent’s best candidate is better than the 
agent’s current location, it is assumed that there is a 
possibility to exploit an area near the agent’s current 
location. Otherwise, the agent should explore other locations 
that have a better opportunity. 

B. Mathematical Model 

This concept is transformed into a mathematical model. 
The main algorithm of the cone search is shown in 
algorithm 1. Table 1 shows the annotations used in this 
work. 

 
TABLE I 

ANNOTATIONS 
Annotation Description 
i agent index 
j candidate index 
bl left border (lower bound) 
br right border (upper bound) 
do observation range 
kinit initial observation radius constant 
kfinal final observation radius constant 
ro observation radius 
ro-init initial observation radius 
ro-final final observation radius 
Δr observation-radius decrease rate 
M memory 
x location 
f fitness score 
a agent 
Mc memory capacity 
n(M) current memory size 
D dimension 
c candidate 
cbest Best candidate 
t time / iteration 
tmax maximum iteration 
sfinal final solution 
sin incoming solution 
sworst the worst solution in the memory 
P problem space 

 
algorithm 1: cone search 
1 begin 
2   for i = 1to n(A) do 
3     set x(ai) 
4     calculate f(ai) 
5     update (M, ai) 
6   end for 
7   for t = 1 to tmax do 
8     for i = 1 to n(A) do 
9       do(ai) = define-observation-range (ai) 
10       for j = 1 to n(C) do 
11         cj = generate candidate (do(ai)) 
12         cbest = sort-best (C) 
13         update (M, cbest) 
14         x(ai) = find-next (ai, cbest, M) 
15       end for 
16     end for 
17     ro = ro - Δr 
18   end for 
19   sfinal = sort-best (s in M) 
20 end 
 
The explanation of algorithm 1 is as follows. Lines 2 to 6 
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represent the initialization process, which consists of setting 
the agents’ initial location, calculating their fitness, and 
sending them to the memory to be updated. In the 
initialization phase, the initial location of agents is 
uniformly distributed within the solution space. Lines 7 to 
18 represent the iteration process that runs until the 
maximum iteration is reached. It consists of several 
processes: defining the observation range for selected agent 
(line 9), generating the candidates near the selected agent 
(line 11), selecting the best candidate (line 12), updating the 
memory (line 13), determining the agent’s next location 
(line 14), and defining new observation radius (line 17). 
Line 19 becomes the finalization, where the best solution 
inside the memory becomes the final solution. The memory 
updating process is explained in more detail in algorithm 2. 

 
algorithm 2: memory updating process 
1 begin 
2   if n(M) < Mc then 
3     push (sin, M) 
4   else 
5     sworst = find-worst (M) 
6     if f(sin) < f(sworst) then 
7       replace (sworst, sin) 
8     end if 
9   end if 
10 end 
 

Below is the explanation of algorithm 2. Line 3 shows 
that the incoming solution will be pushed into the memory if 
the memory’s current size is less than the memory capacity. 
Line 5 to 8 represents the mechanism if the memory’s 
current size is not less than memory capacity. Line 5 
represents the process of finding the worst solution in the 
memory. Line 7 represents replacing the worst solution with 
the incoming solution if the incoming solution is better than 
the current worst solution. 

Several variables should be calculated before the 
initialization process. These variables are initial observation 
radius, final observation radius, and observation radius 
decrease rate. This calculation is formalized by using (1) to 
(3). 
 

         (1) 

 

        (2) 

 

             (3) 

 
The observation range is a space within the solution space 

where an agent can generate several candidates. The agent’s 
current location becomes the agent’s observation ranges 
central. In general, the observation range width is twice as 
the observation radius. But the observation range must be 
within the problem space. If it surpasses the problem space, 
the observation range will be cut. The determination of the 
agent’s observation range is formalized by using (4) for the 
left border and (5) for the right border. 
 

   (4) 

 
 

   (5) 

 
Several candidates are generated in every iteration for 

every agent. The motivation to generate more than one 
candidate is to search faster. This mechanism is like the tabu 
search [6] or cat swarm optimization [13]. This mechanism 
is formalized by using (6) and (7). Equation (6) states that 
the candidates are uniformly distributed within the agent’s 
observation range. Equation (7) states that the candidate 
whose fitness score is the best becomes the best candidate. 
 

              (6) 

 
       (7) 

 
Determining the agent’s next location becomes the last 

process in every iteration. As explained previously, the 
agent will move to its best candidate if it is better. 
Otherwise, the agent will pick a solution randomly from 
memory. This process is formalized by using (8). 
 

     (8) 

 
The complexity of CS is presented by using big O 

notation as O(n(A).tmax(n(C) + n(M))). The explanation is as 
follows. Four variables affect the looping process. They are 
the maximum iteration, the number of agents, the number of 
candidates, and memory size. In general, the algorithm runs 
from the first iteration until the maximum iteration. All 
agents work in every iteration. Every agent in every iteration 
conducts two processes. The first process is generating a 
certain number of candidates. The second process is finding 
the worst solution within the memory size during the 
memory updating process. 

III. SIMULATION AND RESULT 

Evaluation of CS is conducted by implementing this 
algorithm to find the global optimal of the well-known 23 
functions. These functions have been used in a lot of studies 
that proposed new metaheuristic algorithm, such as in the 
first appearance of DGO [33], SGO [34], KMA [32], and 
GWO [18]. These functions can be classified into three 
groups: high dimension unimodal functions, high dimension 
multimodal functions, and fixed dimension multimodal 
functions. The detail description of these functions is shown 
in Table 2. The first group consists of function 1 to function 
7. The second group consists of function 8 to function 13. 
The third group consists of function 14 to function 23. 
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TABLE II 
DESCRIPTION OF 23 FUNCTIONS 

No Function D Global Optimal Solution Space 
1 Sphere 5 0 [-100, 100] 
2 Schwefel 2.22 5 0 [-100, 100] 
3 Schwefel 1.2 5 0 [-100, 100] 
4 Schwefel 2.21 5 0 [-100, 100] 
5 Rosenbrock 5 0 [-30, 30] 
6 Step 5 0 [-100, 100] 
7 Quartic 5 0 [-1.28, 1.28] 
8 Schwefel 5 -4189.8 [-500, 500] 
9 Ratsrigin 5 0 [-5.12, 5.12] 

10 Ackley 5 0 [-32, 32] 
11 Griewank 5 0 [-600, 600] 
12 Penalized 5 0 [-50, 50] 
13 Penalized 2 5 0 [-50, 50] 
14 Shekel Foxholes 2 1 [-65, 65] 
15 Kowalik 4 0.0003 [-5, 5] 

16 
Six Hump 
Camel 

2 -1.0316 [-5, 5] 

17 Branin 2 0.398 [-5, 5] 
18 Goldstein-Price 2 3 [-2, 2] 
19 Hartman 3 3 -3.86 [1, 3] 
20 Hartman 6 6 -3.32 [0, 1] 
21 Shekel 5 4 -10.1532 [0, 10] 
22 Shekel 7 4 -10.4028 [0, 10] 
23 Shekel 10 4 -10.5363 [0, 10] 

 
In the first simulation, CS is benchmarked with four 

metaheuristic algorithms: PSO, MPA, KMA, and pelican 
optimization algorithm (POA). These algorithms are chosen 
based on several reasons. PSO represents the old-fashioned 
algorithm. PSO has been implemented in many optimization 
studies. Moreover, PSO is the earlier version of the swarm 
intelligence. MPA represents the shortcoming algorithms 
that has been used in many optimization studies. KMA and 
POA represent the brand-new algorithms that implement 
different strategy. KMA is a hybrid algorithm that combines 
the swarm movement (foraging) and evolution-based 
improvement (mating). POA is a swarm-based algorithm, 
but its global target is randomized in every iteration. 

The parameter setting of these algorithms is as follows. 
The population size is 20, and the maximum iteration is 100. 
In CS, the number of candidates is 10 and the memory 
capacity is 10. In PSO, the weights are 0.1. In MPA, the 

fishing aggregate devices (FAD) is 0.2. In KMA, the big 
male proportion is 0.4, there is only one female, and the 
mlipir rate is 0.5.  

Parameter setting in the first simulation is as follows. The 
initial observation radius constant is 0.1, and the final 
observation radius constant is 0.001. There are 30 runs for 
every benchmark function. The result is shown in Table 3. 
The last column in Table 3 describes the sparing algorithms 
that are beaten by the proposed algorithm in the related 
function. 

Table 3 shows that CS performs well in solving the 23 
benchmark functions. It can find the acceptable solutions in 
all three groups. It means that CS can tackle challenge in 
both unimodal functions and multimodal functions. CS is 
fast enough in finding the optimal solution of the unimodal 
functions. Meanwhile, CS can escape from the local optimal 
entrapment in solving the multimodal functions. Moreover, 
CS can find the global optimal solution in solving six fixed 
dimension multimodal functions: six hump camel, Branin, 
Goldstein price, Hartman 6, Shekel 5, and Shekel 7. These 
six functions are the fixed dimension multimodal functions. 

CS is superior compared with the sparing algorithms. CS 
outperforms the four algorithms in solving 21 functions. 
Specifically, CS outperforms PSO, MPA, KMA, and POA 
in solving 23, 22, 21, and 22 functions respectively. 
Meanwhile, the proposed algorithm is less competitive in 
solving Hartman 3. 

The second simulation is conducted to observe the 
performance of CS related to the initial observation radius 
constant. In this simulation, there are three values of the 
initial observation radius constant: 0.5, 0.1, and 0.02. The 
result is shown in Table 4. 

The third simulation is conducted to observe the relation 
between the final observation radius constant and the 
performance of CS. There are three values of this constant: 
0.01, 0.001, and 0.0001. The result is shown in Table 5. 

 
TABLE III 

SIMULATION RESULT 

Function 
Average Fitness Score 

Better Than 
PSO MPA KMA POA CS 

1 6.703x101 1.459x101 5.492x101 2.867x102 7.119x10-2 PSO, MPA, KMA, POA 
2 6.913x101 2.873x10-3 4.973x10-2 3.055x10-1 2.398x10-6 PSO, MPA, KMA, POA 
3 2.699x102 2.102x101 2.752x102 4.786x102 9.775x10-2 PSO, MPA, KMA, POA  
4 5.017 2.701x10-1 5.438 1.054x101 1.211x10-1 PSO, MPA, KMA, POA 
5 8.221x103 4.814 1.434x103 7.406x103 3.957 PSO, MPA, KMA, POA 
6 4.541x101 7.540 2.484x101 5.932x101 1.851x10-2 PSO, MPA, KMA, POA 
7 4.546x10-3 8.686x10-3 1.601x10-1 5.457x10-2 3.620x10-4 PSO, MPA, KMA, POA 
8 -1.137x103 -1.264x103 -1.857x103 -1.390x103 -1.685x103 PSO, MPA, POA 
9 1.716x101 5.555 6.494 1.766x101 2.437 PSO, MPA, KMA, POA 

10 4.441 3.106 4.756 9.113 1.594x10-1 PSO, MPA, KMA, POA 
11 1.304 9.063x10-1 1.171 2.555 2.199x10-1 PSO, MPA, KMA, POA 
12 5.795 1.332 2.016 1.262x101 1.468x10-3 PSO, MPA, KMA, POA 
13 1.571x101 6.390 3.682x102 6.441x102 3.232x10-2 PSO, MPA, KMA, POA 
14 5.292 4.592 7.395 2.098 1.894 PSO, MPA, KMA, POA 
15 3.069x10-2 4.673x10-3 1.403x10-2 2.205x10-3 7.513x10-4 PSO, MPA, KMA, POA 
16 -1.029 -1.027 -1.015 -1.029 -1.032 PSO, MPA, KMA, POA 
17 8.897x10-1 6.130x10-1 4.010x10-1 4.024x10-1 3.981x10-1 PSO, MPA, KMA, POA 
18 6.800 4.029 3.029 3.063 3.000 PSO, MPA, KMA, POA 
19 -5.931x10-3 -3.802 -4.295x10-1 -4.954x10-2 -4.931x10-2 PSO 
20 -2.442 -2.027 -2.807 -2.916 -3.322 PSO, MPA, KMA, POA 
21 -4.192 -1.886 -8.395 -4.204 -1.015x101 PSO, MPA, KMA, POA 
22 -3.948 -1.809 -7.409 -3.967 -1.040x101 PSO, MPA, KMA, POA 
23 -4.023 -2.381 -7.007 -3.260 -1.053x101 PSO, MPA, KMA, POA 
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TABLE IV 
RELATION BETWEEN INITIAL OBSERVATION RADIUS CONSTANTS AND 

FITNESS SCORE 

Function 
Average Fitness Score 

ro-init = 0.5 ro-init = 0.1 ro-init = 0.02 
1 4.521x10-1 4.001x10-2 1.078x10-2 
2 5.757x10-5 2.049x10-8 8.239x10-3 
3 7.851x10-1 5.329x10-2 1.106x10-2 
4 5.201x10-1 1.244x10-1 6.409x10-2 
5 4.299 5.377 3.722 
6 1.686x10-1 1.229x10-2 4.297x10-3 
7 2.044x10-3 2.806x10-4 1.149x10-2 
8 -2.046x103 -1.783x103 -1.681x103 
9 2.288 2.588 1.421x101 

10 9.807x10-1 1.683x10-1 6.791x10-2 
11 4.042x10-1 2.153x10-1 7.011x10-2 
12 3.356x10-2 1.712x10-3 3.833 
13 2.371x10-1 3.284x10-2 4.562x10-3 
14 9.980x10-1 1.726 1.184 
15 8.101x10-4 7.820x10-4 1.118x10-3 
16 -1.032 -1.032 -1.032 
17 3.981x10-1 3.981x10-1 3.981x10-1 
18 3.004 3.000 4.5883 
19 -4.862x10-2 -4.930x10-2 -4.267x10-2 
20 -3.272 -3.322 -3.322 
21 -1.011x101 -1.015x101 -1.015x101 
22 -1.036x101 -1.040x101 -1.040x101 
23 -1.049x101 -1.053x101 -1.024x101 

  
TABLE V 

RELATION BETWEEN FINAL OBSERVATION RADIUS CONSTANTS AND 

FITNESS SCORE 

Function 
Average Fitness Score 

ro-final = 0.01 ro-final = 0.01 ro-final = 0.0001 
1 7.133x10-1 3.876x10-2 2.043x10-2 
2 1.689x10-5 3.286x10-9 3.088x10-15 
3 5.732x10-1 4.787x10-2 2.441x10-2 
4 6.266x10-1 1.389x10-1 8.388x10-2 
5 6.642 3.953 3.802 
6 2.101x10-1 1.473x10-2 7.193x10-3 
7 2.207x10-4 4.243x10-4 3.051x10-4 
8 -1.731x103 -1.823x103 -1.764x103 
9 3.069 2.808 2.308 

10 1.110 1.693x10-1 9.274x10-2 
11 3.099x10-1 2.275x10-1 1.345x10-1 
12 1.809x10-2 1.347x10-3 1.011x10-3 
13 2.950x10-1 3.033x10-2 1.624x10-2 
14 2.421 1.984 2.288 
15 8.022x10-4 7.392x10-4 7.088x10-4 
16 -1.032 -1.032 -1.032 
17 3.981x10-1 3.981x10-1 3.981x10-1 
18 3.003 3.000 3.000 
19 -4.871x10-2 -4.932x10-2 -4.938x10-2 
20 -3.322 -3.322 -3.322 
21 -1.009x101 -1.015x101 -1.015x101 
22 -1.033x101 -1.040x101 -1.040x101 
23 -1.049x101 -1.053x101 -1.053x101 

 
Table 4 shows that in general, the initial observation 

radius constant does not affect the proposed algorithm’s 
performance significantly. This circumstance occurs mostly 
in the multimodal functions. Meanwhile, the response 
related the change in the initial optimization radius constant 
is different among functions. Among these 23 functions, the 
most optimal solution can be found when the initial problem 
space constant radius is narrow, moderate, or wide. 

Table 5 shows that in general, wider final observation 
radius constant is counter-productive to the algorithm’s 
performance. In many functions, the best performance is 
achieved when the final problem space radius is narrower. 
Meanwhile, in some functions, the change in the final 
observation radius constant can change the proposed 
algorithm’s performance significantly. But, in many 
functions, the change is not significant. 

IV. DISCUSSION 

This section discusses deeper analysis due to the result 
and findings. This analysis is conducted in four 
considerations. The first is the ability of CS to meet the 
general objectives of the metaheuristic algorithm: finding a 
near-optimal solution and avoiding local optimal trap. The 
second is the performance comparison between CS and 
benchmark algorithms. The third is the evaluation of the 
parameters of CS in the context of the performance. The 
fourth is the algorithm complexity. 

The simulation result shows that CS has met the two 
objectives of the metaheuristic algorithm. These objectives 
are achieved in all benchmark functions. Moreover, CS can 
find the global optimal solution in solving six fixed-
dimension multimodal functions. 

CS is also superior, compared with all sparing algorithms: 
PSO, MPA, KMA, and POA. This superiority occurs in 21 
functions. Meanwhile, CS is less competitive in solving 
Hartman 3 functions. The simulation result strengthens the 
statement that no algorithm best solves all problems as it 
was stated as no free lunch theorem. The no free lunch 
theorem states that the algorithm's effectiveness also 
depends on the of problems [47]. 

The result shows that CS is superior in solving problems 
without considering the problem space size. It can solve 
problems with very narrow problem space, such as Quartic 
or Rastrigin. Besides, CS is still superior in solving 
problems with very large problem space, such as Schwefel 
and Griewank. 

The observation radius plays an important role in 
improving the algorithm. The final observation radius must 
be set as small as possible to conduct the intensification 
properly, especially when the potential solution space has 
been found. On the other side, the initial observation radius 
must be set small enough to avoid wasting iteration in 
finding the broad solution. But this value cannot be too low 
that the true optimal solution becomes difficult to find. 

There is challenge in making CS popular and widely used 
in the real-world optimization studies. On the other hand, 
the old-fashioned algorithms are still popular although they 
have been beaten by the later algorithms. For example, 
genetic algorithm is still used in many optimization studies, 
such as for optimizing the long short-term memory [48], 
wood-types classification [49], and stock trend forecasting 
[50]. Ant colony optimization is also still popular to solve 
many combinatorial optimization problems, such as in the 
pickup and delivery problem [51], tourism route planning 
[52], and assignment problem in cloud computing [53]. This 
circumstance comes from the simplicity and flexibility of 
these old-fashioned algorithms. On the other hand, the 
performance of optimization can be improved by increasing 
the maximum iteration or population size. These methods 
are easier than implementing more complex algorithm as 
conducted in many shortcoming algorithms. This 
circumstance also becomes challenge to propose more 
powerful algorithm while keeping it simple and flexible. 

V. CONCLUSION 

This work has demonstrated that CS has met the two main 
objectives of metaheuristic algorithms: finding the near-
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optimal solution and avoiding the local trap. It can solve 
both unimodal and multimodal functions. Moreover, CS is 
proven to find the global optimal solution in solving six 
functions: Six hump camel, Branin, Goldstein price, 
Hartman 6, Shekel 5, and Shekel 7. Its performance is also 
superior, compared with the benchmark algorithms. CS 
outperforms PSO, MPA, KMA, and POA in solving 23, 22, 
21, and 22 functions respectively.  

CS may rise many future research potentials. It should be 
implemented and tested in many optimization problems, 
such as operations research, signal processing, and so on. 
Hybridizing CS with other methods is also interesting. The 
implementation of CS in optimizing discrete or 
combinatorial problems is challenging. 
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