


Abstract—This paper demonstrates a novel simple

metaheuristic algorithm, the cone search (CS). This name
comes from the distinct strategy of CS in searching the sub-
optimal solution. In the early iteration, its local search space is
wide to facilitate exploration. The local search space is reduced
linearly during the iteration so that the exploration changes to
exploitation gradually. As a swarm intelligence, CS contains
several autonomous agents and a collective intelligence called
memory. This memory consists of several best solutions. In this
work, CS is challenged to find the global optimal of 23
benchmark functions. In the simulation, CS is compared with
four metaheuristic algorithms: particle swarm optimization
(PSO), marine-predators algorithm (MPA), Komodo mlipir
algorithm (KMA), and pelican optimization algorithm (POA).
The result shows that CS performs well in solving these 23
functions. Moreover, it can find the global optimal of six fixed-
dimension multimodal functions: Branin, six hump camel,
Hartman 6, Shekel 5, Shekel 7, and Goldstein price. CS beats
PSO, MPA, KMA, and POA in solving 23, 22, 21, 22 functions
respectively.

Index Terms—Metaheuristic, multi-agent, optimization,
swarm intelligence.

I. INTRODUCTION

ETAHEURISTIC method is an approximate and
stochastic based method that has been used

extensively in many optimization problems, such as
manufacturing, transportation, education, and so on. As an
optimization method, its objective is to find the optimal
solution within the solution space. In recent days, there are a
lot of of metaheuristic algorithms. Every algorithm has its
own strategy. Some algorithms are inherited or modified
from the previous algorithms.

Ironically, there are two criticisms due to the massive
development of new metaheuristic algorithms. The first
critic is the use of metaphors, especially nature-based
metaphors [1]. The use of metaphors might hide the true
novel strategy of the algorithm. The second critic is beating
competition among algorithms [2].

In the early era of metaheuristic algorithms, the

Manuscript received February 21, 2022; revised August 10, 2022. This
work was supported and funded by Telkom University, Indonesia.

Purba Daru Kusuma is an assistant professor in computer engineering,
Telkom University, Indonesia (e-mail: purbodaru@telkomuniversity.ac.id).

Ratna Astuti Nugrahaeni is a lecturer and researcher in computer
engineering, Telkom University, Indonesia. (e-mail:
ratnaan@telkomuniversity.ac.id).

Ashri Dinimaharawati is a lecturer and researcher in computer
engineering, Telkom University, Indonesia. (e-mail:
ashridini@telkomuniversity.ac.id).

development of algorithms was not so massive as today.
Several well-known algorithms were developed during this
period, such as evolutionary programming [3], genetic
algorithm [4], simulated annealing [5], tabu search [6],
particle swarm optimization [7], ant colony optimization [8],
variable neighborhood search [9], and so on. There is a clear
distinction among these algorithms although only a few
algorithms were proposed in this period. From 2000 to 2010,
the adoption of metaphors triggered many researchers to
propose metaphors-based algorithms. There were many
nature-inspired algorithms during this period, such as sheep-
flocks heredity model [10], bacterial foraging optimization
[11], invasive weed optimization [12], cat swarm
optimization [13], firefly algorithm [14], paddy field
algorithm [15], and so on. After 2010, there was a huge
blow in the use of animals as metaphors of the algorithms.
Several animal names were adopted as name of algorithms,
such as wolf [16], penguins [17], grey wolf [18], chicken
[19], buffalo [20], lion [21], dolphin [22], and so on. Besides
animal and plant, several algorithms used other nature
mechanics as metaphors, such as water [23], virus [24],
cloud [25], gravity [26], and so on.

In the earlier era, many studies in metaheuristic
algorithms focused on the objective. The main objectives of
metaheuristic algorithm are to find the sub-optimal solution
[27] and to escape from the local optimal trap [28]. This
consideration is based on the nature of metaheuristic
algorithm that adopts stochastic approach. As a stochastic-
based algorithm, it does not ensure that the global optimal
solution can be found [29]. This circumstance is different
from the exact method where the global optimal solution is
guaranteed to find [29]. Fortunately, the metaheuristic
method is powerful and flexible enough to solve the large
problem space and complex problems where the exact
method is impossible to conduct because of the excessive
computational consumption [29]. In metaheuristic
algorithm, a better solution is found during the iteration.

The local optimal trap is a classic problem in
metaheuristic studies. In general, improvement is still
conducted in the metaheuristic process if the new solution is
better than the current one. This improvement is usually
called intensification or exploitation [30]. Local search is
commonly used in this phase. The optimal solution is
assumed to be found if a better solution cannot be found.
Unfortunately, in many problems, namely multimodal or
non-convex problems, the problem space contains many
optimal solutions [31]. One solution is the global optimal
solution while others are local optimal [31]. Diversification
or exploration avoids this trap by finding other alternatives
within the problem space [30].

As explained previously, many shortcoming algorithms

Cone Search: A Simple Metaheuristic
Optimization Algorithm

Purba Daru Kusuma, Member, IAENG, Ratna Astuti Nugrahaeni, Ashri Dinimaharawati

M

IAENG International Journal of Applied Mathematics, 52:4, IJAM_52_4_10

Volume 52, Issue 4: December 2022

__

focused on beating other previous algorithms rather than
proposing new ways in finding the sub optimal solution and
escaping from the local optimal. The examples are as
follows. Suyanto et al. [32] compared his proposed
algorithm, the komodo mlipir algorithm (KMA), with
genetic algorithm (GA), success-history based parameter
adaptation differential evolution (SHADE), equilibrium
optimizer (EO), marine-predators algorithm (MPA), and
slime mold algorithm (SMA). Dehghani et al. [33] proposed
a dart game optimizer (DGO) and compared it with GA,
particle swarm optimization (PSO), gravitational search
algorithm (GSA), teaching learning-based optimization
(TLBO), grey wolf optimizer (GOA), whale optimization
algorithm (WOA), and MPA [33]. Dehghani et al. [34]
proposed shell game optimization (SGO) and compared its
performance with GA, PSO, GSA, TLBO, spotted hyena
optimizer (SHO), and emperor penguin optimizer (EPO).
From these three examples, it is shown that GA is a favorite
algorithm to beat.

The popularity of old-fashioned algorithm, such as GA,
SA, and PSO, is still high although they were beaten many
times by many shortcoming algorithms. Many studies in
optimization still use these algorithms today. These
algorithms were improved, modified, and combined with
other algorithms many times and implemented in many
areas. Many studies were conducted in improving the GA in
its certain operators: encoding, selection, crossover, or
mutation [35]. GA has many variants, such as binary GA
[36] and non-dominated sorting GA (NSGA II) [37].

SA is the other example of an efficient and easy to
implement algorithm [38]. Many studies were conducted to
modify this algorithm. Several examples of its modified
version are cloud-theory based simulated annealing [39],
curious simulated annealing [38], fast simulated annealing
[40], and sequential Monte Carlo simulated annealing [41].

PSO is the other old-fashioned algorithm that is widely
used and modified until today. In its original form, its
strategy is very simple. There are several agents or particles
that fly within the solution space to find a better solution
[42]. Its movement depends on its location and speed. Its
next speed is determined by four aspects: current speed,
local best solution, global best solution, and certain
probabilistic value [42]. PSO has several variants, such as
cooperative PSO [43], adaptive PSO [44], and multi-
objective PSO [45].

Based on this explanation, studies to develop
metaheuristic algorithm is still challenging. Meanwhile,
hiding behind metaphors should be avoided. Moreover,
proposing a simple algorithm may be better so that it can be
implemented and improved widely rather than proposing a
complex algorithm.

This work proposes a metaheuristic optimization model in
which diversification and intensification are conducted
based on the iteration. In the beginning, diversification is
conducted. The diversification is reduced gradually as the
iteration increases. On the other side, the intensification is
conducted gradually. This mechanism is conducted by
setting the observation range wide enough in the
initialization phase. Then, this observation range is reduced
linearly until the lowest observation range is reached.

CS is a swarm-based intelligence. The system contains

several agents [46]. Each agent works autonomously.
Meanwhile, there is a centralized collective intelligence that
is shared among agents [46].

The remainder of this paper is organized as follows. The
model of CS, which consists of conceptual model,
mathematical model, and the algorithm is explained in
section two. The simulation was conducted to evaluate the
performance of CS, and the result is described in section
three. Section four discusses a deeper analysis due to the
simulation result and the findings. This work is then
summarized and concluded in section five.

II. PROPOSED MODEL

A. Conceptual Model

Cone search is a metaheuristic algorithm that adopts
swarm intelligence. It contains several agents whose
objective is to find the best solution. Each agent finds the
better solution by finding an alternative solution within its
observation range. The observation range must be inside the
search space or problem space.

The illustration of the agent’s observation range and the
search space is shown in Fig. 1. Fig. 1 illustrates a single
dimension search space. In Fig. 1, the search space is wide
enough. Contrary, the agent’s observation range is narrow
so that it cannot cover the whole search space. The agent’s
location is in the middle of the agent’s observation range.

Fig. 1. Illustration of the observation range and the search space.

The observation range size is dynamic during the
iteration. In the beginning, the observation range is wide.
Then, it decreases linearly during the iteration. The
observation range is narrow when the maximum iteration is
reached. The motivation of this mechanism is as follows. In
the beginning, the algorithm focuses on diversification. That
is why the observation range should be wide enough to
obtain any possible solutions. A wide observation range is
also designed to avoid local optimal trap in the early
iteration period.

Intensification is conducted gradually as the iteration
goes. Narrower observation range is designed to limit the
possible solution and achieve convergence The algorithm
focuses on improving the solution by searching for possible
alternatives near the current solution. This strategy becomes
the main concept of CS and main distinction with other
metaheuristic algorithms. The illustration of this dynamic
observation range is shown in Fig. 2.

IAENG International Journal of Applied Mathematics, 52:4, IJAM_52_4_10

Volume 52, Issue 4: December 2022

__

Fig. 2. Dynamic observation range.

This strategy is very different from many common
algorithms. In general, iteration does not correlate with
diversification or intensification. The example is as follows.
In PSO, intensification and diversification are conducted
simultaneously by combining the local best and global best
in single formulae to determine the agent’s movement [7].
In invasive weed optimization, intensification and
diversification are conducted simultaneously in every
iteration by spreading new weed within the problem space
based on normal distribution [12]. In GA, intensification and
diversification are conducted in every iteration. The cross-
over represents the intensification, while mutation represents
the diversification [4].

Simulated annealing (SA) is an algorithm in which
iteration affects the diversification. In SA, diversification is
easy to conduct in early iteration when the temperature is
still high [5]. Diversification becomes more difficult as the
iteration declines. In SA, diversification is conducted by
accepting a worse solution by certain probabilistic
calculations [5].

Each agent generates several candidates in every iteration.
These candidates are uniformly distributed within the
agent’s current observation range. Then, the fitness score of
these candidates is calculated based on the fitness function.
The candidate whose fitness score is the best becomes the
agent’s best candidate. This best candidate is then sent to the
memory for memory updating. This process is conducted for
all agents in every iteration.

Memory is an entity whose role is to store a certain
number of best solutions. It has a fixed capacity. In the
beginning, this memory is empty. The memory will be
updated every time an agent sends a solution to memory. If
the number of solutions is below the memory capacity, a
solution sent to it will be stored immediately. Otherwise, the
memory will select its current worst solution. If this worst
solution is worse than the incoming solution, this worst
solution will be replaced. Otherwise, the incoming solution
will be rejected.

The agent’s next step is moving to a new location after it
sends its best candidate to the memory. This process
depends on the fitness score of its current location and its
current best candidate. If its current best candidate is better
than its current location, it becomes the agent’s next
location. Otherwise, the agent will pick one solution in the
memory randomly as its next location. The motivation is as

follows. If the agent’s best candidate is better than the
agent’s current location, it is assumed that there is a
possibility to exploit an area near the agent’s current
location. Otherwise, the agent should explore other locations
that have a better opportunity.

B. Mathematical Model

This concept is transformed into a mathematical model.
The main algorithm of the cone search is shown in
algorithm 1. Table 1 shows the annotations used in this
work.

TABLE I

ANNOTATIONS
Annotation Description
i agent index
j candidate index
bl left border (lower bound)
br right border (upper bound)
do observation range
kinit initial observation radius constant
kfinal final observation radius constant
ro observation radius
ro-init initial observation radius
ro-final final observation radius
Δr observation-radius decrease rate
M memory
x location
f fitness score
a agent
Mc memory capacity
n(M) current memory size
D dimension
c candidate
cbest Best candidate
t time / iteration
tmax maximum iteration
sfinal final solution
sin incoming solution
sworst the worst solution in the memory
P problem space

algorithm 1: cone search
1 begin
2 for i = 1to n(A) do
3 set x(ai)
4 calculate f(ai)
5 update (M, ai)
6 end for
7 for t = 1 to tmax do
8 for i = 1 to n(A) do
9 do(ai) = define-observation-range (ai)
10 for j = 1 to n(C) do
11 cj = generate candidate (do(ai))
12 cbest = sort-best (C)
13 update (M, cbest)
14 x(ai) = find-next (ai, cbest, M)
15 end for
16 end for
17 ro = ro - Δr
18 end for
19 sfinal = sort-best (s in M)
20 end

The explanation of algorithm 1 is as follows. Lines 2 to 6

IAENG International Journal of Applied Mathematics, 52:4, IJAM_52_4_10

Volume 52, Issue 4: December 2022

__

represent the initialization process, which consists of setting
the agents’ initial location, calculating their fitness, and
sending them to the memory to be updated. In the
initialization phase, the initial location of agents is
uniformly distributed within the solution space. Lines 7 to
18 represent the iteration process that runs until the
maximum iteration is reached. It consists of several
processes: defining the observation range for selected agent
(line 9), generating the candidates near the selected agent
(line 11), selecting the best candidate (line 12), updating the
memory (line 13), determining the agent’s next location
(line 14), and defining new observation radius (line 17).
Line 19 becomes the finalization, where the best solution
inside the memory becomes the final solution. The memory
updating process is explained in more detail in algorithm 2.

algorithm 2: memory updating process
1 begin
2 if n(M) < Mc then
3 push (sin, M)
4 else
5 sworst = find-worst (M)
6 if f(sin) < f(sworst) then
7 replace (sworst, sin)
8 end if
9 end if
10 end

Below is the explanation of algorithm 2. Line 3 shows
that the incoming solution will be pushed into the memory if
the memory’s current size is less than the memory capacity.
Line 5 to 8 represents the mechanism if the memory’s
current size is not less than memory capacity. Line 5
represents the process of finding the worst solution in the
memory. Line 7 represents replacing the worst solution with
the incoming solution if the incoming solution is better than
the current worst solution.

Several variables should be calculated before the
initialization process. These variables are initial observation
radius, final observation radius, and observation radius
decrease rate. This calculation is formalized by using (1) to
(3).

 (1)

 (2)

 (3)

The observation range is a space within the solution space

where an agent can generate several candidates. The agent’s
current location becomes the agent’s observation ranges
central. In general, the observation range width is twice as
the observation radius. But the observation range must be
within the problem space. If it surpasses the problem space,
the observation range will be cut. The determination of the
agent’s observation range is formalized by using (4) for the
left border and (5) for the right border.

 (4)

 (5)

Several candidates are generated in every iteration for

every agent. The motivation to generate more than one
candidate is to search faster. This mechanism is like the tabu
search [6] or cat swarm optimization [13]. This mechanism
is formalized by using (6) and (7). Equation (6) states that
the candidates are uniformly distributed within the agent’s
observation range. Equation (7) states that the candidate
whose fitness score is the best becomes the best candidate.

 (6)

 (7)

Determining the agent’s next location becomes the last

process in every iteration. As explained previously, the
agent will move to its best candidate if it is better.
Otherwise, the agent will pick a solution randomly from
memory. This process is formalized by using (8).

 (8)

The complexity of CS is presented by using big O

notation as O(n(A).tmax(n(C) + n(M))). The explanation is as
follows. Four variables affect the looping process. They are
the maximum iteration, the number of agents, the number of
candidates, and memory size. In general, the algorithm runs
from the first iteration until the maximum iteration. All
agents work in every iteration. Every agent in every iteration
conducts two processes. The first process is generating a
certain number of candidates. The second process is finding
the worst solution within the memory size during the
memory updating process.

III. SIMULATION AND RESULT

Evaluation of CS is conducted by implementing this
algorithm to find the global optimal of the well-known 23
functions. These functions have been used in a lot of studies
that proposed new metaheuristic algorithm, such as in the
first appearance of DGO [33], SGO [34], KMA [32], and
GWO [18]. These functions can be classified into three
groups: high dimension unimodal functions, high dimension
multimodal functions, and fixed dimension multimodal
functions. The detail description of these functions is shown
in Table 2. The first group consists of function 1 to function
7. The second group consists of function 8 to function 13.
The third group consists of function 14 to function 23.

IAENG International Journal of Applied Mathematics, 52:4, IJAM_52_4_10

Volume 52, Issue 4: December 2022

__

TABLE II
DESCRIPTION OF 23 FUNCTIONS

No Function D Global Optimal Solution Space
1 Sphere 5 0 [-100, 100]
2 Schwefel 2.22 5 0 [-100, 100]
3 Schwefel 1.2 5 0 [-100, 100]
4 Schwefel 2.21 5 0 [-100, 100]
5 Rosenbrock 5 0 [-30, 30]
6 Step 5 0 [-100, 100]
7 Quartic 5 0 [-1.28, 1.28]
8 Schwefel 5 -4189.8 [-500, 500]
9 Ratsrigin 5 0 [-5.12, 5.12]

10 Ackley 5 0 [-32, 32]
11 Griewank 5 0 [-600, 600]
12 Penalized 5 0 [-50, 50]
13 Penalized 2 5 0 [-50, 50]
14 Shekel Foxholes 2 1 [-65, 65]
15 Kowalik 4 0.0003 [-5, 5]

16
Six Hump
Camel

2 -1.0316 [-5, 5]

17 Branin 2 0.398 [-5, 5]
18 Goldstein-Price 2 3 [-2, 2]
19 Hartman 3 3 -3.86 [1, 3]
20 Hartman 6 6 -3.32 [0, 1]
21 Shekel 5 4 -10.1532 [0, 10]
22 Shekel 7 4 -10.4028 [0, 10]
23 Shekel 10 4 -10.5363 [0, 10]

In the first simulation, CS is benchmarked with four

metaheuristic algorithms: PSO, MPA, KMA, and pelican
optimization algorithm (POA). These algorithms are chosen
based on several reasons. PSO represents the old-fashioned
algorithm. PSO has been implemented in many optimization
studies. Moreover, PSO is the earlier version of the swarm
intelligence. MPA represents the shortcoming algorithms
that has been used in many optimization studies. KMA and
POA represent the brand-new algorithms that implement
different strategy. KMA is a hybrid algorithm that combines
the swarm movement (foraging) and evolution-based
improvement (mating). POA is a swarm-based algorithm,
but its global target is randomized in every iteration.

The parameter setting of these algorithms is as follows.
The population size is 20, and the maximum iteration is 100.
In CS, the number of candidates is 10 and the memory
capacity is 10. In PSO, the weights are 0.1. In MPA, the

fishing aggregate devices (FAD) is 0.2. In KMA, the big
male proportion is 0.4, there is only one female, and the
mlipir rate is 0.5.

Parameter setting in the first simulation is as follows. The
initial observation radius constant is 0.1, and the final
observation radius constant is 0.001. There are 30 runs for
every benchmark function. The result is shown in Table 3.
The last column in Table 3 describes the sparing algorithms
that are beaten by the proposed algorithm in the related
function.

Table 3 shows that CS performs well in solving the 23
benchmark functions. It can find the acceptable solutions in
all three groups. It means that CS can tackle challenge in
both unimodal functions and multimodal functions. CS is
fast enough in finding the optimal solution of the unimodal
functions. Meanwhile, CS can escape from the local optimal
entrapment in solving the multimodal functions. Moreover,
CS can find the global optimal solution in solving six fixed
dimension multimodal functions: six hump camel, Branin,
Goldstein price, Hartman 6, Shekel 5, and Shekel 7. These
six functions are the fixed dimension multimodal functions.

CS is superior compared with the sparing algorithms. CS
outperforms the four algorithms in solving 21 functions.
Specifically, CS outperforms PSO, MPA, KMA, and POA
in solving 23, 22, 21, and 22 functions respectively.
Meanwhile, the proposed algorithm is less competitive in
solving Hartman 3.

The second simulation is conducted to observe the
performance of CS related to the initial observation radius
constant. In this simulation, there are three values of the
initial observation radius constant: 0.5, 0.1, and 0.02. The
result is shown in Table 4.

The third simulation is conducted to observe the relation
between the final observation radius constant and the
performance of CS. There are three values of this constant:
0.01, 0.001, and 0.0001. The result is shown in Table 5.

TABLE III

SIMULATION RESULT

Function
Average Fitness Score

Better Than
PSO MPA KMA POA CS

1 6.703x101 1.459x101 5.492x101 2.867x102 7.119x10-2 PSO, MPA, KMA, POA
2 6.913x101 2.873x10-3 4.973x10-2 3.055x10-1 2.398x10-6 PSO, MPA, KMA, POA
3 2.699x102 2.102x101 2.752x102 4.786x102 9.775x10-2 PSO, MPA, KMA, POA
4 5.017 2.701x10-1 5.438 1.054x101 1.211x10-1 PSO, MPA, KMA, POA
5 8.221x103 4.814 1.434x103 7.406x103 3.957 PSO, MPA, KMA, POA
6 4.541x101 7.540 2.484x101 5.932x101 1.851x10-2 PSO, MPA, KMA, POA
7 4.546x10-3 8.686x10-3 1.601x10-1 5.457x10-2 3.620x10-4 PSO, MPA, KMA, POA
8 -1.137x103 -1.264x103 -1.857x103 -1.390x103 -1.685x103 PSO, MPA, POA
9 1.716x101 5.555 6.494 1.766x101 2.437 PSO, MPA, KMA, POA

10 4.441 3.106 4.756 9.113 1.594x10-1 PSO, MPA, KMA, POA
11 1.304 9.063x10-1 1.171 2.555 2.199x10-1 PSO, MPA, KMA, POA
12 5.795 1.332 2.016 1.262x101 1.468x10-3 PSO, MPA, KMA, POA
13 1.571x101 6.390 3.682x102 6.441x102 3.232x10-2 PSO, MPA, KMA, POA
14 5.292 4.592 7.395 2.098 1.894 PSO, MPA, KMA, POA
15 3.069x10-2 4.673x10-3 1.403x10-2 2.205x10-3 7.513x10-4 PSO, MPA, KMA, POA
16 -1.029 -1.027 -1.015 -1.029 -1.032 PSO, MPA, KMA, POA
17 8.897x10-1 6.130x10-1 4.010x10-1 4.024x10-1 3.981x10-1 PSO, MPA, KMA, POA
18 6.800 4.029 3.029 3.063 3.000 PSO, MPA, KMA, POA
19 -5.931x10-3 -3.802 -4.295x10-1 -4.954x10-2 -4.931x10-2 PSO
20 -2.442 -2.027 -2.807 -2.916 -3.322 PSO, MPA, KMA, POA
21 -4.192 -1.886 -8.395 -4.204 -1.015x101 PSO, MPA, KMA, POA
22 -3.948 -1.809 -7.409 -3.967 -1.040x101 PSO, MPA, KMA, POA
23 -4.023 -2.381 -7.007 -3.260 -1.053x101 PSO, MPA, KMA, POA

IAENG International Journal of Applied Mathematics, 52:4, IJAM_52_4_10

Volume 52, Issue 4: December 2022

__

TABLE IV
RELATION BETWEEN INITIAL OBSERVATION RADIUS CONSTANTS AND

FITNESS SCORE

Function
Average Fitness Score

ro-init = 0.5 ro-init = 0.1 ro-init = 0.02
1 4.521x10-1 4.001x10-2 1.078x10-2
2 5.757x10-5 2.049x10-8 8.239x10-3
3 7.851x10-1 5.329x10-2 1.106x10-2
4 5.201x10-1 1.244x10-1 6.409x10-2
5 4.299 5.377 3.722
6 1.686x10-1 1.229x10-2 4.297x10-3
7 2.044x10-3 2.806x10-4 1.149x10-2
8 -2.046x103 -1.783x103 -1.681x103
9 2.288 2.588 1.421x101

10 9.807x10-1 1.683x10-1 6.791x10-2
11 4.042x10-1 2.153x10-1 7.011x10-2
12 3.356x10-2 1.712x10-3 3.833
13 2.371x10-1 3.284x10-2 4.562x10-3
14 9.980x10-1 1.726 1.184
15 8.101x10-4 7.820x10-4 1.118x10-3
16 -1.032 -1.032 -1.032
17 3.981x10-1 3.981x10-1 3.981x10-1
18 3.004 3.000 4.5883
19 -4.862x10-2 -4.930x10-2 -4.267x10-2
20 -3.272 -3.322 -3.322
21 -1.011x101 -1.015x101 -1.015x101
22 -1.036x101 -1.040x101 -1.040x101
23 -1.049x101 -1.053x101 -1.024x101

TABLE V

RELATION BETWEEN FINAL OBSERVATION RADIUS CONSTANTS AND

FITNESS SCORE

Function
Average Fitness Score

ro-final = 0.01 ro-final = 0.01 ro-final = 0.0001
1 7.133x10-1 3.876x10-2 2.043x10-2
2 1.689x10-5 3.286x10-9 3.088x10-15
3 5.732x10-1 4.787x10-2 2.441x10-2
4 6.266x10-1 1.389x10-1 8.388x10-2
5 6.642 3.953 3.802
6 2.101x10-1 1.473x10-2 7.193x10-3
7 2.207x10-4 4.243x10-4 3.051x10-4
8 -1.731x103 -1.823x103 -1.764x103
9 3.069 2.808 2.308

10 1.110 1.693x10-1 9.274x10-2
11 3.099x10-1 2.275x10-1 1.345x10-1
12 1.809x10-2 1.347x10-3 1.011x10-3
13 2.950x10-1 3.033x10-2 1.624x10-2
14 2.421 1.984 2.288
15 8.022x10-4 7.392x10-4 7.088x10-4
16 -1.032 -1.032 -1.032
17 3.981x10-1 3.981x10-1 3.981x10-1
18 3.003 3.000 3.000
19 -4.871x10-2 -4.932x10-2 -4.938x10-2
20 -3.322 -3.322 -3.322
21 -1.009x101 -1.015x101 -1.015x101
22 -1.033x101 -1.040x101 -1.040x101
23 -1.049x101 -1.053x101 -1.053x101

Table 4 shows that in general, the initial observation

radius constant does not affect the proposed algorithm’s
performance significantly. This circumstance occurs mostly
in the multimodal functions. Meanwhile, the response
related the change in the initial optimization radius constant
is different among functions. Among these 23 functions, the
most optimal solution can be found when the initial problem
space constant radius is narrow, moderate, or wide.

Table 5 shows that in general, wider final observation
radius constant is counter-productive to the algorithm’s
performance. In many functions, the best performance is
achieved when the final problem space radius is narrower.
Meanwhile, in some functions, the change in the final
observation radius constant can change the proposed
algorithm’s performance significantly. But, in many
functions, the change is not significant.

IV. DISCUSSION

This section discusses deeper analysis due to the result
and findings. This analysis is conducted in four
considerations. The first is the ability of CS to meet the
general objectives of the metaheuristic algorithm: finding a
near-optimal solution and avoiding local optimal trap. The
second is the performance comparison between CS and
benchmark algorithms. The third is the evaluation of the
parameters of CS in the context of the performance. The
fourth is the algorithm complexity.

The simulation result shows that CS has met the two
objectives of the metaheuristic algorithm. These objectives
are achieved in all benchmark functions. Moreover, CS can
find the global optimal solution in solving six fixed-
dimension multimodal functions.

CS is also superior, compared with all sparing algorithms:
PSO, MPA, KMA, and POA. This superiority occurs in 21
functions. Meanwhile, CS is less competitive in solving
Hartman 3 functions. The simulation result strengthens the
statement that no algorithm best solves all problems as it
was stated as no free lunch theorem. The no free lunch
theorem states that the algorithm's effectiveness also
depends on the of problems [47].

The result shows that CS is superior in solving problems
without considering the problem space size. It can solve
problems with very narrow problem space, such as Quartic
or Rastrigin. Besides, CS is still superior in solving
problems with very large problem space, such as Schwefel
and Griewank.

The observation radius plays an important role in
improving the algorithm. The final observation radius must
be set as small as possible to conduct the intensification
properly, especially when the potential solution space has
been found. On the other side, the initial observation radius
must be set small enough to avoid wasting iteration in
finding the broad solution. But this value cannot be too low
that the true optimal solution becomes difficult to find.

There is challenge in making CS popular and widely used
in the real-world optimization studies. On the other hand,
the old-fashioned algorithms are still popular although they
have been beaten by the later algorithms. For example,
genetic algorithm is still used in many optimization studies,
such as for optimizing the long short-term memory [48],
wood-types classification [49], and stock trend forecasting
[50]. Ant colony optimization is also still popular to solve
many combinatorial optimization problems, such as in the
pickup and delivery problem [51], tourism route planning
[52], and assignment problem in cloud computing [53]. This
circumstance comes from the simplicity and flexibility of
these old-fashioned algorithms. On the other hand, the
performance of optimization can be improved by increasing
the maximum iteration or population size. These methods
are easier than implementing more complex algorithm as
conducted in many shortcoming algorithms. This
circumstance also becomes challenge to propose more
powerful algorithm while keeping it simple and flexible.

V. CONCLUSION

This work has demonstrated that CS has met the two main
objectives of metaheuristic algorithms: finding the near-

IAENG International Journal of Applied Mathematics, 52:4, IJAM_52_4_10

Volume 52, Issue 4: December 2022

__

optimal solution and avoiding the local trap. It can solve
both unimodal and multimodal functions. Moreover, CS is
proven to find the global optimal solution in solving six
functions: Six hump camel, Branin, Goldstein price,
Hartman 6, Shekel 5, and Shekel 7. Its performance is also
superior, compared with the benchmark algorithms. CS
outperforms PSO, MPA, KMA, and POA in solving 23, 22,
21, and 22 functions respectively.

CS may rise many future research potentials. It should be
implemented and tested in many optimization problems,
such as operations research, signal processing, and so on.
Hybridizing CS with other methods is also interesting. The
implementation of CS in optimizing discrete or
combinatorial problems is challenging.

REFERENCES
[1] J. Swan, S. Adriaensen, A.E.I. Brownlee, K. Hammond, C.G.

Johnson, A. Kheiri, F. Krawiec, J.J. Merelo, L.L. Minku, E. Ozcan,
G.L. Pappa, P. Garcia-Sanchez, K. Sorensen, S. Vob, M. Wagner, and
D.R. White, “Metaheuristics in the large,” European Journal of
Operational Research, vol. 297, pp. 393-406, 2022.

[2] S. Adriaensen, T. Brys, and A. Nowe, “Fair-share ILS: a simple state-
of-the-art iterated local search hyperheuristic,” Proceeding of the
2014 Annual Conference on Genetic and Evolutionary Computation,
2014.

[3] D. B. Fogel and L. J. Fogel, “An introduction to evolutionary
programming,” Lecture Notes in Computer Science, vol. 1063, 1996.

[4] J. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Application to Biology, MIT Press, 1975.

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

[6] F. Glover, “Future paths for integer programming and links to
artificial intelligence,” Computers and Operations Research, vol. 13,
no. 5, pp. 533-549, 1986.

[7] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
Proceeding of International Conference on Neural Network, 1995.

[8] M. Dorigo, V. Maniezzo, and A. Coloni, “Ant system: optimization
by a colony of cooperating agents,” IEEE Transactions on Systems,
Man, and Cybernetics, part B (Cybernetics), vol. 26, no. 1, pp. 29-41,
1996.

[9] N. Mladenovic and P. Hansen, “Variable neighborhood search,”
Computers and Operations Research, vol. 24, no. 11, pp. 1097-1100,
1997.

[10] H. Kim and B. Ahn, “A new evolutionary algorithm based on sheep
flocks heredity model,” Proceeding od IEEE Pacific Rim Conference
on Communications, Computers and Signal Processing, pp. 514-517,
2001.

[11] K. M. Passino, “Biomimicry of bacterial foraging for distributed
optimization and control,” IEEE Control Systems Magazine, vol. 22,
no. 3, pp. 52-67, 2002.

[12] A. R. Mehrabian and C. Lucas, “A novel numerical optimization
algorithm inspired from weed colonization,” Ecological Informatic,
vol. 1, no. 4, pp. 355-366, 2006.

[13] S. C. Chu, P. W. Tsai, and J. S. Pan, “Cat swarm optimization,”
Proceeding of Pacific Rim International Conference on Artificial
Intelligence, pp. 854-858, 2006.

[14] X. S. Yang, “Firefly algorithms for multimodal optimization,”
Proceeding of International Symposium on Stochastic Algorithms, pp.
169-178, 2009.

[15] U. Premaratne, J. Samarabandu, and T. Sidhu, “A new biologically
inspired optimization algorithm,” Proceeding of the 2009
International Conference on Industrial and Information Systems
(ICIIS), pp. 279-284, 2009.

[16] R. Tang, S. Fong, X. S. Yang, and S. Deb, “Wolf search algorithm
with ephemeral memory,” Proceeding of 7th International Conference
on Digital Information Management (ICDIM 2012), pp. 165-172,
2012.

[17] S. Harifi, M. Khalilian, J. Mohammadzadeh, and S. Ebrahimnejad,
“Emperor penguins colony: a new metaheuristic algorithm for
optimization,” Evolutionary Intelligence, 2019.

[18] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in Engineering Software, vol. 69, pp. 46-61, 2014.

[19] X. Meng, Y. Liu, X. Gao, and H. Zhang, “A new bio-inspired
algorithm: chicken swarm optimization” Proceeding of International
Conference in Swarm Intelligence, pp. 86-94, 2014.

[20] J. B. Odili, M. N. M. Kahar, and S. Anwar, “African buffalo
optimization: a swarm-intelligence technique,” Procedia Computer
Science, vol. 76, 443-448, 2015.

[21] M. Yazdani and F. Jolai, “Lion optimization algorithm: a nature-
inspired metaheuristic algorithm,” Journal of Computational Design
and Engineering, vol. 3, no. 1, pp. 24-36, 2016.

[22] W. Qiao and Z. Yang, “Solving large-scale function optimization
problem by using a new metaheuristic algorithm based on quantum
dolphin swarm algorithm,” IEEE Access, vol. 7, no. 1, pp. 138972-
138989, 2019.

[23] Y. J. Zheng, “Water wave optimization: a new nature-inspired
metaheuristic,” Computers and Operations Research, vol. 55, no. 1,
pp. 1-11, 2015.

[24] Y. C. Liang and J. R. Cuevas-Juarez, “A novel meta-heuristic
algorithm for continuous optimization problems: virus optimization
algorithm,” Engineering Optimization, vol. 48, no. 1, pp. 73-93, 2016.

[25] G. W. Yan and Z. J. Hao, “A novel optimization algorithm based on
atmosphere clouds model,” International Journal of Computational
Intelligence and Applications, vol. 12, no. 1, ID: 1350002, 2013.

[26] E. Rashedi, H. Nezamabadi-Pour, and S. Saryadi, “GSA: a
gravitational search algorithm,” Information Sciences, vol. 179, no.
13, pp. 2232-2248, 2009.

[27] S. K. Pal, C. S. Rai, and A. P. Singh, “Comparative study of firefly
algorithm and particle swarm optimization for noisy optimization
problems”, International Journal of Intelligent Systems and
Applications, vol. 4, no. 10, pp. 50-57, 2017.

[28] P. Verma and R. P. Parouha, “An advanced hybrid meta-heuristic
algorithm for solving small- and large-scale engineering design
optimization problems,” Journal of Electrical Systems and
Information Technology, vol. 8, 2021.

[29] H. R. Moshtaghi, A. T. Eshlaghy, and M. R. Motadel, “A
comprehensive review on meta-heuristic algorithms and their
classification with novel approach,” Journal of Applied Research on
Industrial Engineering, vol. 8, no. 1, pp. 63-89, 2021.

[30] M. A. A. Rahman, B. Ismail, K. Naidu, and M. K. Rahmat, “Review
on population-based metaheuristic search techniques for optimal
power flow,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 15, no. 1, pp. 373-381, 2019.

[31] K. Hussain, M. N. M. Salleh, S. Cheng, and R. Naseem, “Common
benchmark functions for metaheuristic evaluation: a review,”
International Journal on Informatics Visualization, vol. 1, no. 4, pp.
218-223, 2017.

[32] Suyanto, A.A. Ariyanto, and A.F. Ariyanto, “Komodo mlipir
algorithm,” Applied Soft Computing, vol. 114, ID: 108403, 2022.

[33] M. Deghani, Z. Montazeri, H. Givi, J. M. Guerrero, and G. Dhiman,
“Darts game optimizer: a new optimization technique based on darts
game,” International Journal of Intelligent Engineering & Systems,
vol. 13, no. 5, pp. 286-294, 2020.

[34] M. Deghani, Z. Montazeri, O. M. Malik, H. Givi, and J. M. Guerero,
“Shell game optimization: a novel game-based algorithm,”
International Journal of Intelligent Engineering & Systems, vol. 13,
no. 3, pp. 246-255, 2020.

[35] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic
algorithm: past, present, and future,” Multimedia Tools and
Applications, vol. 80, pp. 8091-8126, 2021.

[36] A. W. Payne and R. C. Glen, “Molecular recoqnition using binary
genetic system,” Journal of Molecular Graphics, vol. 11, no. 2, pp.
74-91, 1993.

[37] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

[38] T. Guilmeau, E. Chouzenoux, and V. Elvira, “Simulated annealing: a
review and a new scheme,” IEEE Statistical Signal Processing
Workshop, 2021.

[39] E. Torabzadeh and M. Zandieh, “Cloud theory-based simulated
annealing approach for scheduling in the two-stage assembly
flowshop,” Advances in Engineering Software, vol. 41, no. 10-11, pp.
1238-1243, 2010.

[40] S. Rubenthaler, T. Ryden, and M. Wiktorsson, “Fast simulated
annealing in Rd with an application to maximum likelihood estimation
in state-space models,” Stochastic Process and Their Applications,
vol. 119, no. 6, pp. 1912-1931, 2009.

[41] E. Zhou and X. Chen, “Sequential Monte Carlo simulated annealing,”
Journal of Global Optimization, vol. 55, no. 1, pp. 101-124, 2013.

[42] D. Freitas, L. G. Lopes, and F. Morgado-Dias, “Particle swarm
optimization: a historical review up to the current developments,”
Entropy, vol. 22, ID: 362, pp. 1-36, 2020.

[43] F. Van den-Bergh and A. P. Engelbrecht, “Cooperative learning in
neural networks using particle swarm optimizers,” South African
Computer Journal, vol. 26, pp. 84-90, 2000.

IAENG International Journal of Applied Mathematics, 52:4, IJAM_52_4_10

Volume 52, Issue 4: December 2022

__

[44] Z. Zhan, J. yang, Y. Li, and H. S. Chung, “Adaptive particle swarm
optimization,” IEEE Transactions on System, Man, and Cybernetics,
vol. 39, pp. 1362-1381, 2009.

[45] X. Hu and R. C. Eberhart, “Multiobjective optimization using
dynamic neighborhood particle swarm optimization,” Proceeding of
the Congress on Evolutionary Computation (CEC), pp. 1677-1681,
2002.

[46] Y. Qawqzeh, M. T. Alharbi, A. Jaradat, and K. N. A. Sattar, “A
review of swarm intelligence algorithms deployment for scheduling
and optimization in cloud computing environments,” PeerJ Computer
Science, pp. 1-17, 2021.

[47] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol.
1, no. 1, pp. 67-82, 1997.

[48] A. S. Girsang and D. Tanjung, “Fast genetic algorithm for long short-
term memory optimization,” Engineering Letters, vol. 30, no. 2, pp.
528-536, 2022.

[49] S. Santosa, R. A. Pramunendar, D. P. Prabowo, and Y. P. Santosa,
“Wood types classification using back-propagation neural network
based on genetic algorithm with gray level co-occurence matrix for
feature extraction,” IAENG International Journal of Computer
Science, vol. 46, no. 2, pp. 149-155, 2019.

[50] R. Abraham, M. E. Samad, A. M. Bakhach, H. El-Chaarani, A.
Sardouk, S. E. Nemar, and D. Jaber, “Forecasting a stock trend using
genetic algorithm and random forest,” Journal of Risk and Financial
Management, vol. 15, ID: 188, pp. 1-18, 2022.

[51] P. N. K. Phuc and N. L. P. Thao, “Ant colony optimization for
multiple pickup and multiple delivery vehicle routing problem with
time window and heterogeneous fleets,” Logistics, vol. 5, ID: 28, pp.
1-13, 2021.

[52] S. Liang, T. Jiao, W. Du, and S. Qu, “An improved ant colony
optimization algorithm based on context for tourism route planning,”
PLOS ONE, vol. 16, no. 9, ID: e0257317, pp. 1-16, 2021.

[53] G. B. H Bindu, K. Ramani, and C. S. Bindu, “Optimized resource
scheduling using the meta heuristic algorithm in cloud computing,”
IAENG International Journal of Computer Science, vol. 47, no. 3, pp.
360-366, 2020.

Purba Daru Kusuma is an assistant professor in computer engineering in
Telkom University, Indonesia. He received his bachelor and master’s
degrees in electrical engineering from Bandung Institute of Technology,
Indonesia. He received his doctoral degree in computer science from
Gadjah Mada University, Indonesia. His research interests are in artificial
intelligence, machine learning, and operational research. He currently
becomes a member of IAENG.

Ratna Astuti Nugrahaeni is a lecturer and researcher in computer
engineering in Telkom University, Indonesia. She received her bachelor's
program in computer system from Telkom University, Indonesia. She
received her master’s degree in electrical engineering from Bandung
Institute of Technology, Indonesia. Her research interests are in artificial
intelligence and machine learning.

Ashri Dinimaharawati is a lecturer and researcher in computer
engineering in Telkom University, Indonesia. She received her bachelor's
program from Education University of Indonesia, Indonesia. She received
her master’s degree in electrical engineering from Bandung Institute of
Technology, Indonesia. Her research interests are in artificial intelligence,
game development, and software engineering.

IAENG International Journal of Applied Mathematics, 52:4, IJAM_52_4_10

Volume 52, Issue 4: December 2022

__

