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Abstract—As an important tool to represent structured and
uncertain data, graph models are widely used in computer
networks and chemical molecular structure representation. If
there are uncertainties in the vertices or the binary relationship
between vertices in the graph, the membership function is
introduced to the vertex set and the edge set, and the fuzzy
graph is used to describe such uncertain structural features.
The independent set is an important object to measure the
topological structure of the graph, as the basis of many graph
parameters. In this paper, a novel concept of independent
set is proposed in bipolar fuzzy graph setting. The fuzzy
topological parameters to measure its degree of independence
are defined, and the characteristics of bipolar independence
degree are obtained by using graph theory and fuzzy set theory,
especially for two types of product bipolar fuzzy graphs. Finally,
the algorithm for calculating the maximum (resp. minimum)
positive (resp. negative) fuzzy subgraph with given positive
(resp. negative) degree of independence is designed.

Index Terms—bipolar fuzzy graph, independent set, product
fuzzy graph, fuzzy molecular graph.

I. INTRODUCTION

GRAPHS are an important model to characterize irreg-
ular data or structured data in computer science. For

example, in the subway network, each station is represented
by a vertex. If two stations are consecutively adjacent to each
other on a certain subway line, then an edge is connected
between these two stations. Thus the rail transit network of
the entire city can be modelled by a graph. Another instance,
every molecular structure can be characterized by a graphical
model. Each atom is represented by a vertex, if there is a
chemical bond between two atoms, then an edge is connected
between the corresponding vertices. The graph obtained by
this trick is called a molecular graph. Various applications
of graph models can be found in [1-10].

In a large number of graphical model applications, we find
that the basic elements of the model are uncertain in specific
application scenarios. For example, in the field of computer
networks, many application backgrounds, sites and channels
have some uncertain factors, so it is necessary to use a fuzzy
graph as a model to describe the performance of the network
under the fuzzy framework. In the fuzzy graph setting, the
uncertainties of vertices and edges are characterized by their
respective membership functions (see Islam and Pal [11] and
Samanta et al. [12]).

A bipolar fuzzy set traditionally uses a negative mem-
bership function to describe negative uncertainty. The cor-
responding structured fuzzy graph is called a bipolar fuzzy
graph. That is, there are positive and negative membership
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functions defined on vertex set and edge set, thus we char-
acterize positive and negative uncertainties for vertices and
edges. In recent years, research on bipolar fuzzy graphs has
become a hot topic in the field of fuzzy graphs. Mathew
et al. [13] proposed several connectivity concepts in bipolar
fuzzy graphs. Singh and Kumar [14] represented the lattice
by means of bipolar fuzzy graph. Alnaser et al. [15] defined
bipolar intuitionistic fuzzy graphs and introduced its matri-
ces. Gong and Hua [16] studied the topological indices of
bipolar fuzzy incidence graphs.

As we know, independent sets and independent numbers
are critical properties to characterize the sparsity of graphs,
occupying a central position in graph theory research. Gupta
et al. [17] raised a new concept called ipsd-graph, and
some general structural characterizations of separable ipsd-
graphs are determined. Tait and Timmons [18] computed the
upper bound on the independence number of polarity graphs.
Zhao [19] summarized the tricks on regular graphs that are
extremal with respect to the number of independent sets.
Dyer and Muller [20] stated that the number of independent
sets in cocomparability graphs can be counted in linear
time. Ortiz and Villanueva [21] investigated the number of
maximal independent sets in caterpillar graphs. Haviland
[22] determined novel upper bounds for the independent
domination number of regular graphs. Ortiz and Villanueva
[23] studied the maximal independent sets in grid graphs.
More contexts on independent set in graph can be referred to
Coja-Oghlan and Efthymiou [24], Ge and Stefankovic [25],
Gaspers et al. [26], and Oh and Lee [27].

Although independent sets have been studied a lot in
various graph settings, the related research of independent
sets is still open in the fuzzy graph situation, especially in
the bipolar fuzzy graph setting (see Muhiuddin et al. [28]).
Due to the importance of independent sets in mathematics,
computer science, molecular science and other fields, this
paper studies the independent sets in the bipolar fuzzy graph
setting. We define the independent sets of bipolar fuzzy
graphs from a new perspective, and gives its features on
special graph classes.

The rest of this paper is organized as follows: first, the
definition of bipolar fuzzy graphs and some preliminary
knowledge about bipolar fuzzy sets are given; secondly, the
main new concepts of this paper are presented and certain
characteristics are described from a theoretical point of view;
then, we discuss the degree of independence for two kinds
of product bipolar fuzzy graphs; finally, an algorithm to find
the subgraph with the extreme value of fixed independence
number is proposed.

II. PRELIMINARY KNOWLEDGE

In this section, we give some basic definitions and terms
in preparation for the introduction of the main concepts in
the coming section.
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A. Bipolar fuzzy graph

Let V be a universal set and it can be regarded as
vertex set in bipolar fuzzy graph setting. The set A =
{(v, ιPA(v), ιNA (v)) : v ∈ V } is the bipolar fuzzy set on V
where ιPA : V → [0, 1] and ιNA : V → [−1, 0] are the positive
membership function and negative membership function on
V respectively, and set B = {((v, v′), ιPB(v, v′), ιNB (v, v′)) :
v, v′ ∈ V × V } is the bipolar fuzzy set on V × V where
ιPB : V × V → [0, 1] and ιNb : V × V → [−1, 0] are
the positive membership function and negative membership
function on V 2 respectively. G = (V,A,B) is a bipolar fuzzy
graph if

ιPB(v, v′) ≤ min{ιPA(v), ιPA(v′)}

and
ιNB (v, v′) ≥ max{ιNA (v), ιNA (v′)}

hold for any vertex pair (v, v′) ∈ V 2, and

ιPB(v, v′) = ιNB (v, v′) = 0

if vv′ is not an edge in bipolar fuzzy graph G. An edge vv′

is trivial if ιPB(v, v′) = 0 or ιNB (v, v′) = 0. We say a bipolar
fuzzy graph G = (V,A,B) is complete if

ιPB(v, v′) = min{ιPA(v), ιPA(v′)}

and
ιNB (v, v′) = max{ιNA (v), ιNA (v′)}

hold for any vertex pair (v, v′) ∈ V 2. Throughout this
article, ∧ and ∨ are expressed as minimum and maximum
operations, respectively.

For two bipolar fuzzy sets A1 = {(v, ιPA1
(v), ιNA1

(v)) : v ∈
V } and A2 = {(v, ιPA2

(v), ιNA2
(v)) : v ∈ V }. Set

A3 = A1 ∧A2 = {(v, ιPA3
(v), ιNA3

(v)) : v ∈ V }

and

A4 = A1 ∨A2 = {(v, ιPA4
(v), ιNA4

(v)) : v ∈ V }

where
ιPA3

(v) = min{ιPA1
(v), ιPA2

(v)},

ιNA3
(v) = max{ιNA1

(v), ιNA2
(v)},

ιPA4
(v) = max{ιPA1

(v), ιPA2
(v)},

and
ιNA4

(v) = min{ιNA1
(v), ιNA2

(v)}.

We say A1 ≤ A2 if ιPA1
(v) ≤ ιPA2

(v) and ιNA1
(v) ≥ ιNA2

(v)
for any v ∈ V .

The similar operator can be defined on V 2. For any two
bipolar fuzzy sets B1 = {((v, v′), ιPB1

(v, v′), ιNB1
(v, v′)) :

v, v′ ∈ V } and B2 = {((v, v′), ιPB2
(v, v′), ιNB2

(v, v′)) :
v, v′ ∈ V }, set

B3 = B1∧B2 = {((v, v′), ιPB3
(v, v′), ιNB3

(v, v′)) : v, v′ ∈ V }

and

B4 = B1∨B2 = {((v, v′), ιPB4
(v, v′), ιNB4

(v, v′)) : v, v′ ∈ V },

where

ιPB3
(v, v′) = min{ιPB1

(v, v′), ιPB2
(v, v′)},

ιNB3
(v, v′) = max{ιNB1

(v, v′), ιNB2
(v, v′)},

ιPB4
(v, v′) = max{ιPB1

(v, v′), ιPB2
(v, v′)},

and
ιNB4

(v, v′) = min{ιNB1
(v, v′), ιNB2

(v, v′)}.

We say B1 ≤ B2 if ιPB1
(v, v′) ≤ ιPB2

(v, v′) and ιNB1
(v, v′) ≥

ιNB2
(v, v′) for any (v, v′) ∈ V × V .

Let G = (V,A,B) be a bipolar fuzzy graph and S ⊆ V
be a subset vertex set of V . The order of G is denoted by

O(G) = (OP (G), ON (G)),

where
OP (G) =

∑
v∈V

ιPA(v)

and
ON (G) =

∑
v∈V

ιNA (v)

are positive order and negative order of G, respectively. The
size of G is denoted by

S(G) = (SP (G), SN (G)),

where
SP (G) =

∑
v,v′∈V×V

ιPB(v, v′)

and
SN (G) =

∑
v,v′∈V×V

ιNB (v, v′)

are positive size and negative size of G, respectively. For a
given S ⊆ V , its bipolar cardinality of S can be written as

|S| = (
∑
v∈S

ιPA(v),
∑
v∈S

)ιNA (v)),

where
∑
v∈S ι

P
A(v) and

∑
v∈S ι

P
A(v) are called positive

cardinality and negative cardinality, respectively. For any
v ∈ V , the neighborhood of v in G is denoted by

N(v) = {v′ ∈ V : ιPB(v, v′) > 0 or ιNB (v, v′) < 0}.

The bipolar degree of v in G is formulated by

d(v) = (dP (v), dN (v)),

where
dP (v) =

∑
(v,v′)∈V×V

ιPB(v, v′)

and
dN (v) =

∑
(v,v′)∈V×V

ιNB (v, v′)

are positive degree and negative degree of v in G.

B. Brief overview on independent set in fuzzy graphs

In this subsection, we briefly review the existing defini-
tions of independent sets for bipolar fuzzy graphs.

For a bipolar fuzzy graph G = (V,A,B) and vv′ is an
edge in G. There are several definitions on strong edges
and independent sets, and we introduce some of the most
important ones. vv′ is a positive strong edge if

min{ιPA(v), ιPA(v′)} ≤ 2ιPB(v, v′),

and vv′ is a negative strong edge if

max{ιNA (v), ιNA (v′)} ≥ 2ιNB (v, v′).
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vv′ is a strong edge if it is both positive strong and negative
strong. The independent strength of edge vv′ is denoted by

IG(vv′) = (IPG (vv′), ING (vv′)),

where

IPG (vv′) =
ιPB(v, v′)

min{ιPA(v), ιPA(v′)}
and

ING (vv′) =
ιNB (v, v′)

max{ιNA (v), ιNA (v′)}
are positive independent strength and negative independent
strength, respectively. We expand it to V × V by defining
IPG (vv′) = ING (vv′) = 0 if vv′ is not an edge in G. Moreover,
IG(vv′), IPG (vv′) and ING (vv′) can be simply written by
I(vv′), IP (vv′) and IN (vv′).

Two vertices in a bipolar fuzzy graph G = (V,A,B) are
said to be positive independent if there is no positive strong
edge between them.They are negative independent if there
is no negative strong edge between them. They are bipolar
independent if there is no positive and negative strong edge
between them. S ⊆ V is a positive independent set of G
if any two vertices in S are positive independent, S is a
negative independent set of G if any two vertices in S are
negative independent, and S is a bipolar independent set of
G if any two vertices in S are bipolar independent. A positive
independent set S is a maximal positive independent set if
it has maximal cardinality among all positive independent
sets, and this maximum cardinality is called the positive
independence number of G which is denoted by γP (G). A
negative independent set S is a minimal negative independent
set if it has minimal cardinality among all negative indepen-
dent sets, and this minimal cardinality is called the negative
independence number of G which is denoted by γN (G).
Thus, the independence number of bipolar fuzzy graph G
is denoted by

γ(G) = (γP (G), γN (G)).

III. BIPOLAR INDEPENDENCE IN BIPOLAR FUZZY
GRAPHS

The aim of this section is to introduce our novel idea
of independent set in bipolar fuzzy graph setting. In crisp
graph setting, any two vertices in an independent set have
no edge to connect them, while in our setting, any vertex set
is allowed to be an independent set with certain degree of
independence.

A. Novel approach on the bipolar independence of bipolar
fuzzy graph and theoretical analysis

Let S ⊆ V be a vertex subset with n vertices. We define
the degree of independence of S by

DIn(S) = (DIPn (S), DINn (S)),

where

DIPn (S) = 1−
∑
v,v′∈S I

P (vv′)(
n
2

)
and

DINn (S) = −1 +

∑
v,v′∈S I

N (vv′)(
n
2

)

Fig. 1. The bipolar fuzzy graph G1.

Fig. 2. The bipolar fuzzy graph G2.

are the positive degree of independence of S and the negative
degree of independence of S respectively, and

(
n
2

)
= n(n−1)

2 .
Remark 1. If S is a set with no edges, DIn(S) = (1,−1)
and such vertex subset become independent sets in the crisp
graph. If bipolar fuzzy graph G is complete, and |V | = n
(G has n vertices). Then,

∑
v,v′∈V I

P (vv′) =
(
n
2

)
and∑

v,v′∈V I
N (vv′) =

(
n
2

)
, and thus DIn(V ) = (0, 0). If

S = V , then DIn(V ), DIPn (V ) and DINn (V ) can be
written as DI(G), DIP (G) and DIN (G) which denote the
degree of independence, positive degree of independence and
negative degree of independence of bipolar fuzzy graph G,
respectively.
Example 1. Two bipolar fuzzy graphs G1 and G2 are
described in Figure 1 and Figure 2, respectively.

In G1, V1 = {v1, v2, v3, v4}, ιPA(v1) = 0.6, ιNA (v1) =
−0.8, ιPA(v2) = 0.5, ιNA (v2) = −0.6, ιPA(v3) = 0.7,
ιNA (v3) = −0.4, ιPA(v4) = 0.8, ιNA (v4) = −0.1, ιPB(v1, v2) =
0.4, ιNB (v1, v2) = −0.5, ιPB(v2, v3) = 0.3, ιNB (v2, v3) =
−0.2, ιPB(v2, v4) = 0.4 and ιNB (v2, v4) = −0.1. Thus,∑

v,v′∈V1

IP (vv′) =
0.4

0.5
+

0.3

0.5
+

0.4

0.5
= 2.2,

∑
v,v′∈V1

IN (vv′) =
−0.5

−0.6
+
−0.2

−0.4
+
−0.1

−0.1
=

7

3
,

DIP (G1) = 1− 2.2

6
=

19

30

and
DIN (G1) = −1 +

7

6× 3
= −11

18
.

Hence, DI(G1) = (19
30 ,−

11
18 ).

In G2, V2 = {v1, v2, v3, v4}, ιPA(v1) = 0.7, ιNA (v1) =
−0.4, ιPA(v2) = 0.5, ιNA (v2) = −0.5, ιPA(v3) = 0.6,
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ιNA (v3) = −0.3, ιPA(v4) = 0.8, ιNA (v4) = −0.2, ιPB(v1, v2) =
0.3, ιNB (v1, v2) = −0.3, ιPB(v2, v3) = 0.4, and ιNB (v2, v3) =
−0.2. Thus, ∑

v,v′∈V2

IP (vv′) =
0.3

0.5
+

0.4

0.5
=

7

5
,

∑
v,v′∈V2

IN (vv′) =
−0.3

−0.4
+
−0.2

−0.3
=

17

12
,

DIP (G2) = 1− 7

5× 6
=

23

30

and
DIN (G2) = −1 +

17

6× 12
= −55

72
.

Hence, DI(G2) = (23
30 ,−

55
72 ).

In a bipolar fuzzy graph G, we say an edge vv′ is a positive
independent strong edge if IP (vv′) ≥ 1

2 , i.e.,

ιPB(v, v′)

min{ιPA(v), ιPA(v′)}
≥ 1

2
.

Say vv′ is a negative independent strong edge if IN (vv′) ≥
1
2 , i.e.,

ιNB (v, v′)

max{ιNA (v), ιNA (v′)}
≥ 1

2
.

Say vv′ is an independent strong edge if it is both positive
independent strong edge and negative independent strong
edge.

In terms of the above definitions, we get the following
characteristics.
Theorem 1. Let G = (V,A,B) be a bipolar fuzzy graph.
If there is an independent strong edge between every two
vertices of G, then DIP (G) ≤ 1

2 and DIN (G) ≥ − 1
2 .

Proof of Theorem 1. We only prove DIN (G) ≥ − 1
2 , and

DIP (G) ≤ 1
2 can be obtained using the similar trick.

Assume G has n vertices, and there is a negative inde-
pendent strong edge between any two vertices in G, that is,
IN (vv′) ≥ 1

2 for any v, v′ ∈ V . Hence, we acquire∑
v,v′∈V I

N (vv′)(
n
2

) ≥ 1

2

and

DIN (G) = −1 +

∑
v,v′∈V I

N (vv′)(
n
2

) ≥ −1 +
1

2
= −1

2
.

The desired result is proved. �
In terms of Theorem 1, we get the following corollary

immediately.
Corollary 1. If a bipolar fuzzy graph G has no positive (resp.
negative) independent strong edge, then DIP (G) > 1

2 (resp.
DIN (G) < − 1

2 ).
Theorem 2. Let H = (V ′, A,B) be a subgraph of bipolar
fuzzy graph G = (V,A,B) which is induced by V ′ with
|V | = n and |V ′| = n′. Then, we have

DIP (H) = DIP (G)−
(
n
2

)
−
(
n′

2

)(
n
2

)
×
(
n′

2

) ∑
v,v′∈V

IP (vv′) (1)

+

∑
v,v′∈V I

P (vv′)−
∑
v,v′∈V ′ IP (vv′)(

n′

2

) .

and

DIN (H) = DIN (G)−
(
n
2

)
+
(
n′

2

)(
n
2

)
×
(
n′

2

) ∑
v,v′∈V

IN (vv′) (2)

−
∑
v,v′∈V I

N (vv′)−
∑
v,v′∈V ′ IN (vv′)(

n′

2

) .

Proof of Theorem 2. Here, we only give the detailed proof of
(2), and the proof of (1) can be yielded in the same fashion.

According to the definition of negative degree of indepen-
dence, we have

DIN (G) = −1 +

∑
v,v′∈V I

N (vv′)(
n
2

)
and

DIN (H) = −1 +

∑
v,v′∈V ′ IN (vv′)(

n′

2

)
= −1 + (

∑
v,v′∈V

IN (vv′)− (
∑

v,v′∈V
IN (vv′)

−
∑

v,v′∈V ′

IN (vv′))) \
(
n′

2

)
.

Hence, we get

DIN (H)−DIN (G)

= −1 + (
∑

v,v′∈V
IN (vv′)− (

∑
v,v′∈V

IN (vv′)

−
∑

v,v′∈V ′

IN (vv′))) \
(
n′

2

)
+ 1

−
∑
v,v′∈V I

N (vv′)(
n
2

)
= −

∑
v,v′∈V I

N (vv′)(
n
2

) +

∑
v,v′∈V I

N (vv′)(
n′

2

)
−
∑
v,v′∈V I

N (vv′)−
∑
v,v′∈V ′ IN (vv′)(

n′

2

)
=

(
n
2

)
−
(
n′

2

)(
n
2

)
×
(
n′

2

) ∑
v,v′∈V

IN (vv′)

−
∑
v,v′∈V I

N (vv′)−
∑
v,v′∈V ′ IN (vv′)(

n′

2

) .

The result for the negative part follows. �
In light of Theorem 2, we infer the following corollaries.

Corollary 2. Let G = (V,A,B) be a bipolar fuzzy graph
with n vertices and x ∈ V be any vertex in G. Let H be a
subgraph of G by deleting x from G. Then, we have

DIP (H) = DIP (G)−
4
∑
v,v′∈V I

P (vv′)

n(n− 1)(n− 2)

+
24
∑
v,v′∈V I

P (vv′)

(n− 1)(n− 2)
. (3)

and

DIN (H) = DIN (G) +
4
∑
v,v′∈V I

N (vv′)

n(n− 1)(n− 2)

−
24
∑
v,v′∈V I

N (vv′)

(n− 1)(n− 2)
. (4)
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Proof of Corollary 2. Here, we only give the detailed proof
of (4), and the proof of (3) can be yielded in the same fashion.

Using the definition of H , we have∑
v,v′∈V

IN (vv′)−
∑

v,v′∈V ′

IN (vv′) =
∑
x′∈V

ιNB (x, x′)

and |V ′| = n− 1.
In view of Theorem 2, we acquire

DIN (H) = DIN (G) +

(
n
2

)
−
(
n−1

2

)(
n
2

)
×
(
n−1

2

) ∑
v,v′∈V

IN (vv′)

−
∑
v,v′∈V I

N (vv′)−
∑
v,v′∈V ′ IN (vv′)(

n−1
2

)
= DIN (G) +

4
∑
v,v′∈V I

N (vv′)

n(n− 1)(n− 2)

−
24
∑
v,v′∈V I

N (vv′)

(n− 1)(n− 2)
.

Hence, the equation in corollary holds. �
Corollary 3. Let G = (V,A,B) be a bipolar fuzzy graph
and H = (V ′, A,B) be a subgraph of G with |V | = n and
|V ′| = n′. We have the following two statements.
(i) DIP (H) ≤ DIP (G) if and only if∑

v,v′∈V
IP (vv′)−

∑
v,v′∈V ′

IP (vv′)

≤
(
n
2

)
−
(
n′

2

)(
n
2

) ∑
v,v′∈V

IP (vv′).

(ii) DIN (H) ≤ DIN (G) if and only if∑
v,v′∈V

IN (vv′)−
∑

v,v′∈V ′

IN (vv′)

≥
(
n
2

)
−
(
n′

2

)(
n
2

) ∑
v,v′∈V

IN (vv′).

Proof of Corollary 3. We only give the detailed proof of
statement (ii).

Using Theorem 2 directly, we get

DIN (H) = DIN (G)−
(
n′

2

)
−
(
n
2

)(
n
2

)
×
(
n′

2

) ∑
v,v′∈V

IN (vv′)

−
∑
v,v′∈V I

N (vv′)−
∑
v,v′∈V ′ IN (vv′)(

n′

2

) .

It follows that

DIN (H) ≤ DIN (G)

↔ DIN (G)−DIN (H) ≥ 0

↔
(
n′

2

)
−
(
n
2

)(
n
2

)
×
(
n′

2

) ∑
v,v′∈V

IN (vv′)

+

∑
v,v′∈V I

N (vv′)−
∑
v,v′∈V ′ IN (vv′)(

n′

2

) ≥ 0

↔
∑

v,v′∈V
IN (vv′)−

∑
v,v′∈V ′

IN (vv′)

≥
(
n
2

)
−
(
n′

2

)(
n
2

) ∑
v,v′∈V

IN (vv′).

Hence, the statement (ii) is correct. �
Corollary 4. Let G = (V,A,B) be a bipolar fuzzy graph
and H = (V ′, A,B) be a subgraph of G by deleting one
vertex. Then
(1) DIP (H) = DIP (G) ↔

∑
v,v′∈V I

P (vv′) −∑
v,v′∈V ′ IP (vv′) = 2

n

∑
v,v′∈V I

P (vv′).
(2) DIP (H) < DIP (G) ↔

∑
v,v′∈V I

P (vv′) −∑
v,v′∈V ′ IP (vv′) < 2

n

∑
v,v′∈V I

P (vv′).
(3) DIP (H) > DIP (G) ↔

∑
v,v′∈V I

P (vv′) −∑
v,v′∈V ′ IP (vv′) > 2

n

∑
v,v′∈V I

P (vv′).
(4) DIN (H) = DIN (G) ↔

∑
v,v′∈V I

N (vv′) −∑
v,v′∈V ′ IN (vv′) = − 2

n

∑
v,v′∈V I

N (vv′).
(5) DIN (H) > DIN (G) ↔

∑
v,v′∈V I

N (vv′) −∑
v,v′∈V ′ IN (vv′) < − 2

n

∑
v,v′∈V I

N (vv′).
(6) DIN (H) < DIN (G) ↔

∑
v,v′∈V I

N (vv′) −∑
v,v′∈V ′ IN (vv′) > − 2

n

∑
v,v′∈V I

N (vv′).
Next, we introduce the classification of bipolar fuzzy graph

in terms of positive degree of independence or negative
degree of independence. Let G1 = (V1, A1, B1) and G2 =
(V2, A2, B2) be two bipolar fuzzy graphs. The relation “∼P ”
and “∼N” between G1 and G2 are defined as follows:
• G1 ∼P G2 ↔ DIP (G1) = DIP (G2);
• G1 ∼N G2 ↔ DIN (G1) = DIN (G2).

After detailed analysis, we get the following result on ∼P
and ∼N and we skip the detailed proof here.
Theorem 3. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2)
be two bipolar fuzzy graphs. The following two statements
are hold.
(i) The relation ∼P between G1 and G2 is an equivalence
relation.
(ii) The relation ∼N between G1 and G2 is an equivalence
relation.

The above two types of equivalence relations give two dif-
ferent classification methods of bipolar fuzzy graphs, which
can be effectively divided according to actual application
scenarios.

B. Bipolar independence in two classes of product bipolar
fuzzy graph settings

In this subsection, we consider the bipolar independence
for various types of products of bipolar fuzzy graphs.
Definition 1. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2)
be two bipolar fuzzy graphs. The Cartesian product of G1

and G2 is denoted by G1×G2 = (V1×V2, A1×A2, B1×B2)
such that
(i) The vertex set of G1 × G2 is denoted by V1 × V2 =
{(v1, v2)|v1 ∈ V1, v2 ∈ V2}.
(ii) Let E1 and E2 be the edge set of G1 and G2, respectively.
The edge set of G1×G2 is denoted by E = E′∪E′′, where

E′ = {((v1, v2), (v1, v
′

2))|v1 ∈ V1, v2v
′

2 ∈ E2}

and

E′′ = {((v1, v2), (v
′

1, v2))|v1v
′

1 ∈ E1, v2 ∈ V2}.

(iii) For any (v1, v2) ∈ V1 × V2,

ιPA1×A2
(v1, v2) = min{ιPA1

(v1), ιPA2
(v2)},

ιNA1×A2
(v1, v2) = max{ιNA1

(v1), ιNA2
(v2)}.
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(iv) For any ((v1, v2), (v1, v
′

2)) ∈ E′,

ιPB1×B2
((v1, v2), (v1, v

′

2)) = min{ιPA1
(v1), ιPB2

(v2, v
′

2)},

ιNB1×B2
((v1, v2), (v1, v

′

2)) = max{ιNA1
(v1), ιNB2

(v2, v
′

2)}.

For any ((v1, v2), (v
′

1, v2)) ∈ E′′,

ιPB1×B2
((v1, v2), (v

′

1, v2)) = min{ιPB1
(v1, v

′

1), ιPA2
(v2)},

ιNB1×B2
((v1, v2), (v

′

1, v2)) = max{ιNB1
(v1, v

′

1), ιNA2
(v2)}.

The bound of degree of independence for the Cartesian
product of bipolar fuzzy graphs can be characterized as
follows (in Theorem 4, DIPn1

(G1), DINn1
(G1), DIPn2

(G2),
DINn2

(G2), DIPn1n2
(G1 × G2) and DINn1n2

(G1 × G2) can
be simply written by DIP (G1), DIN (G1), DIP (G2),
DIN (G2), DIP (G1×G2) and DIN (G1×G2), respective-
ly).
Theorem 4. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2)
be two bipolar fuzzy graphs with |V1| = n1 and |V2| = n2.
Then, we have

DIP (G1 ×G2) ≤ 1

−
n2

(
n1

2

)
(1−DIP (G1)) + n1

(
n2

2

)
(1−DIP (G2))(

n1n2

2

) ,

DIN (G1 ×G2) ≤ −1

+
n2

(
n1

2

)
(−1 +DIN (G1)) + n1

(
n2

2

)
(−1 +DIN (G2))(

n1n2

2

) .

Proof of Theorem 4. We only present the detailed proof of
the negative part.

By the definition of negative degree of independence, we
have

DIN (G1) = −1 +

∑
v,v′∈V1

IN (vv′)(
n1

2

)
and

DIN (G2) = −1 +

∑
v,v′∈V2

IN (vv′)(
n2

2

) .

We discuss the two classes of edges E′ and E′′ in G1×G2,
respectively.
• For any ((v1, v2), (v1, v

′

2)) ∈ E′, we have

ING1×G2
((v1, v2), (v1, v

′

2))

=
ιNB1×B2

((v1, v2), (v1, v
′

2))

max{ιNA1×A2
(v1, v2), ιNA1×A2

(v1, v
′
2)}

=
max{ιNA1

(v1), ιNB2
(v2, v

′

2)}
max{ιNA1

(v1), ιNA2
(v2), ιNA2

(v
′
2)}

=



max{ιNA1
(v1),ιNB2

(v2,v
′
2)}

ιNA1
(v1)

,

if max{ιNA1
(v1), ιNA2

(v2), ιNA2
(v

′

2)} = ιNA1
(v1)

ιNB2
(v2,v

′
2)

max{ιNA2
(v2),ιNA2

(v
′
2)} ,

if max{ιNA1
(v1), ιNA2

(v2), ιNA2
(v

′

2)} 6= ιNA1
(v1)

=


> ING2

(v2v
′

2),

if max{ιNA1
(v1), ιNA2

(v2), ιNA2
(v

′

2)} = ιNA1
(v1)

= ING2
(v2v

′

2),

if max{ιNA1
(v1), ιNA2

(v2), ιNA2
(v

′

2)} 6= ιNA1
(v1)

≥ ING2
(v2v

′

2).

Hence, ∑
(v1,v2),(v1,v

′
2)∈V1×V2

ING1×G2
((v1, v2), (v1, v

′

2))

≥ n1I
N
G2

(v2v
′

2).

• For any ((v1, v2), (v
′

1, v2)) ∈ E′′, we get

ING1×G2
((v1, v2), (v

′

1, v2))

=
ιNB1×B2

((v1, v2), (v
′

1, v2))

max{ιNA1×A2
(v1, v2), ιNA1×A2

(v
′
1, v2)}

=
max{ιNA2

(v2), ιNB1
(v1, v

′

1)}
max{ιNA1

(v1), ιNA1
(v

′
1), ιNA2

(v2)}

=



max{ιNA2
(v2),ιNB1

(v1,v
′
1)}

ιNA2
(v2)

,

if max{ιNA1
(v1), ιNA1

(v
′

1), ιNA2
(v2)} = ιNA2

(v2)
ιNB1

(v1,v
′
1)

max{ιNA1
(v1),ιNA1

(v
′
1)} ,

if max{ιNA1
(v1), ιNA1

(v
′

1), ιNA2
(v2)} 6= ιNA2

(v2)

=


> ING1

(v1v
′

1),

if max{ιNA1
(v1), ιNA1

(v
′

1), ιNA2
(v2)} = ιNA2

(v2)

= ING1
(v1v

′

1),

if max{ιNA1
(v1), ιNA1

(v
′

1), ιNA2
(v2)} 6= ιNA2

(v2)

≥ ING1
(v1v

′

1).

Hence, ∑
(v1,v2),(v

′
1,v2)∈V1×V2

ING1×G2
((v1, v2), (v

′

1, v2))

≥ n2I
N
G1

(v1v
′

1).

Since G1 × G2 only has two kinds of edges E′ and E′′,
we infer ∑

(v1,v2),(v
′
1,v

′
2)∈V1×V2

ING1×G2
((v1, v2), (v

′

1, v
′

2))

=
∑

(v1,v2),(v1,v
′
2)∈V1×V2

ING1×G2
((v1, v2), (v1, v

′

2))

+
∑

(v1,v2),(v
′
1,v2)∈V1×V2

ING1×G2
((v1, v2), (v

′

1, v2))

≥ n1I
N
G2

(v2v
′

2) + n2I
N
G1

(v1v
′

1)

= n2

(
n1

2

)
(−1 +DIN (G1)) + n1

(
n2

2

)
(−1 +DIN (G2)).

Theorem,

DIN (G1 ×G2)

≤ −1 +

∑
(v1,v2),(v

′
1,v

′
2)∈V1×V2

ING1×G2
((v1, v2), (v

′

1, v
′

2))(
n1n2

2

)
≤ −1 +

n2

(
n1

2

)
(−1 +DIN (G1)) + n1

(
n2

2

)
(−1 +DIN (G2))(

n1n2

2

) .

We finish the proof of Theorem 4. �

Now, we define the normal product of bipolar fuzzy
graphs.
Definition 2. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2)
be two bipolar fuzzy graphs. The normal product of G1 and
G2 is denoted by G1 ◦G2 = (V1 × V2, A,B) such that
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(i) The vertex set of G1 ◦ G2 is denoted by V1 × V2 =
{(v1, v2)|v1 ∈ V1, v2 ∈ V2}.
(ii) Let E1 and E2 be the edge set of G1 and G2, respectively.
((v1, v2), (v

′

1, v
′

2)) ∈ (V1 × V2) × (V1 × V2) is an edge in
G1 ◦G2 if one of the following conditions meets:
• v1 = v

′

1 and v2v
′

2 ∈ E2;
• v2 = v

′

2 and v1v
′

1 ∈ E1;
• v1v

′

1 ∈ E1 and v2v
′

2 ∈ E2.
(iii) For any (v1, v2) ∈ V1 × V2,

ιPA(v1, v2) = min{ιPA1
(v1), ιPA2

(v2)},

ιNA (v1, v2) = max{ιNA1
(v1), ιNA2

(v2)}.

(iv) For any ((v1, v2), (v
′

1, v
′

2)) ∈ E(G1 ◦G2),

ιPB((v1, v2), (v
′

1, v
′

2))

=



min{ιPA1
(v1), ιPB2

(v2, v
′

2)},
if v1 = v

′

1 and v2v
′

2 ∈ E2

min{ιPA2
(v2), ιPB1

(v1, v
′

1)},
if v2 = v

′

2 and v1v
′

1 ∈ E1

min{ιPB1
(v1, v

′

1), ιPB2
(v2, v

′

2)},
if v1v

′

1 ∈ E1 and v2v
′

2 ∈ E2

ιNB ((v1, v2), (v
′

1, v
′

2))

=



max{ιNA1
(v1), ιNB2

(v2, v
′

2)},
if v1 = v

′

1 and v2v
′

2 ∈ E2

max{ιNA2
(v2), ιNB1

(v1, v
′

1)},
if v2 = v

′

2 and v1v
′

1 ∈ E1

max{ιNB1
(v1, v

′

1), ιNB2
(v2, v

′

2)},
if v1v

′

1 ∈ E1 and v2v
′

2 ∈ E2

Theorem 5. Let G1 = (V1, A1, B1) and G2 = (V2, A2, B2)
be two bipolar fuzzy graphs with |V1| = n1, |V2| = n2,
|E1| = m1 and |E2| = m2. Then, we have
(1) If ιPB1

(v1, v
′

1) ≤ ιPB2
(v2, v

′

2) and ιPA1
(v1) ∧ ιPA1

(v
′

1) ≤
ιPA2

(v2) ∧ ιPA2
(v

′

2) for any (v1, v
′

1) ∈ E1 and (v2, v
′

2) ∈ E2,
then

DIP (G1 ◦G2)

≤ 1− {(n2 + 2m2)

(
n1

2

)
(1−DIP (G1))

+n1

(
n2

2

)
(1−DIP (G2))} \

(
n1n2

2

)
.

(2) If ιPB1
(v1, v

′

1) ≥ ιPB2
(v2, v

′

2) and ιPA1
(v1) ∧ ιPA1

(v
′

1) ≥
ιPA2

(v2) ∧ ιPA2
(v

′

2) for any (v1, v
′

1) ∈ E1 and (v2, v
′

2) ∈ E2,
then

DIP (G1 ◦G2)

≤ 1− {(n1 + 2m1)

(
n2

2

)
(1−DIP (G2))

+n1

(
n‘

2

)
(1−DIP (G1))} \

(
n1n2

2

)
.

(3) If ιPB1
(v1, v

′

1) ≥ ιPB2
(v2, v

′

2) and ιPA1
(v1) ∧ ιPA1

(v
′

1) ≤
ιPA2

(v2) ∧ ιPA2
(v

′

2) for any (v1, v
′

1) ∈ E1 and (v2, v
′

2) ∈ E2,
then

DIP (G1 ◦G2)

≤ 1− {(n1 + 2m1)

(
n2

2

)
(1−DIP (G2))

+n1

(
n‘

2

)
(1−DIP (G1))} \

(
n1n2

2

)
.

(4) If ιPB1
(v1, v

′

1) ≤ ιPB2
(v2, v

′

2) and ιPA1
(v1) ∧ ιPA1

(v
′

1) ≥
ιPA2

(v2) ∧ ιPA2
(v

′

2) for any (v1, v
′

1) ∈ E1 and (v2, v
′

2) ∈ E2,
then

DIP (G1 ◦G2)

≤ 1− {(n2 + 2m2)

(
n1

2

)
(1−DIP (G1))

+n1

(
n2

2

)
(1−DIP (G2))} \

(
n1n2

2

)
.

(5) If ιNB1
(v1, v

′

1) ≥ ιNB2
(v2, v

′

2) and ιNA1
(v1) ∨ ιNA1

(v
′

1) ≥
ιNA2

(v2) ∨ ιPA2
(v

′

2) for any (v1, v
′

1) ∈ E1 and (v2, v
′

2) ∈ E2,
then

DIN (G1 ◦G2)

≤ −1 + {(n2 + 2m2)

(
n1

2

)
(1−DIN (G1))

+n1

(
n2

2

)
(−1 +DIN (G2))} \

(
n1n2

2

)
.

(6) If ιNB1
(v1, v

′

1) ≤ ιNB2
(v2, v

′

2) and ιNA1
(v1) ∨ ιNA1

(v
′

1) ≤
ιNA2

(v2) ∨ ιPA2
(v

′

2) for any (v1, v
′

1) ∈ E1 and (v2, v
′

2) ∈ E2,
then

DIN (G1 ◦G2)

≤ −1 + {(n1 + 2m1)

(
n2

2

)
(1−DIN (G2))

+n2

(
n1

2

)
(−1 +DIN (G1))} \

(
n1n2

2

)
.

(7) If ιNB1
(v1, v

′

1) ≥ ιNB2
(v2, v

′

2) and ιNA1
(v1) ∨ ιNA1

(v
′

1) ≤
ιNA2

(v2) ∨ ιPA2
(v

′

2) for any (v1, v
′

1) ∈ E1 and (v2, v
′

2) ∈ E2,
then

DIN (G1 ◦G2)

≤ −1 + {(n1 + 2m1)

(
n2

2

)
(1−DIN (G2))

+n2

(
n1

2

)
(−1 +DIN (G1))} \

(
n1n2

2

)
.

(8) If ιNB1
(v1, v

′

1) ≥ ιNB2
(v2, v

′

2) and ιNA1
(v1) ∨ ιNA1

(v
′

1) ≤
ιNA2

(v2) ∨ ιPA2
(v

′

2) for any (v1, v
′

1) ∈ E1 and (v2, v
′

2) ∈ E2,
then

DIN (G1 ◦G2)

≤ −1 + {(n2 + 2m2)

(
n1

2

)
(1−DIN (G1))

+n1

(
n2

2

)
(−1 +DIN (G2))} \

(
n1n2

2

)
.

We skip the detailed proof of Theorem 5 which can be
done using the same tricks and discussions as the proof of
Theorem 4.

C. Algorithms to search the maximum positive independent
graph and the minimum negative independent graph

For a given bipolar fuzzy graph G = (V,A,B), we say
a fuzzy subgraph H = (V ′, A′, B′) of G is a maximal
positive independent subgraph with a given positive degree
of independence (denoted by DIPc ) if there is no bipolar
fuzzy subgraph H ′ = (V ′′, A′′, B′′) with V ′ ⊆ V ′′ , which
makes the positive degree of independence of H ′ larger or
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equal to DIPc . Similarly, we have the following definition for
the negative side. W say a fuzzy subgraph H = (V ′, A′, B′)
of G is a minimal negative independent subgraph with given
negative degree of independence (denoted by DINc ) if there
is no bipolar fuzzy subgraph H ′ = (V ′′, A′′, B′′) with
V ′ ⊆ V ′′ , which makes the negative degree of independence
of H ′ smaller or equal to DINc .

We have the algorithms to search the maximum positive
independent graph with detailed positive degree of indepen-
dence and minimal negative independent graph with specific
negative degree of independence, respectively. Here, we only
present the second algorithm to search the minimal negative
independent graph with given DINc .
Algorithm A: Find the minimal negative independent graph
Input: A bipolar fuzzy graph G = (V,A,B) with fixed
negative degree of independence DINc .
A1: Compute the ING (vv′) for each edge vv′ in bipolar fuzzy
graph G.
A2: Consider Θv as the sum of negative independent
strengths of edges incident to a vertex v ∈ V . In the
initialization, Θv = 0 for all vertices v in V . Set Υ as the
sum of the negative independent strengths of all edges in
bipolar fuzzy graph G. Calculate Υ =

∑
v,v′ ι

N (vv′).
A3: Compute DINn = −1 + Υ

(n
2)

.

A4: If DINn ≥ DINc , then the given bipolar fuzzy graph
is the desired minimal negative fuzzy independent subgraph.
On the contrary, we go to the step A5.
A5: Find Θv for every vertex v in G:

For each vertex v in bipolar fuzzy graph G
For each vertex v′ in bipolar fuzzy graph G

Θv = Θv + ING (vv′)

End For
End For

A6: Find

Ω = min
v∈V
{Θv}

and we mark

vmin = argminv∈V {Θv}.

A7: Remove vmin from the vertex set and re-set V = V −
vmin. Moreover, the Θv for every vertex v is updated in the
following procedure.

For each vertex v in bipolar fuzzy graph G.
Θv = Θv − ιN (v, vmin)

End For
A8: Update Υ = Υ− Ω and n = n− 1.
A9: Find DINn = −1 + Υ

(n
2)

.
A10: Judge whether the minimal negative independent sub-
graph is achieved or not in terms of the following pro-
gramme.

If DINn ≥ DINc , then
The desired minimal negative independent subgraph

is achieved which is induced by the current vertex set V .
Else

Go to step A6
End For

Output: The minimal negative independent graph with given
DINc .

Fig. 3. The structure of cycloalkane C2
n.

Fig. 4. The structure of Benzene Hk .

IV. APPLICATION IN CHEMICAL COMPOUND

In this section, we apply the concept of bipolar inde-
pendence to bipolar fuzzy graphs of chemical molecules.
We consider the following chemical structures: cycloalkane
C2
n (see Figure 3), Benzene Hk (see Figure 4) and One-

sided polyamine chain C(m,n) (see Figure 5). The bipolar
membership function of the vertices is described according
to the types and rotation characteristics of the atoms, and the
bipolar membership functions of the edges in the chemical
bipolar molecular graph are described according to the types
of chemical bonds and the properties of the atoms at both
ends of the chemical bonds.

Let n = 20 in C2
n, k = 6 in Hk and (m,n) =

(5, 6) in C(m,n). We determined that DIP (C2
n) = 0.8,

DIN (C2
n) = −0.4, DIP (Hk) = 0.5, DIN (Hk) = −0.6,

DIP (C(m,n)) = 0.2 and DIN (C(m,n)) = −0.9. It
implies that DIP (C2

n) > DIP (Hk) > DIP (Hk) and
DIN (C2

n) < DIN (Hk) < DIN (Hk).
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Fig. 5. The structure of one-sided polyamine chain C(m,n).

V. CONCLUSION

In this paper, we introduce the degree of independence
in bipolar fuzzy graph setting, and several characteristics
are determined from a theoretical point of view, including
the two classes of products of bipolar fuzzy graphs. The
results obtained in this paper have guiding significance for
the analysis of network structure and chemical molecular
structure with uncertainty. The following content can be used
as the subject of the ongoing research.
• The independent set in the network reflects the sparseness
and connectivity of the network, especially the device-based
network. Therefore, the user will be disconnected at special
moments (for example, shutting down at night, no signal in
the basement or virgin forest), and the connection status of
each node in the network is uncertain. Under this condition,
the fuzzy graph can be used to model the device-based
network, analyze its independence, and obtain the relevant
information (up and down link capacity, throughput, band-
width, frequency, etc.) of the corresponding network.
• There are certain uncertainties in the structure of chemical
molecules, such as the spin angle of atoms, the characteristics
of chemical bond splitting and recombination, etc. We can
define the membership function of atoms and chemical
bonds, so as to convert molecular graphs into fuzzy molec-
ular graphs, and analyze it from the perspective of fuzzy
mathematics.
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