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Abstract—In this paper, we present some new equalities and
inequalities for K-g-fusion frames in Hilbert spaces with the
help of operator theory. Our results generalize and improve
the remarkable results which have been obtained by Ahmadi
et al.
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I. INTRODUCTION

FRAMES were first proposed by Duffin and Schaeffer
[1] in 1952 to address some problems in nonharmonic

Fourier series. Frames, which generalize the concept of
bases, can provide non-unique representations for a given
vector [2]. Now, frame theory has been applied in signal
processing [3],[4], computer science[5,6], among others. For
more information on frame theory and its applications, we
refer the readers to [2, 7, 8].

In the study of longstanding conjecture of signal process-
ing community:a signal can be reconstructed without the
information about the phase. Based on this fact, Balan et
al. [9] discovered a surprising Parseval frame identities and
the authors of [10, 11] extended these identities to alternate
dual frames. Later on, many authors improved and developed
some results see [12− 15].

Recently, g-fusion frames were proposed by the com-
bination of g-frames and fusion frames. K-frames were
introduced by Gǎvruta [16] for studying the nature of atomic
systems with a bounded linear operator K ∈ B(H). As is
well known, K-frames are more general than the classical
frames. Many properties of frames may not hold for K-
frames and g-fusion frames [15,17]. K-g-fusion frames were
proposed by Ahmadi, Rahimlon, Sadri [15] et al., and they
discussed the duality and stability of K-g-fusion frames.
Then, which properties of the classical frames may be
extended to the K-g-fusion frames? In this paper, we mainly
study the equalities and inequalities for K-g-fusion frames
from the point of view of operator theory.

We need to recall some notations and basic definitions.
Throughout this work, H and K are separable Hilbert

spaces and B(H,K) is the collection of all bounded linear
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operators of H into K. If K = H, we write B(H,H) as
B(H), and {Hj}j∈J is a sequence of Hilbert spaces, where
J is a subset of integers Z. Also, πV is the orthogonal
projection from H onto a closed subspace V ⊂ H. IH
denotes the identity operator on H.

Definition 1.1 [15] Let W = {Wj}j∈J be a collection
of closed subspaces of H, {vj}j∈J be a family of positive
weights, and let Λj ∈ B(H,Hj), j ∈ J and K ∈ B(H). We
say Λ := (Wj ,Λj , vj) is a K-g-fusion frame for H if there
exist 0 < A ≤ B <∞ such that for all f ∈ H

A‖K∗f‖2 ≤
∑
j∈J

v2
j ‖ΛjπWj

f‖2 ≤ B‖f‖2. (1)

The constants A and B are called the lower and upper K-
g-fusion frame bounds, respectively. If

∑
j∈J

v2
j ‖ΛjπWjf‖2 =

‖K∗f‖2, we call Λ a Parseval K-g-fusion frame for H. If
K = IH, we call Λ a g-fusion frame (see [15]). If Λj = πWj

for each j ∈ J , we call Λ a K-fusion frame, and if K = IH
and Λj = πWj for each j ∈ J , we call Λ a fusion frame.
So a K-g-fusion frame is a generalization of a fusion frame,
g-fusion frame and K-fusion frame [18].

The synthesis and the analysis operators in the K-g-fusion
frames are defined by [15]

TΛ : H2 → H, TΛ({fj}j∈J) =
∑
j∈J

vjπWj
Λ∗jfj ,

T ∗Λ : H → H2, T ∗Λ(f) = {vjΛjπWj
f}j∈J .

The K-g-fusion frame operator SΛ : H → H defined by

SΛf = TΛT
∗
Λf =

∑
j∈J

v2
jπWj

Λ∗jΛjπWj
f, ∀f ∈ H

which is positive, bounded and self adjoint [15]. It can be
easily verify that

〈SΛf, f〉 =
∑
j∈J

v2
j ‖ΛjπWjf‖2. (2)

Furthermore, if Λ is a K-g-fusion frame with bounds A and
B, then from Equation (1), we have

〈AKK∗f, f〉 ≤ 〈SΛf, f〉 ≤ 〈Bf, f〉. (3)

Like K-frames and K-fusion frames, the frame operator
of the K-g-fusion frame is not invertible. But if K ∈ B(H)
has closed range, then SΛ from R(K) onto SΛ(R(K)) is
invertible [15].

Let Λ = {Wj ,Λj , vj} be a K-g-fusion frame for H and
Λ̃ = {W̃j , Λ̃j , vj} be a K-g-fusion dual of Λ. Suppose that
I ⊂ J and we have the definition [15]

SIf =
∑
j∈I

v2
jπWj

Λ∗j Λ̃jπW̃j
f, ∀f ∈ H. (4)

Obviously, SI ∈ B(H), positive and SI + SIc = K.
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Definition 1.2 [15] Let Λ be a K-g-fusion frame for H.
A g-fusion Bessel sequence Λ̃ = (W̃j , Λ̃j , vj) is called a
K-g-fusion dual of Λ, for each f ∈ H, we have

Kf =
∑
j∈J

v2
jπWj

Λ∗j Λ̃jπW̃j
f.

Recently, Ahmadi et al. [15] obtained the following con-
clusions for K-g-fusion frames in Hilbert spaces based on
the work in [10, 11].

Theorem 1.1 [15] Let K ∈ B(H) and Λ = {Wj ,Λj , vj}
be a K-g-fusion frame for H. Suppose that Λ̃ = {W̃j , Λ̃j , vj}
is a K-g-fusion dual of Λ. Then for any I ⊂ J and any
f ∈ H, we have∑

j∈I
v2
j 〈Λ̃jπW̃j

f,ΛjπWjKf〉 − ‖SIf‖2

=
∑
j∈Ic

v2
j 〈Λ̃jπW̃j

f,ΛjπWj
Kf〉 − ‖SIcf‖2.

(5)

Theorem 1.2 [15] Let K ∈ B(H) and Λ = {Wj ,Λj , vj}
be a Parseval K-g-fusion frame for H. If I ⊆ J and E ⊆ Ic,
then for every f ∈ H, we get

3
4‖KK

∗f‖2 ≤ Re(
∑
j∈I

v2
j 〈ΛjπWj

f,ΛjπWj
KK∗f〉)

+‖
∑
j∈Ic

v2
jπWjΛ∗jΛjπWjf‖2

= Re(
∑
j∈Ic

v2
j 〈ΛjπWj

f,ΛjπWj
KK∗f〉)

+‖
∑
j∈I

v2
jπWj

Λ∗jΛjπWj
f‖2.

(6)

Motivated by the work of Balan et al. [10], in the Section
2, we continue this work about K-g-fusion frames and give
some equalities and inequalities of these frames from the
point of view of operator theory. Moreover, we also establish
a new result for Parseval K-g-fusion frame associated with
a scalar λ ∈ [0, 1] and show that Theorem 1.2 is a particular
case of our result when λ = 1

2 . Finally, we introduce some
notations and get some results of the Parseval K-g-fusion
frames.

II. MAIN RESULTS

To prove our main results, we shall briefly recall the
following lemmas.

Lemma 2.1 [18] Suppose that T ∈ B(H) has a closed
range, then there exists a pseudo-inverse T † ∈ B(H) of T
such that

TT †T = T, T †TT † = T †, (T †)∗ = (T ∗)†.

Lemma 2.2 [12] Suppose that U, V, T ∈ B(H), U+V =
T , and the range of T is closed. Then we have

T ∗T †U + V ∗T †V = V ∗T †T + U∗T †U.

Lemma 2.3 [13] If U, V,M ∈ B(H) satisfy U+V = M ,
then

U∗U + 1
2 (V ∗M +M∗V ) = V ∗V + 1

2 (U∗M +M∗U)
≥ 3

4M
∗M.

Lemma 2.4 [13] If U, V,M ∈ B(H) satisfy U + V =
MM∗, then for any λ ∈ [0, 1] we have

U∗U + λ(V ∗MM∗ +MM∗V )
= V ∗V + (1− λ)(U∗MM∗ +MM∗U) + (2λ− 1)(MM∗)2

≥ (2λ− λ2)(MM∗)2.

The following lemma is a known result for each Bessel
sequence [2] and so is for K-g-fusion frames.

Lemma 2.5 Let K be a closed range operator and Λ
be a K-g-fusion frame for H. Then, for any f ∈ H, we have

‖
∑
j∈J

v2
jπWj

Λ∗jΛjπWj
f‖2 ≤ ‖SΛ‖

∑
j∈J

v2
j ‖ΛjπWj

f‖2.

Firstly, we establish some inequalities for K-g-fusion
frames.

Theorem 2.1 Let K ∈ B(H) and Λ = {Wj ,Λj , vj} be
a K-g-fusion frame for H. Suppose that Λ̃ = {W̃j , Λ̃j , vj}
is a K-g-fusion dual of Λ. Then for every I ⊂ J and each
f ∈ H, we have

3
4‖Kf‖

2 ≤ Re
∑
j∈I

v2
j 〈ΛjπWjKf, Λ̃jπW̃j

f〉

+‖
∑
j∈Ic

v2
jπWjΛ∗j Λ̃jπW̃j

f‖2

= Re
∑
j∈Ic

v2
j 〈ΛjπWj

Kf, Λ̃jπW̃j
f〉

+‖
∑
j∈I

v2
jπWjΛ∗j Λ̃jπW̃j

f‖2

≤ 3‖K‖2+‖SI−SIc‖2
4 ‖f‖2,

(7)

where the operator SI is defined by Equation (4).
Proof For every I ⊂ J , applying Equation (4), we have

SI + SIc = K. It follows that

〈K∗SIf, f〉 = 〈SIf,Kf〉
= 〈
∑
j∈I

v2
jπWjΛ∗j Λ̃jπW̃j

f,Kf〉

=
∑
j∈I

v2
j 〈Λ̃jπW̃j

f,ΛjπWjKf〉

=
∑
j∈I

v2
j 〈ΛjπWjKf, Λ̃jπW̃j

f〉,

that is, for each f ∈ H, from Lemma 2.3, we have

Re
∑
j∈I

v2
j 〈ΛjπWj

Kf, Λ̃jπW̃j
f〉+ ‖

∑
j∈Ic

v2
jπWj

Λ∗j Λ̃jπW̃j
f‖2

= 1
2 (〈S∗IKf, f〉+ 〈K∗SIf, f〉) + ‖SIcf‖2

= 1
2 (〈S∗IcKf, f〉+ 〈K∗SIcf, f〉) + ‖SIf‖2

= Re
∑
j∈Ic

v2
j 〈ΛjπWj

Kf, Λ̃jπW̃j
f〉+ ‖

∑
j∈I

v2
jπWj

Λ∗j Λ̃jπW̃j
f‖2

≥ 3
4‖Kf‖

2.

Hence the left-hand inequality of the Equation (7) holds.
Next, we show that the right-hand inequality of the Equa-

tion (7). For any f ∈ H, we obtain

Re
∑
j∈Ic

v2
j 〈ΛjπWjKf, Λ̃jπW̃j

f〉+ ‖
∑
j∈I

v2
jπWjΛ∗j Λ̃jπW̃j

f‖2

= Re〈S∗IcKf, f〉+ 〈SIf, SIf〉
= Re〈Kf, (K − SI)f〉+ 〈SIf, SIf〉
= Re(〈Kf,Kf〉 − 〈Kf, SIf〉) + 〈SIf, SIf〉
= 〈Kf,Kf〉 −Re〈Kf, SIf〉+ 〈SIf, SIf〉
= 〈Kf,Kf〉 −Re〈(K − SI)f, SIf〉
= 〈Kf,Kf〉 −Re〈SIcf, SIf〉
= 〈Kf,Kf〉 − 1

2 〈SIf, SIcf〉 −
1
2 〈SIcf, SIf〉

= 3
4‖Kf‖

2 + 1
4 〈SIf + SIcf, SIf + SIcf〉

− 1
2 〈SIf, SIcf〉 −

1
2 〈SIcf, SIf〉

= 3
4‖Kf‖

2 + 1
4 〈(SI − SIc)f, (SI − SIc)f〉

≤ 3
4‖K‖

2‖f‖2 + 1
4‖SI − SIc‖

2‖f‖2

= 3‖K‖2+‖SI−SIc‖2
4 ‖f‖2.

This completes the proof.
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Remark 2.1 Note the equality of the Equation (7) in-
volves the real parts of the complex numbers. Theorem 1.1
is a more general form which does not involve the real parts
of the complex numbers. But the inequalities of the Equation
(7) are new results.

In the sequel, we get a more general result. Suppose
{tj}j∈J is a bounded sequence of complex numbers. Ac-
cording to Lemma 2.3, we take

Uf =
∑
j∈J

tjv
2
jπWj

Λ∗j Λ̃jπW̃j
f,

V f =
∑
j∈J

(1− tj)v2
jπWj

Λ∗j Λ̃jπW̃j
f.

Similarly to the proof of Theorem 2.1, we have the result
as follows.

Theorem 2.2 Let K ∈ B(H) and Λ = {Wj ,Λj , vj} be
a K-g-fusion frame for H. Suppose that Λ̃ = {W̃j , Λ̃j , vj}
is a K-g-fusion dual of Λ. Then for all bounded sequence
{tj}j∈J and all f ∈ H, we have

Re
∑
j∈J

tjv
2
j 〈ΛjπWj

Kf, Λ̃jπW̃j
f〉

+‖
∑
j∈J

(1− tj)v2
jπWjΛ∗j Λ̃jπW̃j

f‖2

= Re
∑
j∈J

(1− tj)v2
j 〈ΛjπWj

Kf, Λ̃jπW̃j
f〉

+‖
∑
j∈J

tjv
2
jπWj

Λ∗j Λ̃jπW̃j
f‖2

≥ 3
4‖Kf‖

2.

Proof From the left-hand inequality of the Equation (7)
if we take I ⊂ J ,

tj =

{
1, j ∈ I
0, j ∈ Ic

we conclude that the Theorem 2.2 holds.
This completes the proof.
Theorem 2.3 Suppose that K ∈ B(H) is positive and

it has closed range. Let Λ = {Wj ,Λj , vj} be a K-g-fusion
frame for H and Λ̃ = {W̃j , Λ̃j , vj} be a K-g-fusion dual of
Λ. Then for every I ⊂ J and f ∈ H, we obtain

Re
∑
j∈I

v2
j 〈Λ̃jπW̃j

f,ΛjπWj
K†Kf〉

+〈
∑
j∈Ic

v2
jK
†πWj

Λ∗j Λ̃jπW̃j
f,
∑
j∈Ic

v2
jπWj

Λ∗j Λ̃jπW̃j
f〉

= Re
∑
j∈Ic

v2
j 〈ΛjπWj

K†Kf, Λ̃jπW̃j
f〉

+〈
∑
j∈I

v2
jK
†πWj

Λ∗j Λ̃jπW̃j
f,
∑
j∈I

v2
jπWj

Λ∗j Λ̃jπW̃j
f〉

≥ 3
4‖K

1
2 f‖2,

where K† denotes the pseudo-inverse of K.
Proof Since K ∈ B(H) is positive and has closed range,

by using Lemma 2.1, we have (K†)∗ = (K∗)† = K†. Obvi-
ously, for any f ∈ H, 〈K†SIf, SIf〉, 〈K†SIcf, SIcf〉 ∈ R.
According to Lemma 2.2, replace U and V by SI and SIc

yields that

Re
∑
j∈I

v2
j 〈Λ̃jπW̃j

f,ΛjπWj
K†Kf〉

+〈
∑
j∈Ic

v2
jK
†πWj

Λ∗j Λ̃jπW̃j
f,
∑
j∈Ic

v2
jπWj

Λ∗j Λ̃jπW̃j
f〉

= Re〈SIf,K†Kf〉+ 〈K†SIcf, SIcf〉
= Re〈K∗(K†)∗SIf, f〉+ 〈S∗IcK†SIcf, f〉
= Re〈(K∗K†SI + S∗IcK

†SIc)f, f〉
= Re〈(S∗IcK†K + S∗IK

†SI)f, f〉
= Re(〈S∗IcK†Kf, f〉+ 〈S∗IK†SIf, f〉)
= Re(〈K†Kf, SIcf〉+ 〈K†SIf, SIf〉)
= Re〈SIcf,K†Kf〉+ 〈K†SIf, SIf〉
= Re

∑
j∈Ic

v2
j 〈ΛjπWj

K†Kf, Λ̃jπW̃j
f〉

+〈
∑
j∈I

v2
jK
†πWj

Λ∗j Λ̃jπW̃j
f,
∑
j∈I

v2
jπWj

Λ∗j Λ̃jπW̃j
f〉.

According to Lemma 2.1 and 2.2, we conclude that

Re
∑
j∈I

v2j 〈Λ̃jπW̃j
f,ΛjπWjK

†Kf〉

+〈
∑
j∈Ic

v2jK
†πWj Λ∗j Λ̃jπW̃j

f,
∑
j∈Ic

v2jπWj Λ∗j Λ̃jπW̃j
f〉

= Re〈(K†KSI + S∗IcK
†SIc)f, f〉

= Re〈(KK†(K − SIc) + S∗IcK
†SIc)f, f〉

= 〈Kf, f〉 −Re〈KK†S∗Icf, f〉+ 〈S∗IcK†SIcf, f〉
= 〈K

1
2 f,K

1
2 f〉 −Re〈K

1
2K

1
2K†SIcf, f〉

+〈(K
1
2K†SIc)∗(K

1
2K†SIc)f, f〉

= 3
4
‖K

1
2 f‖2 + 〈 1

2
K

1
2 f −K

1
2K†SIcf,

1
2
K

1
2 f −K

1
2K†SIcf〉

≥ 3
4
‖K

1
2 f‖2

for every f ∈ H. This completes the proof.
In the following theorem, we establish a generalization of

the result from Theorems 1.2 to Parseval K-g-fusion frames,
where a scalar λ ∈ [0, 1] is involved.

Theorem 2.4 Let K ∈ B(H) and Λ = {Wj ,Λj , vj} is
a Parseval K-g-fusion frame for H. Then for any λ ∈ [0, 1],
for all I ⊂ J and f ∈ H, we have

2λ(Re
∑
j∈Ic

v2
j 〈ΛjπWj

KK∗f,ΛjπWj
f〉)

+‖
∑
j∈I

v2
jπWj

Λ∗jΛjπWj
f‖2

= 2(1− λ)(Re
∑
j∈I

v2
j 〈ΛjπWj

KK∗f,ΛjπWj
f〉)

+‖
∑
j∈Ic

v2
jπWjΛ∗jΛjπWjf‖2 + (2λ− 1)‖KK∗f‖2

≥ (2λ− λ2)‖KK∗f‖2.

Proof For I ⊂ J , we consider a new operator, let

SΛIf :=
∑
j∈I

v2
jπWj

Λ∗jΛjπWj
f. (8)

According to the K-g-fusion frame operator SΛ, we get SΛI

is positive, bounded and self adjoint. Furthermore, by the
definition of Parsevel K-g-fusion frame, we have

SΛI + SΛIc = KK∗.

This, together with Lemma 2.4, replace U and V by SΛI
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and SΛIc , implies that

2λ(Re
∑
j∈Ic

v2
j 〈ΛjπWj

KK∗f,ΛjπWj
f〉)

+‖
∑
j∈I

v2
jπWj

Λ∗jΛjπWj
f‖2

= λ(〈SΛIcKK
∗f, f〉+ 〈SΛIcf,KK

∗f〉) + ‖SΛIf‖2
= λ(〈SΛIcKK

∗f, f〉+ 〈KK∗SΛIcf, f〉) + 〈SΛISΛIf, f〉
= 〈SΛIcSΛIcf, f〉+ (1− λ)(〈KK∗SΛIf, f〉

+〈SΛIKK
∗f, f〉) + (2λ− 1)‖KK∗f‖2

= 2(1− λ)(Re
∑
j∈I

v2
j 〈ΛjπWj

KK∗f,ΛjπWj
f〉)

+‖
∑
j∈Ic

v2
jπWj

Λ∗jΛjπWj
f‖2 + (2λ− 1)‖KK∗f‖2

≥ (2λ− λ2)‖KK∗f‖2

for any λ ∈ [0, 1] and every f ∈ H and the proof is finished.
Remark 2.2 Clearly, when λ = 1

2 in Theorem 2.4, which
was obtained the Theorem 1.2 (i.e., Theorem 3.6 in [15]) as
a particular case from the above result. When λ = 0 in
Theorem 2.4, which was the operator in Equation (8).

Inequality (6) in Theorem 1.2 leads us to introduce the fol-
lowing concept, which is generalization of [11] for Parseval
frames. Let Λ be a Parseval K-g-fusion frame, define

v+(Λ,K, I) =

sup
f 6=0

Re(
∑
j∈Ic

v2j 〈ΛjπWj
f,ΛjπWj

KK∗f〉)+‖
∑
j∈I

v2jπWj
Λ∗j ΛjπWj

f‖2

‖KK∗f‖2 ,

and
v−(Λ,K, I) =

inf
f 6=0

Re(
∑
j∈Ic

v2j 〈ΛjπWj
f,ΛjπWj

KK∗f〉)+‖
∑
j∈I

v2jπWj
Λ∗j ΛjπWj

f‖2

‖KK∗f‖2 .

Next, we will present some results of these notations.
Theorem 2.5 Let Λ is a Parseval K-g-fusion frame for
H. The following assertions hold:

(1) 3
4
≤ v−(Λ,K, I) ≤ v+(Λ,K, I) ≤ ‖K‖‖K+‖(1 + ‖K‖).

(2)v+(Λ,K, I) = v+(Λ,K, Ic),
v−(Λ,K, I) = v−(Λ,K, Ic).

(3)v+(Λ,K, I) = v−(Λ,K, I) = 1,
v+(Λ,K, ∅) = v−(Λ,K, ∅) = 1.

Proof By the inequality (6), 3
4 ≤ v−(Λ,K, I) holds

trivially.
Since Λ is a Bessel sequence, by Lemma 2.5 we get

‖
∑
j∈I

v2
jπWj

Λ∗jΛjπWj
f‖2 ≤ ‖SΛ‖

∑
j∈I

v2
j ‖ΛjπWj

f‖2

≤ ‖SΛ‖
∑
j∈J

v2
j ‖ΛjπWj

f‖2

≤ ‖K‖2‖K∗f‖2
= ‖K‖2‖K†KK∗f‖2
≤ ‖K‖2‖K†‖2‖KK∗f‖2.

Moreover,

Re(
∑
j∈Ic

v2
j 〈ΛjπWj

f,ΛjπWj
KK∗f〉)

≤ (
∑
j∈Ic

v2
j ‖ΛjπWjf‖2)

1
2 (
∑
j∈Ic

v2
j ‖ΛjπWjKK

∗f‖2)
1
2

= ‖K∗f‖‖K∗KK∗f‖
= ‖K†KK∗f‖‖K∗KK∗f‖
≤ ‖K†‖‖KK∗f‖‖K∗‖‖KK∗f‖
= ‖K†‖‖K‖‖KK∗f‖2.

Hence,

v−(Λ,K, I) ≤ v+(Λ,K, I) ≤ ‖K‖‖K†‖(1 + ‖K‖‖K†‖).

According to the proof of Theorem 3.5 in [16], for any
f ∈ H we observed that

〈S2
I f, f〉+ 〈SIcKK∗f, f〉 = 〈KK∗SIf, f〉+ 〈S2

Icf, f〉.

Thus,

‖
∑
j∈I

v2jπWj Λ∗jΛjπWjf‖2 +
∑
j∈Ic

v2j 〈ΛjπWjKK
∗f,ΛjπWjf〉

= ‖
∑
j∈Ic

v2jπWj Λ∗jΛjπWjf‖2 +
∑
j∈I

v2j 〈ΛjπWjKK
∗f,ΛjπWjf〉.

Obviously, (2) holds.
Finally, (3) is easy to check.
In fact, according to the result above-mentioned, we

can present some equivalent results for Parseval K-g-fusion
frames as follows.

Corollary 2.1 Let Λ be a Parseval K-g-fusion frame for
H. Then for any I ⊂ J and f ∈ H, the following statements
are equivalent.

(1)v+(Λ,K, I) = v−(Λ,K, I) = 1.

(2)‖
∑
j∈I

v2jπWj
Λ∗jΛjπWj

f‖2 = Re
∑
j∈I

〈ΛjπWj
KK∗f,ΛjπWj

f〉v2j .

(3)‖
∑
j∈Ic

v2jπWj
Λ∗jΛjπWj

f‖2 = Re
∑
j∈Ic

〈ΛjπWj
KK∗f,ΛjπWj

f〉v2j .

Proof (2)⇔ (3) is clearly.
Also, (1) ⇒ (2) holds by a direct computation. Now, let

(2) hold, then

‖
∑
j∈I

v2
jπWj

Λ∗jΛjπWj
f‖2 +

∑
j∈Ic

v2
j 〈ΛjπWj

KK∗f,ΛjπWj
f〉

=
∑
j∈J

v2
j 〈ΛjπWjKK

∗f,ΛjπWjf〉

= 〈KK∗f, SΛf〉 = ‖KK∗f‖2,

i.e., (1) holds.
Hence (1)⇔ (3) and similarly (1)⇔ (2).
Corollary 2.2 Let Λ be a Parseval K-g-fusion frame for
H. Then for any I ⊂ J and f ∈ H, the following statements
are equivalent.

(1)‖
∑
j∈I

v2jπWj Λ∗jΛjπWjf‖2 =
∑
j∈I
〈ΛjπWjKK

∗f,ΛjπWjf〉v2j .

(2)‖
∑
j∈Ic

v2jπWj Λ∗jΛjπWjf‖2 =
∑
j∈Ic
〈ΛjπWjKK

∗f,ΛjπWjf〉v2j .

(3)SIf ⊥ SIcf.
(4)f ⊥ SIcSIf.

Proof By Equation (8), (1)⇔ (2) holds trivially.
Since SI and SIc are positive, for each f ∈ H, we have

〈SIcf, SIf〉 = 〈f, SIcSIf〉 = 〈(KK∗SI − S2
I )f, f〉.

This implies that, (3)⇔ (4) and (1)⇔ (4).
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