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Abstract—Motor imagery (MI) Electroencephalogram (EEG)

signal recognition is an important part of brain computer
interface (BCI). Nowadays, deep learning has been successfully
applied to MI signal classification. However, due to the
expensive equipment of EEG acquisition and the limitation of
acquisition site that gives rise to the EEG data scarcity, and thus
impacts deep learning model classification. Therefore, this
paper proposes a novel EEG time-frequency transition method,
which uses the continuous wavelet transform adaptive generate
EEG time-frequency map. Generative and discriminative
adversarial learning framework (GADALF) is proposed to
enhance data. The correlation analysis of EEG time-frequency
map is carried out by combining event related synchronization
(ERS) with event related desynchronization (ERD). Based on
the analysis results, the hybrid scale convolutional neural
network (HSCNN) is proposed by improving the convolutional
neural network. This network combines multi-dimensional
convolution with channel attention mechanism to decode the
hidden energy information of the α and β bands for EEG
time-frequency map classification. The results showed that the
proposed method can achieve higher recognition rates on the
laboratory-collected dataset and the dataset BCI competition
IV 2b compared with other methods. Finally, this paper designs
an intelligent wheelchair control system based on a BCI that
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verifies the effectiveness of the system by applying the
proposedmethod to the system through online experiments.

Index Terms—Continuous wavelet transform, Generative
and discriminant adversarial framework, Convolutional neural
network, EEG signal recognition, Intelligent wheelchair control

I.INTRODUCTION
rain-computer interface (BCI) is a system that realizes
direct communication between the brain and external

devices [1]. It collects Electroencephalography (EEG)
signals through electrode devices, and then completes the
control of external devices through the control system, such
as smart wheelchairs [2] and robotic arms [3] are used in BCI
systems.
Motor imagery (MI) signal [4] is a kind of spontaneous

brain point signal. When people imagine left-hand or
right-hand movements, event-related synchronization (ERS)
and event-related desynchronization (ERD) respectively
occur in the ipsilateral and opposite sides of the brain
somatosensory cortex [5]. This phenomenon has been
effectively applied to the decoding of EEG features [6].
Due to the nonlinear characteristics of EEG signals,

researchers have used traditional methods such as CSP [7],
EMD [8], PCA [9] and FFT [10] in the feature extraction of
EEG signals. In recent years, deep learning methods such as
convolutional neural networks [11] have also achieved good
results in EEG recognition. However, expensive EEG
acquisition equipment, the constraints of the acquisition site,
and fatigue of acquisition personnel in the process of
acquisition experiment all lead to the scarcity and low quality
of EEG data, which affect the classification of the deep
learning model. Therefore, data enhancement is needed to
address the above problems, common data augmentation
methods are geometric transformations such as translation,
flipping, scaling, and cropping.
To address the questions posed by Y. R. Tabar et al.[12],

this paper proposes an EEG time-frequency information
conversion method based on continuous wavelet transform
(CWT), which does not consider the window size in
short-time fourier transform (STFT), and can adaptively
generate EEG time-frequency maps. On this basis, an
adversarial learning framework is proposed to generate a
large number of artificial EEG time-frequency maps, and
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then select high-quality data from the generated EEG
time-frequency maps through five indices to solve the
scarcity of EEG data. Finally, a hybrid scale convolutional
neural network is proposed, which uses hybrid scale
convolution combined with attention mechanism to extract
the features of EEG time-frequency maps and decode the
energy information of α and β bands. The proposed method is
applied to the laboratory-collected dataset and the dataset
BCI competition IV 2b, and the results show that the
proposed method can achieve higher recognition rates than
other methods.
Based on the proposed method, an intelligent prosthesis

BCI system is designed to prove the feasibility of the system
through online experiments, and this BCI system provides a
new paradigm for the control of intelligent prosthesis.
The main highlights of this article are as follows:

1) The EEG time-frequency map generation method based
on continuous wavelet transform is proposed in this
paper, which makes the window size of the short-time
Fourier transform irrelevant. The generated EEG
time-frequency map can preserve various information of
EEG signals in time domain, frequency domain.

2) An adversarial learning framework is proposed for data
augmentation, and high-quality data are selected through
five indices to complement the data manifold.

3) A network of hybrid scale convolution and attention
mechanism ensemble proposed in this paper decodes the
energy information of α and β bands for EEG
time-frequency map classification.

II.CONSTRUCTION METHOD OF EEG TIME-FREQUENCY MAP

CWT has the properties of small-time width and
concentrated frequency band, which is suitable for
processing non-stationary signals such as EEG signals [13].
The continuous wavelet transform is defined as follows:
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Where ( )f x is the original data, and the basic wavelet
, ( )t  is Morl wavelet.

Fig. 1. Construction method of the EEG time-frequency map

CWT is used to construct the time-frequency map of EEG
data. A group of EEG data is taken as an example in Fig.1.
The specific steps are as follows:
1) Arrange the EEG data as n m in the order of channels,

where n is the number of channels, andm is the number
of samples in channels.

2) Select channels. According to the sampling frequency of
the EEG signal, the center frequency of the basic
wavelet and the moving scale of the basic wavelet, the
continuous wavelet transform of the EEG signal is
carried out according to the sequence of channel, and

the coefficients of 8-32 parts which means α and β
bands are reserved.

3) Construct the EEG time-frequency maps using the
retention coefficient, and save them in folders according
to the types of labels.

III.DATA ENHANCEMENT METHOD BASED ON GENERATIVE
AND DISCRIMINATIVE ADVERSARIAL LEARNING FRAMEWORK

A.Generative network
In Fig. 2, a 5-layer generative network [15] is proposed to

generate artificial EEG time-frequency maps.

Fig. 2. Generative network

The 100-dimensional noise, which obeys a normal
distribution, is provided to the input layer of the generative
network. The second layer of the network consists of a fully
connected layer and a reshape function to change the
structure of the input noise. The last four layers of the
network are transposed convolutional layers for up-sampling.
The transposed convolutional layers double the size of the
output tensor and reduce the number of channels until an
artificial EEG time-frequency map is generated, which turns
out to be consistent with the structure of the original EEG
time-frequency map. The detailed information of the
generative network is presented in Table I.

TABLE I
MAIN PARAMETERS OF GENERAYIVE NETWORK

Layer name Output
shape

Filter
size

Activation Stride Padding

Input 100×1×1 － － － －
FC 4×4×256 － Relu － －

Conv2D
Transpose1 8× 8 5×5(256) Relu 2 Same
Conv2D

Transpose2 16× 16 5×5(128) Relu 2 Same
Conv2D

Transpose3 32× 32 5×5(64) Relu 2 Same
Conv2D

Transpose4 64× 64 5×5(3) Tanh 2 Same

B.Discriminative network
In Fig.3, the discriminative network [15] is composed of a

5-layer deep convolutional neural network. The network is
used to distinguish real EEG from those generated by the
generative network.
In the discriminative network, RMSprop is used as the

optimizer. The detailed information of the discriminative
network is shown in Table II.

C.Objective function
Compared to the mutability of the Jensen-Shannon
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TABLE II
MAIN PARAMETERS OF DISCRIMINATIVE NETWORK

Layer
name

Output
shape

Filter
size

Activation Stride Padding

Input 64×64×3 － － － －
Conv2D1 32×32 5×5(64) 2 Same Relu
Conv2D2 16×16 5×5(128) 2 Same Relu
Conv2D3 8×8 5×5(256) 2 Same Relu
Conv2D4 4×4 5×5(512) 2 Same Relu
Output 1 － － － －

Fig. 3. Discriminative network

divergence in the original generative adversarial network
(GAN) [16], the smoothness of the earth mover's distance in
Wasserstein GAN [17] to effectively solve the problem of
gradient disappearance. The definition of earth mover's
distance is as follows:

,

( , )
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Where datap means real data distribution, gp means fake data
distribution, ,( )data gp p  means the distribution of all
possible joint combinations of ( , )x y whose marginals are
respectively datap and gp , ( , )x y means the distance moved
by distribution datap to distribution gp .
In order to reduce the complexity of solving the earth

mover's distance by adopting the coefficient clipping method,
which is expressed as:

min max
[ ( )] [ ( ( ))]
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Where ( )D x denotes discriminative network, ( )G x represents
the generative network, w means the weight of the network,
In order to meet the stability of the network training, this
paper conducts weight initialization in the transposed
convolutional layer and the convolutional layer, which
follows a normal distribution with a mean of 0 and a standard
deviation of 0.01. The purpose of this action is to prevent the
weights of the network from dropping too fast that could
result in disappearance of the model gradient when the
coefficients are clipped.

D.Data enhancement algorithm for EEG time-frequency
map

Algorithm: Generative and discriminative adversarial learning
framework
Input: EEG time-frequency maps nx , generative network G , the noise
vector of 100 dimensions obeys the normal distribution z , discriminator
network D , learning rate 0.0005lr  , cropping coefficient e 0.01 ,
batch size 32bs  , number of trainings 1 12c  , 2 5c  .
Output: artificial EEG time-frequency maps
1.weight initialization: 2, (0,0.01 )G D N
2.For 1 0,...,t n do

Training D
If 1 10t  or 1( 1)%100 0t   obtain 1c c

Else 2c c

For 1 0,...,t c do

Sample bs batch form nx obtain   1

bs
n i
x



Collection bs batch form z obtain   1

bs

i
z



Training objective function:

1

1 ( ) ( ( ))bs
D D i ii
w D x D G z

bs 
   

Optimizing network parameters:
( , )

DD D D ww w lr RMSprop w D  

The coefficient of cropping:
( , , )D Dw clip w e e 

End For
Training G

Collection bs batch form z obtain   1

bs

i
z



Training objective function:

1

1 ( ( ))bs
G G ii
w D G z

bs 

    
Optimizing network parameters:

( , )
GG G G ww w lr RMSprop w G  

Output: artificial EEG time-frequency maps
End while

E.Quality Evaluation and Selection
1) Maximum mean difference (MMD) [18], inception

score (IS) [19], mode score (MS) [20], and freshet initial
distance (FID) [21] are used to evaluate the correlation
between the generated artificial EEG maps and the
difference of original EEGmaps, and the trend of scores
is utilized to judge the validity of the data augmentation
experiment. IS and MS reflect the quality and diversity
of generated samples, and the scores of these two
indices are required to be gradually higher. FID and
MMD reflect the distance between generated samples
and real samples, and the scores of these two indices are
required to be gradually lower.

2) On the premise of confirming the validity of the data
augmentation experiment, the EEG maps generated by
generative network when the loss value of the
discriminative network is close to 0 are selected as the
high-quality data. When the loss value of discriminant
network is close to 0, the time-frequency data
distribution of artificial EEG is closer to that of the
original EEG time-frequency map.

IV.HYBRID SCALE CONVOLUTIONAL NEURAL NETWORK

A. Analysis of EEG time-frequency map
The ERS/ERD phenomenon of motor imagery signals

appeared in C3 channel and C4 channel. Therefore, the EEG
time-frequency maps of C3 channel and C4 channel
constituted by 3 groups of EEG signals are arranged in Fig.4
to analyze.
After the construction of the EEG time-frequency map

using continuous wavelet transform, the energy information
of α band and β band in the original time domain EEG signal
is transformed into three channels of the EEG time-frequency
maps, thus the color depth of the EEG time-frequency map
represents the power amplitude of α band and β band, and the
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Fig. 4. (a) and (d) are EEG time-frequency maps composed of C3 channel and C4 channel of the same group of EEG data. (b) and (e) are EEG time-frequency
maps composed of C3 channel and C4 channel of the same group of EEG data. (c) and (f) are EEG time-frequency maps composed of C3 channel and C4
channel of the same group of EEG data.On the left side of the EEG time-frequency map is the range of 8-32 Hz, which corresponds to the range of α band (8-13
Hz) and β band (13-32 Hz), and on the bottom of the EEG time-frequency map is the range of 0-1 second of EEG data.

two are positively correlated.
The comparison of the Fig.4(b) with Fig.4(e) suggests that

the α band in Fig.4(e) is darker than Fig.4(b), indicating the
power amplitude of C4 channel is higher than C3 channel, and
the ERD phenomenon of EEG signals occurs in C4 channel.
Therefore, speculated the EEG signals in this group are
labeled right-handed motion imagery, and the inquiry
confirms that the actual labels are consistent with the
speculated labels.
According to the above analysis, the channel attention

mechanism is perfect for this task, as it can highlight the
important classification features of EEG time-frequency map,
which can make the model have a higher recognition rate
with many kinds of attention mechanisms, such as
multi-layer attention [22], and semantic attention [23].
According to the above analysis, the channel attention

mechanism is perfect for this task, as it can highlight the
important classification features of EEG time-frequency
maps, which can make the model have a higher recognition
rate with many kinds of attention mechanisms, such as
multi-layer attention [22], and semantic attention [23].

B. One-dimensional convolution layer
The one-dimensional (1D) convolution layer consists of

two parallel networks. 1D convolution 1 uses the convolution
kernel of 11 e to extract the time domain information of the
EEG time-frequency map, and 1D convolution 2 uses the
convolution kernel of 2 1e  to extract the frequency domain
information of the EEG time-frequency map. Channel
attention mechanism 1 and channel attentions mechanism 2
further highlight the characteristic information of α and β
bands in time domain and frequency domain. Max pooling
layer 1 and max pooling layer 2 are used to reduce the
number of parameters, retain effective information, and
improve the training speed of the network. In order to capture
the details of the EEG time-frequency map, 1D convolution 1
and 1D convolution 2 both adopt the form of small
convolution kernel. In addition, with procedures above in
place, feature concatenation is carried out. Specific
parameters are shown in Table III.
In Fig.5, the channel attention module [24] is completed by

three modules: information aggregation module, information

enhancement module, and information divergence module.
Information aggregation module: we assume that the

feature F extracted by one-dimensional convolution,
F contains three dimensions of length, width, and channel
information, which are represented as H W CF R   . Perform
information aggregation operation on the feature F , and the
formula is as follows:

1 1
( ( , ))

( ( , ))

H W

k
i j

k IA k

F C i j
X f F C i j

H W
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

 
 (4)

Where ( , )kF C i j means two-dimensional data points in the
kth channel of feature F , ( ( , ))IA kf F C i j means the global
averaging operation on ( , )kF C i j . kX means the eigenvalue
of the kth channel of feature F .

TABLE III
MAIN PARAMETERS OF 1D CONVOLUTIONAL LAYER

Layer name Output
shape

Kernel
size

Stride Padding

1Dconvolution1 64×64×8 1×3(8) 1 Same
1Dconvolution2 64×64×8 3×1(8) 1 Same

Channel attention 1 64×64×8 - - -
Channel attention 2 64×64×8 - - -
Max pooling1 32×32×8 2×2 1 Same
Max pooling2 32×32×8 2×2 1 Same
Concatenation 32×32×16 - - -

Fig. 5. The channel attention module

Information enhancement module: based on information
aggregation, the three-dimensional feature becomes
two-dimensional feature. The two fully connected layers are
connected that change kX to kY . The purpose is to reduce the
degree of imitation assistance and enhance the
distinguishability of features. The dimension of the first fully
connected layer is 1b , and the dimension of the second
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Fig. 6. Hybrid scale convolutional neural network

fully connected layer is 2b .The formula is as follows:

1 2( ) ( ( ( )))k IE k kY f X W W X    (5)
Where 1 2,W W represents the parameters of the fully connected
layer, and  represents ReLU function [25].
The formula of the information divergence module is as

follows:
( , ( , )) ( , )ID k k k kf Y F C i j Y F C i j   (6)

Where IDf means the multiplication for all two-dimensional
data of the kth channel of feature F by using kY , that is,
diverging the feature value kY to the entire surface of the
kth-channel.

C. Two-dimensional convolution layer
In this layer, a two-dimensional (2D) convolution kernel is

used to extract the correlation information after feature
splicing, and improve the correlation degree of feature
information of α and β bands in time domain and frequency
domain. The specific parameters are shown in Table IV.

TABLE IV
MAIN PARAMETERS OF 2D CONVOLUTIONAL LAYER

Layer name Output shape Kernel size Stride Padding
2Dconvolution 32×32×32 4×4 1 Same
Max pooling 16×16×32 2×2 1 Same

D. Overall Framework
The EEG time-frequency map serves as the input layer of

the overall framework. Framework of the second layer to the
fifth layer is 1D convolution layer, 2D convolution layer, the
fully connected layer 1 and fully connected layer 2, and the
full connected layer 1 contains 240 hidden neurons, the full
connected layer 2 is the output layer, which contains two
hidden neurons, because this paper performs two categories
of tasks. In addition, the Softmax is chosen as classification
function, the ReLU is chosen as the activation function, the
cross entropy is chosen as the loss function and the Adam
algorithm is chosen as the optimization function. Adam
algorithm has faster convergence speed compared with other
algorithms. The setting of initial value of learning rate
directly affects the quality of final solution. If the initial value
is set too high, the convergence of the loss function will
oscillate. Therefore, this paper set the learning rate to 0.0003.
The structure is shown in Fig.6, and the specific parameters
are shown in Table V.

V.MOTOR IMAGERY SIGNAL CLASSIFICATION OFFLINE
EXPERIMENT

A. Experiment introduction
This experiment uses an EPOC+ EEG acquisition

instrument, as shown in Fig.7, and its sampling frequency is
128 Hz. The EPOC+ is equipped with 16 electrodes. The
electrodes are placed as shown in Fig.8.

TABLE Ⅴ
MAIN PARAMETERS OF OVERALL FRAMEWORK

Layer name Output shape
1D convolutional layer 32×32×16
2D convolutional layer 16×16×32

FC 240
Output 2

Seven healthy subjects (denoted as A1, A2, ……, A7) are
selected for the EEG motor imagery experiment. First, the
subjects relax in a quiet experimental area, and then the
experiment starts. Each experiment lasts for 6 seconds. In the
first 1 second, healthy subjects are expected to see a left or
right arrow as the experimental theme, at the 2nd second, the
subjects would hear the beep and imagine left or right-hand
movements accordingly, at the 6th second, the subjects hear
the beep again and stop imagining. A total of 240
experiments have been conducted, and each type of subject
experiment is repeated 120 times. A total of 120 left-hand
motor imagery EEG data samples and 120 right-hand motor
imagery EEG data samples are obtained. The EEG data from
the 3rd second to the 4th second in the sample is recorded as
the follow-up experimental object, and in order to reduce the
computational complexity, only the EEG data of 6 channels
(F3, F4, FC5, FC6, T7, T8) are recorded for analysis. The
experimental process is shown in Fig.9.

Fig. 7. EPOC+ EEG acquisition instrument
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Fig.8. Electrode placement

B. Data preprocessing
EEG signals usually include a large amount of background

noise such as electromyogram (EMG) and electro-oculogram
(EOG). In order to reduce background noise, this paper
preprocess the EEG signal in three steps. First, abnormal
samples are removed. Second, 8-32 Hz band-pass [15] is
adopted to filter for EEG signals. Third, the EEG signal is
normalized.

Fig. 9. The acquisition process of motor imagery signals

C. Data augmentation
1. Experiment process
According to the introduction in Section II, the EEG

time-frequency map is constructed for the preprocessed EEG
data. The data of a subject is chosen as an example. Two data
enhancement experiments are carried out on the EEG
time-frequency map of the subject according to the types of
labels respectively. In the experiment, the changes of the loss
value of the discriminative network are recorded, and the
generative network output 32 artificial EEG time-frequency
maps are generated every 100 times of discriminative
network training. After the data enhancement experiments,
the generated artificial EEG time-frequency maps map into
the Inception-v3 network to compute four indices score
according to the generated sequence with the original EEG
time-frequency. the validity of the data enhancement
experiments is determined according to the score, then
high-quality artificial EEG time-frequency maps are selected
according to the discriminative network loss value. The
selected results are saved in the folder where the original
EEG time-frequency maps are located at a ratio of 1:1.
2. Experimental Results and Analysis
The following procedures are described based on the EEG

data of subject A7. The data enhancement experiment is
trained by using the EEG time-frequency map of the subjects'
left hand motor imagery, and the experiment is trained for a
total of 10,000 times. Fig.10 records the scores of four indices
of artificial EEG generated by 1000-8000 times of
discriminative network training. IS and MS show a gradually
increasing trend, indicating that the quality of the generated
artificial EEG gradually is improved and became more
diversified in the process of 1000-8000 training sessions. On
the other hand, FID and MMD gradually decrease, indicating

that the data distribution of the generated artificial EEG is
closer to that of the original EEG. In addition, it can be
concluded from Fig.11 that after 8000 discriminative
network training, the loss value of discriminative network
gradually approaches 0. Therefore, the artificial EEG
time-frequency maps generated at this time are selected as
high-quality data.
The same strategy is used for training and selection of the

right-hand motor imagined EEG time-frequency map of
subject A7. In Fig.12 and Fig.13, the artificial EEG
time-frequency maps generated after 9000 discriminative
network training are selected as high-quality data.

Fig.10. At the bottom of the figure is training times of discriminative
network and on the left of the figure is scores of the four indices. Four
different colored curves in the figure represent four different indices.

Fig.11. At the bottom of the figure is training times of discriminative
network and on the left of the figure is the loss value of discriminative
network. The point of contact of the two dotted lines in the figure are the
number of training when the loss value is close to 0.

Fig.12. The bottom, left side of the figure and the curve in the figure are the
same as in Fig.10
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TABLE Ⅵ
THE RECOGNITION ACCURACY OF SIX ALGORITHMS FOR 7 SUBJECTS

Subject EED CSP-TSM MEMD-STFT DBN 1DCNN HSCNN
A1 85.60 92.62 90.83 83.91 85.40 93.35
A2 76.70 72.53 71.01 92.44 71.24 95.66
A3 82.20 86.91 85.42 94.24 80.67 91.95
A4 91.64 95.39 93.70 91.03 95.35 92.40
A5 88.67 82.00 90.29 82.15 91.63 93.64
A6 70.11 71.45 76.77 84.44 81.76 89.31
A7 82.74 86.83 83.52 71.25 82.21 90.68

Average 82.52 83.97 84.51 85.64 84.04 92.43

TABLEⅧ
THE RECOGNITION ACCURACY OF SEVEN ALGORITHMS FOR 9 SUBJECTS

Subject EED CSP ACSP DBN CNN-SAE 1DCNN Proposed
B1 57.34 67.00 64.75 67.65 74.51 77.54 84.34
B2 53.50 59.85 59.49 63.75 69.12 61.61 69.27
B3 54.69 67.32 63.45 62.00 73.34 63.02 76.51
B4 84.68 92.56 95.74 98.77 96.50 98.65 98.03
B5 72.57 79.59 79.66 81.06 83.00 84.44 86.75
B6 75.66 74.88 81.10 73.88 78.45 80.78 88.20
B7 57.45 73.48 69.20 79.84 77.54 79.47 87.12
B8 81.43 90.01 81.42 81.75 74.51 84.21 92.05
B9 72.77 84.63 80.51 87.46 72.31 80.66 87.98

Average 67.78 76.59 75.03 77.35 77.69 78.93 84.81

Fig.13. The bottom, left side of the figure and the curve in the figure are the
same as in Fig.11.

D. Classification of EEG time-frequency maps
1. Experiment process
The tf.gfile.gfile function is used to read the EEG

time-frequency map in the folder. The tf.image.decode_jpeg
function is used to decode the EEG time-frequency map.
The tf.image.resize_images function is used to change the
decoded data format to 64×64. The EEG time-frequency
map is saved in the form of pictures, the number of decoded
channel is 3.
The EEG time-frequency maps before and after data

enhancement are put into the HSCNN for 10 recognition
experments, then the validity of GDALF is proved according
to the average recognition rate.
EED [26], CSP-TSM [27], ACSP [28], DBN [29] and

1DCNN [30] are used to conduct 10 recognition
experiments on preprocessed EEG data, and the average
recognition rate is compared with HSCNN to verify the
validity of HSCNN.
2. Experimental Results and Analysis
In the Fig.14, the GADALF method proposed in this

paper improves the recognition rate of each subject's EEG
time-frequency map and effectively solves the problem of
scarce EEG data, while the GADALF method does not

improve the recognition rate of subjects A2, A4 and A5
significantly, which may be caused by two reasons. First,
useless information might have been included in EEG data
collection. Second, the EEG time-frequency maps of some
subjects are more difficult to classify by HSCNN.
In Table Ⅵ, for multiple subjects, HSCNN achieves

higher EEG recognition rate compared with other methods.
To draw a comparison with traditional methods such as EED,
CSP-TSM and MEMD-STFT, continuous wavelet
transform is used in this paper to transform temporal EEG
data into EEG time-frequency maps that are more easily
recognized by HSCNN. To draw a comparison with DBN
and 1DCNN, HSCNN uses the combination of hybrid scale
and channel attention mechanism to extract characteristic
information of α band and β band in EEG time-frequency
map more validity. In summary, EEG time-frequency map
and HSCNN have a higher fit degree.

TABLEⅦ
THE P-VALUES BETWEEN THE HSCNN IN THIS PAPER AND OTHER FIVE

ALGORITHMS

Method EED CSP-TSM MEMD-STFT DBN 1DCNN
P-values 0.004 0.012 0.018 0.040 0.013

Fig. 14. The EEG time-frequency map classification rates in HSCNN
before and after data supplementation
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In order to verify the difference between the method
proposed in this paper and other methods, the subject and
method are defined as independent variables, and the
classification rate is the dependent variable. The twoway
analysis of variance and multiple comparisons are used to
calculate the p-value between this algorithm and other
algorithms. When p-value is less than 0.05, it is generally
considered that there is a significant difference between the
two comparison algorithms. In Table Ⅶ, the p-values are
all less than 0.05.

E. Experiment on dataset BCI competition IV 2b
The dataset BCI competition IV 2b set is generated by 9

subjects performing motor imaging tasks. The subjects are
all right-handed, the acquisition frequency is 250 Hz, the
acquisition equipment is three bipolar recorders, and the
acquisition channels are C3, CZ, and C4 Channel, the
collection task is 5 motor imagination experiments. The first
two groups of experiments adopt the non-feedback
experimental paradigm collection, each group contains 120
motor imagination tasks, and the last three groups of
experiments adopt the feedback experimental paradigm
collection, and each group contains 160 motor imagination
tasks. The first three experiments uses a band-pass filter of
0.5 -100 Hz for band-pass filtering.
Four steps are carried out on the data set of BCI

competition IV 2b, including EEG data preprocessing, EEG
time-frequency map construction, data enhancement and
recognition. To draw a comparison with EED, ACSP, DBN,
CNN-SAE [12], CSP [31] and 1DCNN to verify the
performance of the proposed method.
In Table Ⅷ, for most subjects, the method proposed in

this paper achieves the highest EEG recognition rate. For
subject B2, excessive noise signals may be mixed in EEG
data collection, resulting in low recognition rate under
different methods. However, for most subjects, the
GADALF method proposed in this paper can effectively
improve the quality of EEG data and achieve high
recognition rate in HSCNN. According to the above method,
in Table Ⅸ, the p- values are all less than 0.05.

TABLE Ⅸ
THE P-VALUES BETWEEN THE METHOD PROPOSED IN THIS PAPER AND

OTHER SIX ALGORITHMS

Method EED CSP ACSP DBN CNN
-SAE

1DCNN

P-values <0.001 <0.001 <0.001 <0.001 <0.001 0.002

Ⅵ. ONLINE EXPERIMENT

A. Experiment introduction
The intelligent wheelchair system is shown in Fig.15. The

system consists of the EPOC+ EEG acquisition instrument,
the laptop computer, the wireless communication module,
the control system and the wheelchair. The subjects took a
laptop computer and wore EPOC+ EEG acquisition
instrument while sitting in a wheelchair to conduct online
experiments of motor imagination EEG signals. First, we
grit the teeth to make the F8 channel produce obvious
voltage changes, which is used to start and stop the online
experiment. Second, we collect the left-hand and right-hand
movement imagination EEG signal by using the F3, F4 and
FC5, FC6, T7, T8 channels. And our method is employed to
classify the EEG signals. The left-hand and right-hand
movement imagination EEG signals are utilized to control

wheelchair to turn left and right, respectively. A total of 100
groups of online experiments are conducted, which are
divided into 50 groups to control the left turn of wheelchair
and 50 groups to control the right turn of wheelchair. The
time interval of each group of experiments is 10 seconds for
the rest of the subjects.

B. Experimental Results and Analysis
The results of the online experiment are shown in Table X.

For most subjects, the online recognition rate of the method
proposed in this paper is better than 1DCNN. In table X and
table Ⅵ, the same subjects in the online experiment, the
recognition rate of the EEG data declines for two main
reasons. First, subjects are vulnerable to the surrounding
environment in the online experiment, second, subjects are
more prone to fatigue in the online experiment, and than the
quality of the EEG data collected is reduced.

TABLE X
ONLINE EXPERIMENT ACCURACY RATE OF 7 SUBJECTS

Subject 1DCNN Proposed
Left Right Average Left Right Average

A1 71.53 74.77 73.15 80.79 84.18 82.49
A2 86.91 83.87 85.39 89.64 87.28 88.46
A3 75.49 78.39 76.94 83.74 84.68 84.21
A4 70.27 73.87 72.07 82.45 87.31 84.93
A5 76.55 78.36 77.46 83.54 86.49 85.02
A6 79.26 77.43 78.35 75.64 74.05 74.85
A7 81.08 78.35 79.72 88.29 85.58 86.94

Fig. 15. The intelligent wheelchair system

Ⅶ. CONCLUSION

This paper proposes an EEG time-frequency map
generation method based on continuous wavelet transform,
which avoids the window selection problem of short-time
Fourier transform, and proposes the generative
discriminative adversarial learning framework to generate
artificial EEG time-frequency maps to solve the problem of
EEG data scarcity. Secondly, MMD, IS, MS, and FID are
used as evaluation indicators, and the loss value of the
discriminative network as the selection indicator to ensure
the high quality and diversity of artificial EEG
time-frequency maps. Then, by analyzing the characteristic
form of α band and β band in EEG time-frequency map, the
convolutional neural network is improved and a hybrid scale
convolutional neural network is proposed to recognize EEG
time-frequency map. The laboratory data and public dataset
BCI competition IV 2b are verified the validity of the above
method. Finally, an online experiment system is designed to
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demonstrate the practicability of the intelligent wheelchair
system.
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