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Abstract—We consider a finite-horizon LQ optimal
control problem governed by a time-varying discrete
system with two time-scales. Both fixed and free fi-
nal state approaches for the asymptotic analysis and
solution of this problem are proposed. In the first ap-
proach, an iterative algorithm converging to the so-
lution of the corresponding two-point boundary value
problem, which is not exactly solvable, is constructed,
thereby finding an approximate optimal control value.
We propose a simplified and lower-cost feedback con-
troller in order to find the approximate optimal index
in the second approach. Two examples are given to
illustrate the proposed method.

Index Terms—discrete optimization, time-scale, per-

turbation, finite horizon, open-loop, closed-loop, Ric-

cati difference equation

1 Introduction

Algorithms solving optimization problems are of
great interest to engineers and are very well
documented in recent control literature (see e.g.
[1, 2, 3, 4, 7, 16, 28]). The control of discrete sys-
tems at two time-scales has received much atten-
tion over the past decades; these high-dimensional
multi-scale systems are numerically challenging
and often computationally unaffordable. The goal
of their study is to simplify their structure using
lower-order models and to ensure that the con-
trols obtained from the lower-order model can be
used to control the original system. In this ar-
ticle, we focus on the time-varying discrete-time
system:

x(t+ 1) =Aε(t)x(t) +Bε(t)u(t), t ∈ [i, f − 1],

x(i) =x̄ is given;
(1)
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where [i, f−1] denotes the set {i, i+1, i+2, · · · , f−1},

x(t) =

[
y(t)
z(t)

]
, Aε(t) =

[
A11(t) εA12(t)
A21(t) εA22(t)

]
,

Bε(t) =

[
εB1(t)
B2(t)

]
, y(t) ∈ Rn1 , z(t) ∈ Rn2 ,

(2)

and u(t) ∈ Rr is the control. This system is known
as a C-model [6, 8, 9, 10, 12, 13], i.e., the small
parameter ε is located on a column of the state

matrix. The purpose of the control inputs {u(t)}fi
is to minimize the following index J :

1

2
xT (f)Q(f)x(f) +

1

2

f−1∑
i

xT (t)Q(t)x(t) + uT (t)R(t)u(t) (3)

where the n× n state weighting matrices Q(t)
and the r × r input weighting matrices R(t) are
assumed to be symmetric and positive definite;
n := n1 + n2 is the order of the whole system.
Our goal is to study the possibility of approaching
the original problem (P ) by the reduced problem
where the small parameter ε is removed and to
implement the corresponding less expensive con-
trols. We checked that the small number ε can
be insignificant but can also become very criti-
cal according to the calculation. In this article,
we specify an upper bound ε0 within a tolerable
range for ε, so that the approximation and the
algorithm can be used with confidence. We show
that the positive value ε0 can be determined given
the system coefficients and the step size N . Note
that similar problems have been studied since the
early 1980s, see [13, 8] and the references therein;
different kinds of models have been approached
by reduced-order systems and approximate con-
trollers have been designed. For instance, in [14]
and [11], open-loop and closed-loop control strate-
gies were investigated for a time-invariant case of
the problem (P ). The authors used a heuristic
singular perturbation method. Their methodol-
ogy cannot be extended to the corresponding gen-
eral time-varying case. The purpose of our note
is to present a new method for dealing with the
linear-quadratic problem (P ) to ensure that the
controls obtained from the reduced-model can be
used to control the original system. This paper
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is organized as follows. Section 2 is devoted to
the open-loop control problem, i.e. when the fi-
nal state is fixed, which is equivalent to solving
a two-point boundary value problem (TPBVP).
In general, it is impossible to give exact meth-
ods acceptable for most discrete TPBVP classes;
numerical methods are required to construct ap-
proximate solutions, and there is generally no
guarantee that the optimal solution will be found.
For ε small enough, we prove the existence of a
solution to the corresponding TPBVP and we im-
plement an asymptotic algorithm which converges
to the exact solution. The results presented in
this article are mathematically justified. We ap-
ply the perturbation technique that we used in
[15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. In section
3, we adopt for the problem (P ) a closed-loop con-
trol approach. The corresponding discrete-time
algebraic Riccati equations require the inversion
of many large matrices, which makes the approach
expensive and increases the computational com-
plexity of each iteration. We use reduced-order
Kalman filters to approximate the optimal cost
with less computational complexity. In section 4,
we present numerical examples to illustrate the
method. We end this article with a brief conclu-
sion in section 5.

2 Free end-point optimal control

In this Section, we adopt an open-loop strategy.
We introduce an adjoint vector λ(t), and we form
the Lagrangian

J +

f−1∑
t=i

λ(t+1)T [Aε(t)x(t) +Bε(t)u(t)− x(t+ 1)] , (4)

which has the same extrema as that J when the
state equality constraint (1) is satisfied. The dis-
crete version of Pontriyagin’s maximum principle
[5] gives the following first-order conditions of op-
timality

λ(t) =Q(t)x(t) +AT
ε (t)λ(t+ 1), t ∈ [i, f − 1],

λ(f) =Q(f)x(f)
(5)

0 = R(t)u(t) +BT
ε (t)λ(t+ 1), t ∈ [i, f − 1], (6)

in addition to (1). These conditions are necessary
and sufficient since J is convex. Condition (6) fix
the optimal control

u(t) = −R−1(t)BT
ε (t)λ(t+ 1), t ∈ [i, f − 1]; (7)

by substituting (7) in (1) results the corresponding
optimal state

x(t+ 1) =Aε(t)x(t)−Bε(t)R
−1(t)BT

ε (t)λ(t+ 1),

t ∈ [i, f − 1],

x(i) =x̄.

(8)

Minimizing the cost (3) involves solving the two-
point boundary value problem (TPBVP) (5)–(8).

2.1 Optimization Algorithm

We restructure the TPBVP (5)–(8) in the block
matrix form :

y(t+ 1)
z(t+ 1)
p(t)
q(t)

 = M(t)


y(t)
z(t)

p(t+ 1)
q(t+ 1)

 , t ∈ [i, f − 1], (9)

such that

M(t) =


A11(t) εA12(t) ε2E11(t) εE12(t)
A21(t) εA22(t) εE21(t) E22(t)
Q11(t) Q12(t) AT

11(t) AT
21(t)

QT
12(t) Q22(t) εAT

12(t) εAT
22(t)

 . (10)

System (9) is solved with the boundary values

y(i) =ȳ, z(i) = z̄,[
p(f)
q(f)

]
=

[
Q11(f) Q12(f)
QT

12(f) Q22(f)

] [
y(f)
z(f)

]
,

(11)

where

λ(t) =

[
p(t)
q(t)

]
, Q(t) =

[
Q11(t) Q12(t)
Q21(t) Q22(t)

]
,

E(t) =

[
E11(t) E12(t)
E21(t) E22(t)

]
, Eij(t) = −Bi(t)R

−1(t)BT
j (t).

2.1.1 Reduced TPBVP

Setting the parameter value to zero in (9), we find
the set of recurrence equations :

y(0)(i) = ȳ,

y(0)(t+ 1) = A11(t)y
(0)(t), t ∈ [i, f − 1];

(12)

z(0)(i) = z̄,

z(0)(t+ 1) = A21(t)y
(0)(t) + E22(t)q

(0)(t+ 1),

t ∈ [i, f − 1];

(13)

q(0)(t) = QT
12(t)y

(0)(t) +Q22(t)z
(0)(t),

t ∈ [i, f − 1],

q(0)(f) = q(f);

(14)

p(0)(t) = Q11(t)y
(0)(t) +Q12(t)z

(0)(t) +AT
11(t)p

(0)(t+ 1)

+AT
21(t)q

(0)(t+ 1), t ∈ [i, f − 1], p(0)(f) = p(f).
(15)

Obviously, the closed-form solution of (12) is

y(0)(i) = ȳ, y(0)(t+1) =
t∏

l=i

A11(l)ȳ, t ∈ [i, f−1]. (16)
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We suppose that the matrices :

[I −Q22(t+ 1)E22(t)] , t ∈ [i, f − 1], (17)

are nonsingular, and we use the notations :

F (t) : = [I −Q22(t)E22(t− 1)]
−1

,

G(t) : = QT
12(t)

t−1∏
l=i

A11(l) +Q22(t)A21(t− 1)
t−2∏
l=i

A11(l).

(18)
By combining (16), (13) and (14), we find the
closed-form solution of (13) :

z(0)(i) = z̄,

z(0)(i+ 1) = A21(i)ȳ + E22(i)F (i+ 1)G(i+ 1)ȳ,

z(0)(t+ 1) = A21(t)
t−1∏
l=i

A11(l)ȳ+

E22(t)F (t+ 1)G(t+ 1)ȳ,

t ∈ [i+ 1, f − 1].

(19)

Solving (14), we get :

q(0)(i) = QT
12(i)ȳ +Q22(i)z̄,

q(0)(t) = F (t)G(t)ȳ, t ∈ [i+ 1, f − 1],

q(0)(f) = q(f).

(20)

It is to be noted that the values p(f) and q(f) are
automatically fixed from the terminal condition
in (11) once y(0)(f) and z(0)(f) are calculated from
formulas (16) and (19), respectively. In order to
emphasize the recursion in equation (15), we use
the notation :

H(t) := Q11(t)y
(0)(t) +Q12(t)z

(0)(t) +AT
21(t)q

(0)(t+ 1),

t ∈ [i, f − 1].
(21)

Accordingly, (15) can be written in the form :

p(0)(t) = AT
11(t)p

(0)(t+ 1) +H(t), t ∈ [i, f − 1]. (22)

It is easy to verify by induction that the closed
form solution of (22) is given below.

p(0)(f − t) =

f−t∏
j=f−1

AT
11(j)p

(0)(tf )+

t−2∑
j=0

f−t∏
j=f−j−2

AT
11(j)H(f − t),

t ∈ [i, f − 1],

p(0)(f) = p(f).

(23)

Consequently, we have at our disposal the unique
solution of the reduced TPBVP where the small
parameter has been eliminated.

2.1.2 Formal expansion

For approximations of higher order l ≥ 1, the TP-
BVP will be solved in terms of ε− expansion. We
substitute the formal power series

y(t) =
∞∑
l=0

y(l)(t), z(t) =
∞∑
l=0

z(l)(t),

p(t) =
∞∑
l=0

p(l)(t), q(t) =
∞∑
l=0

q(l)(t),

(24)

into (9)−(11) and we collect similar power coeffi-
cients of ε on each side. If we agree that any neg-
ative order coefficient is zero, the following set of
recurrences define the coefficients of all approxi-
mation orders.

y(l)(t+ 1) = A11(t)y
(l)(t) +A12(t)z

(l−1)(t)+

E11(t)p
(l−2)(t+ 1) + E11(t)q

(l−1)(t),
(25)

z(l)(t+ 1) = A21(t)y
(l)(t) +A22(t)z

(l−1)(t)+

E21(t)p
(l−1)(t+ 1) + E22(t)q

(l)(t+ 1),
(26)

p(l)(t) = Q11(t)y
(l)(t) +Q12(t)z

(l)(t)+

AT
11(t)p

(l)(t+ 1) +AT
21(t)q

(l)(t+ 1),
(27)

q(l)(t) = QT
12(t)y

(l)(t) +Q22(t)z
(l)(t)+

AT
12(t)p

(l−1)(t+ 1) +AT
22(t)q

(l−1)(t+ 1).
(28)

Under condition (17), the combination of (26) and
(28) gives

z(l)(t+ 1) = F (t+ 1)
[
A22(t)z

(l−1)(t)+

E22(t)A
T
12(t+ 1)p(l−1)(t+ 2)+

E22(t)A
T
22(t+ 1)q(l−1)(t+ 2)+

E22(t)Q
T
12(t+ 1)y(l)(t+ 1)+

E21(t)p
(l−1)(t+ 1) +A21(t)y

(l)(t)
]
,

i ≤ t ≤ f − 2,

z(l)(f) = A21(f − 1)y(l)(f − 1)+

A22(f − 1)z(l−1)(f − 1)+

E21(f − 1)p(l−1)(f) + E22(f − 1)q(l)(f).
(29)

To calculate the coefficients which will be used in
writing the asymptotic development (24), we solve
the equations above with the boundary conditions

y(l)(i) = 0, z(l)(i) = 0, p(l)(f) = 0, q(l)(f) = 0, l ≥ 1;
(30)

thus emerges the following algorithm.
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2.1.3 Algorithm

Zero-order coefficients
Step 1. From (16), compute y(0)(t), t ∈ [i, f ].
Step 2. From (19), compute z(0)(t), t ∈ [i, f ].
Step 3. From (20), compute q(0)(t), t ∈ [i, f ].
Step 4. From (23), compute p(0)(t), t ∈ [i, f ].
l-order coefficients
Step 5. Fix y(l)(i) = 0;
compute y(l)(t), t ∈ [i+ 1, f ] from (25).
Step 6. Fix z(l)(i) = 0;
compute z(l)(t), t ∈ [i+ 1, f ] from (29).
Step 7. Fix q(l)(f) = 0;
compute q(l)(t), t ∈ [i, f − 1] from (28).
Step 8. Fix p(l)(i) = 0;
compute p(l)(t), t ∈ [i, f − 1] from (27).
Step 9. Return to step 5.

2.1.4 Convergence of the asymptotic solution

The following theorem gives the main result of
this Section. We prove the convergence of the al-
gorithm above, i.e., the convergence of the power-
expansion series (24) for some domain of the small
parameter ε; the maximum norm is used.

Theorem 1. Suppose assumption (17) satisfied, there
exists a positive real number ε0, s. t. for all ε, |ε| < ε0,
the optimal control of the TPBVP (9)−(11), that is u(t),
i ≤ t ≤ f , exists, is unique, and satisfies

u(t) =

∞∑
l=0

εlu(l)(t), t ∈ [i, f − 1],

u(0)(t) = −R−1(t)BT
2 (t)F (t+ 1)G(t+ 1)ȳ,

u(l)(t) = −R−1(t)[BT
1 (t)p

(l−1)(t+ 1) +BT
2 (t)q

(l)(t+ 1)],
(31)

moreover, we have the following estimates

|u(t, ε)−
n∑

l=0

εlu(t)(l)| ≤ C
(|ε|/ε0)n+1

1− |ε|/ε0
, (32)

where C is a positive constant.

Proof. Setting

p̃(t) = εp(t), t ∈ [i+ 1, f ], (33)

and replacing the first equation of system (9) by

y(t+ 1) =A11(t)y(t) + εA12(t)z(t) + εE11(t)p̃(t+ 1)

+ εE12(t)q(t+ 1), t ∈ [i, f − 1],
(34)

we transform the TPBVP (9)−(11) in the vectorial form

Âεv = f ; f := (ȳ, z̄, 0, · · · , 0)T ,

v := (y(i), z(i), p(i), , · · · , q(f), p̃(i+ 1), · · · , p̃(f))T ,
(35)

and the matrix Âε is written as Âε = Â0 + εU , thus Â0

is the block matrix given below

I 0 · · · 0
0 I · · · 0

C(i) D(i)
0 C(i+ 1)
...

. . .
...

C(f − 1) D(f − 1) 0
0 F 0

0 · · · 0 0 I


,

where

C(t) =


Q11(t) Q12(t) −I 0
QT

12(t) Q22(t) 0 −I
A11(t) 0 0 0
A21(t) 0 0 0

 ,

D(t) =


0 0 AT

11(t) AT
21(t)

0 0 0 0
−I 0 0 0
0 −I 0 E22(t)

 ,

F =

(
Q11(f) Q12(f) −I 0
QT

12(f) Q22(f) 0 −I

)
, (36)

and the matrix U can be deduced easily. By induction,
using the formula based on a factorization involving the
Schur complement, we have

det Â0 =

f−1∏
t=i

det[Q22(t+ 1)E22(t)− I]. (37)

Since the matrices [I −Q22(t+1)E22(t)] are supposed to
be nonsingular for all t ∈ [i, f−1], then det Â0 ̸= 0, which
ensures that the reduced TPBVP has a unique solution;
we can denote :

ε0 :=
1

∥UÂ−1
0 ∥

, C := ∥Â−1
0 ∥∥f∥. (38)

By choosing ε such that |ε| < ε0, we have ∥εUA−1
0 ∥ < 1

and the infinite sum

Â−1
ε = Â−1

0

(
I + εUÂ−1

0

)−1

= Â−1
0

∞∑
j=0

(
−εUÂ−1

0

)j

,

(39)
is well defined. Therefore, the solution v (ε) = Â−1

ε f of
the system (9)−(11) exists and is unique. Moreover, if
we denote by v(l) the following vector(

y(l)(i), z(l)(i), · · · , q(l)(f), p̃(l)(i+ 1), · · · , p̃(l)(f)
)′

,

(40)
from (39), we verify that :

v (ε) =
∞∑
l=0

εlv(l), where v(l) = Â−1
0

(
−UÂ−1

0

)l

f, (41)
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and we can easily deduce that the components of v(l) are
those described in Sections 2.1.1 and 2.1.2. Also, we have

∥Â−1
ε − Â−1

0

∑n
j=0

(
−εUÂ−1

0

)(j)

∥

≤ ∥Â−1
0 ∥ (|ε|/ε0)

n+1

1− |ε|/ε0
.

(42)

From (39), (24) and (42), follows

∥v (ε)−
∑n

j=0 ε
jv(j)∥ ≤ ∥Â−1

0 ∥∥f∥ (|ε|/ε0)
n+1

1− |ε|/ε0
, (43)

what proves (32). This completes the proof.

3 Fixed end-point optimal control

In this section, we apply closed-loop control laws
to minimize (3), which is more useful in practice
than the open-loop control, and we consider the
following class of state weighting matrices

Qε(t) =

[
Q11(t) εQ12(t)
εQ21(t) Q22(t)

]
, t ∈ [i, f ]. (44)

One important attractive quality of the closed-
loop strategy applied to LQOC models is its ex-
plicit control policy which can be derived by solv-
ing the corresponding MRDE

Pε(t) = AT
ε (t)

[
Pε(t+ 1)−1 +Bε(t)R

−1(t)BT
ε (t)

]
Aε(t)

+Qε(t), t ∈ [i, f − 1],

Pε(f) = Qε(f),
(45)

what gives the minimizing closed-loop control :

u(t) = −K(t)x(t), t ∈ [i, f − 1], (46)

where the Kalman gain matrices K(t) are given
below :[
BT (t)P (t+ 1)B(t) +R(t)

]−1
BT (t)P (t+ 1)A(t). (47)

We will study the behavior of the positive definite
solution Pε(t) of MRDE (45) as ε tends to zero; we
will suffice with an approximation of zeroth-order
:

Pε(t) = P0(t) +O(ε), (48)

to reduce the cost of each iteration and provide
computational simplifications. By canceling the
small parameter ε in (45), P0(t) verify the recur-
rence :

P0(t) = AT
0 (t)

[
P0(t+ 1)−1 +B0(t)R

−1(t)BT
0 (t)

]
A0(t)

+Q0(t), t ∈ [i, f − 1], P0(f) = Q0(f).
(49)

Since the weighting matrices in (3) are positive
definite, the existence of the inverses required in
equations (45) and (49) is assured. The solution
of (49) has a simplified block matrix structure.
Induction backward in time can be used to obtain
the following representation.

Proposition 2. The blocks characterization of the solu-
tion of (49) is :

P0(t) =

(
P̄ (t) 0
0 Q22(t)

)
, t ∈ [i, f ] (50)

where the matrix coefficient P̄ (t) is solved backwards in
time from the recurrence :

P̄ (t) = AT
21(t)[Q

−1
22 (t+ 1) + E22(t)]A21(t) +Q11(t)

+AT
11(t)P̄

−1(t+ 1)A11(t), t ∈ [i, f − 1];

P̄ (f) = Q11(f).
(51)

The original MRDE (45) is brought back to solve
the reduced-order recurrence (51), which facili-
tates and accelerates the calculations. The fol-
lowing theorem justifies this approximation.

Theorem 3. There exists a positive real number ε0, for
all ε, s. t. |ε| < ε0, the optimal feedback control satisfies

u(t) = −R−1(t)BT
2 (t)Q22(t+ 1)z(t+ 1) +O(ε). (52)

Moreover, the minimum cost achieved using the above
control is :

J =
1

2

(
yT (i)P̄ (i)y(i) + zT (i)Q22(i)z(i)

)
+O(ε). (53)

Proof. By denoting X (ε) := (Pε(i), Pε(i+ 1), · · · , Pε(f)),
the MRDE (45) has the form :

Pt(X (ε), ε) :=AT (t, ε)
[
P (t+ 1, ε)−1 + E(t, ε)

]
A(t, ε)

+Q(t, ε)− Pε(t), t ∈ [i, f − 1],

Pf (X (ε)) :=Q(f, ε)− P (f, ε),
(54)

or can be written as P(X (ε), ε) = 0, where the mapping
P : Rn×n×(f−i+1) × (−1, 1) −→ Rn×n×(f−i+1),

P(X (ε), ε) = P
(
Pi(X (ε), ε), · · · ,Pf (X (ε), ε), ε

)
, (55)

is well defined and continuously differentiable with re-
spect to all arguments including the parameter ε, since
all Pε(t) are positive definite. The components of X (0)

satisfy (49), i.e., P(X (0), 0) = 0, and the Jacobian matrix
JX (ε)P|(X (0),0) below

−I ∂2Pi|(X (0),0) · · · 0
0 −I · · · 0
...

. . .
...

· · · ∂f−i+1Pi|(X (0),0)

0 · · · −I

 , (56)

is obviously invertible. Thus, the conditions for apply-
ing the implicit function theorem are fulfilled, there exist
0 < ε0 < 1, and a unique continuously differentiable
g :(−ε0, ε0) −→ Rn×(f−i+1), s.t., P(g(ε), ε) = 0 and
g(ε) = g(0) + εg′(ε̄), zeroth-order Maclaurin approxima-

tion, where g′ = − [JX (ε)P]
−1

∂εP which is continuous,
and g(0) corresponds to the solution of (51).
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4 Illustrative examples

4.1 Example I

Consider a second order discrete control system[
y(t+ 1)
z(t+ 1)

]
=

[
3 0.00002
2 0.00005

] [
y(t)
z(t)

]
+

[
0.00002

3

]
u(t), (57)

s.t. ε = 10−5; A12(t) = 2, A22(t) = 5, B1(t) = 2 and
the initial conditions are y(0) = 2, z(0) = 3. We aim

to minimize the index (3) for Q(t) =

[
2 1
1 2

]
,Qf =[

2.5 3
3 2.5

]
, N = 5, and R = 1. From (38), we find

10−6 ≤ ε0 ≤ 10−5.
Exact and zeroth-order solutions are evaluated
and compared as shown in Table 1. Their values
are very close, even so the value of ε must be cho-
sen below the threshold of ε0. Reduced problem
solving is intuitive; before adopting reduced solu-
tion, it is first necessary to check that the value
of |ε| is lower than ε0, which must be calculated
precisely.

Table 1: Example I
Zeroth-order solution Exact solution

y(0) 2 2
z(0) 3 3
u(0) −24 −22.763
y(1) 6 6
z(1) −3 −3
u(1) −3 -2.587
y(2) 18 18
z(2) −8 −8
u(2) −6 −5.862
y(3) 54 54
z(3) −24 −24
u(3) −21 −20.954
y(4) 162 162
z(4) −73 −71
u(4) −60 −59.984
y(5) 486 486
z(5) −545 −545

4.2 Example II

For the state system (57), and the initial condi-
tions y(0) = 2, z(0) = 3, we apply closed-loop con-
trol laws to minimize the cost (3), for N = 5, R = 1,
ε = 10−4 and

Q(t) = Qf =

[
2 0.0001

0.0001 2

]
(58)

Exact solutions of Riccati equation (45) and the
and reduced solutions of the reduced equation (51)

are evaluated and compared as shown in Table 2.
Their values are very close, and the reduced prob-
lem (51) solving is intuitive and provides simplic-
ity and speed of calculation.

Table 2: Example II
Reduced solution Exact Solution

P (4)

[
44.5012 0.0000
0.0000 2.0000

] [
44.5000 0.0011
0.0011 2.0000

]
P (3)

[
40.2025 0.0000
0.0000 2.0000

] [
40.2037 0.0011
0.0011 2.0000

]
P (2)

[
40.0248 0.0000
0.0000 2.0000

] [
40.2253 0.0011
0.0011 2.0000

]
P (1)

[
40.0249 0.0000
0.0000 2.0000

] [
40.2253 0.0011
0.0011 2.0000

]
P (0)

[
40.0249 0.0000
0.0000 2.0000

] [
40.2253 0.0011
0.0011 2.0000

]

5 Conclusions and Future Work

In this paper, a general approach is suggested
for solving a class of finite-horizon discrete-time
linear-quadratic optimal control problems gov-
erned by time-variant two-time-scale state equa-
tions. First, the fixed end-point problem is in-
vestigated, it is equivalent to solving the corre-
sponding TPBVP which is not exactly solvable.
We use a natural perturbation method to emerge
an asymptotic iterative algorithm converging to
the exact solution. Second, we consider the free
end-point problem. The solution of the linear-
quadratic optimal control problem is obtained by
solving the reduced-order discrete-time algebraic
Riccati equations and implementing the reduced-
order Kalman filters. Several cases of finite-
horizon optimization problems will be considered
separately. This will be indicated in other arti-
cles.
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