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Abstract—Characterizing volatility is of great significance for
the study of financial markets. This paper analyzes realized
volatility (RV), weighted adjusted realized volatility (WARV),
multi-fractal volatility (MFV), and weighted adjusted multi-
fractal volatility (MVWA) sequences based on closing price
sequences of the Shanghai Composite Index. The results show
that all four volatility sequences have the characteristics of
a peak, fat tail, and long memory. The heterogeneous au-
toregressive (HAR) model can well depict these peak, fat-
tail, and long-memory features. Thus, we construct HAR-
RV, HAR-AWRV, HAR-MFV, and HAR-MVWA models and
find that medium-term and long-term volatility influences
predicted volatility. We also introduce a superior long short-
term memory (LSTM) model. To expect volatility, results from
HAR-RV, HAR-AWRV, HAR-MFV, and HAR-MVWA, along
with daily, weekly, and monthly volatility sequences for RV,
AWRV, MFV, and MVWA, are used as inputing variables to
construct four HAR-LSTM models: HAR-RV-LSTM, HAR-
AWRV-LSTM, HAR-MFV-LSTM, and HAR-MVWA-LSTM.
Compared with benchmark HAR model and LSTM model,
model confidence set (MCS) test results show that the HAR-
LSTM model has the most predictive ability. These MCS test
results are related to the selection of benchmark volatility
sequences. Two multi-fractal volatility are more suitable for
the Chinese stock market, and MVWA works better.

Index Terms—RV, Fractal Volatility, HAR, LSTM, HAR-
LSTM, MCS test.

I. INTRODUCTION

VOLATILITY is one of the most critical risk manage-
ment indicators for financial assets. It can be classified

into three categories: implied volatility, time-varying volatil-
ity, and Realized volatility(RV), RV measured by a non-
parametric method based on high-frequency data, can reflect
the most information on prices and describe market volatility
most accurately [1]-[2].

However, RV follows the efficient market hypothesis,
which holds that the current price of an underlying as-
set reflects all the information available between past and
present. The market presents a random walk: regardless of
what may have occurred or is currently taking place, those
cannot determine what will happen in the future. However, in
reality, investors do not immediately respond to information
but wait until the trend is evident before taking corresponding
measures. The response time is different, leading to biased
random walks. The fractal market hypothesis has therefore
attracted attention[3].
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Meanwhile, the fractal market hypothesis holds that all
stable markets have fractal structures. Based on fractal the-
ory, multi-fractal volatility(MFV) has strong practicability
in financial markets [4]. To reduce extremes’ influence on
MFV, use the standard deviation of a multi-fractal singularity
index to improve MFV [5]. Reducing the power of noise
on volatility, RV replaces the square of returns in multi-
fractal fluctuation [6]. Meanwhile, weight-adjusted realized
volatility is used as the correction factor to reduce noise’s
influence on volatility further and obtain a better method for
measuring MFV [7]. Research has proved the advantages of
MFV and ameliorative MFV and the feasibility of applying
MFV in China’s market.

While measuring volatility is continuously improved,
volatility modeling methods have also received extensive
attention. Heterogeneous autoregressive (HAR) model can
better portray RV’s long-memory and fat-tail distributions
[8]; consequently, based on HAR model, scholars have made
a series of optimizations. Introduced the jump component
constructs a HAR-RV-J model, the jump can affect pre-
dicted next-day volatility [9]. Based on external information
shocks constructs a HAR-VRV-hopping model, the results
show that HAR-VRV-hopping model outperform HAR-RV-
hopping model [10].

Based on HAR model, Some scholars have made im-
provements by considering jump behavior and leverage effect
[11].At the same time, The existing literature has focused on
the symbolic price difference [12]. Research devoted to learn
modified threshold biopower variation [13].

Recently, based on machine learning, predicting volatility
models have evolved enormously. Through out-of-sample
volatility prediction, this existing literature has proved the
advantage of Long short-term memory(LSTM) [14]. When
predict realized volatility through LSTM-RV, the accuracy
is significantly improved [15]. Meanwhile, research into
hybrid model has also attracted attention among researchers.
Whether construct factor-augmented heterogeneous autore-
gressive model (FAHAR), combining LSTM with FAHAR
to predict volatility[16]or combining LSTM with realized
GARCH (RGARCH) model to predict volatility[17], results
have supported two hybrid models. For example, a hybrid
model, combining neural network with GARCH model, is
better than a single model [18].

Chinese researchers have conducted a series of studies
on the combination of neural networks and GARCH mod-
els in which RV is divided into long-term and short-term
components by HP filter. The long-term part is fitted using
an autoregressive neural network, and the short-term part is
fitted by AR (1) model. At the same time, A two-component
mixed exchange rate volatility model based on neural net-
work has been proposed [19] in which the parameters and
explanatory variables of GARCH family models are added to
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the neural network’s input-layer variables. This mixed model,
using LSTM and GARCH [20], shows improved forecast
precision for RMB exchange rate fluctuations.

According to the above analysis of extensive literature,
researchs on hybrid models have two types: First, through
decomposition and reconstruction frame to attain the best
prediction results. Second, Accroding to the econometric
models fit volatility sequences, fitting parameters and ex-
planatory variables are added as inputs variables to deep
learning models. There have been relatively little research
devoted to combining LSTM with HAR. This study based
on the second type researches, combine LSTM with the HAR
model to predict the Shanghai Composite Index volatility.

Based on the above understanding, this paper has several
contributions. First, We construct the Shanghai Composite
Index’s volatility sequences, including RV, WARV, MFV, and
MVWA and examined some features of several kinds of
volatility sequences. The statistical analysis shows that these
sequences have a peak, fat tail, and long memory. Second,
In that HAR model can well characterize peak, the fat tail,
and long memory, we use the HAR model to predict several
kinds of volatility sequences. The in-sample results show
that medium-term and long-term volatility influence volatility
forecasts. Third, Considering the advantages of LSTM in
long memory, we build LSTM to predict each volatility
series. And we use results obtained in the second step as
augmented input variables.

Fourth, literatures show that hybrid models are better
than a single model, and few scholars have combined
HAR model and LSTM. This paper constructs the HAR-
LSTM model to predict volatility sequences. Last, con-
sidering a single loss function index may lead to er-
rors in a model’s evaluation, we introduce an MCS test.
This test allowes us to evaluate out-of-sample predictabil-
ity within several models in this paper, including HAR-
RV-LSTM, HAR-AWRV-LSTM, HAR-MFV-LSTM, HAR-
MVWA-LSTM, RV-LSTM, AWRV-LSTM, MFV-LSTM,
MVWA-LSTM, HAR-RV, HAR-WARV, HAR-MFV, and
HAR-MVWA. The results show that the HAR-LSTM model
has the most potent predictive ability; meanwhile, MCS
results are associated to benchmark volatility sequences, and
MVWA can enhance the model’s accuracy.

II. MODELS AND METHOD

A. HAR Model

HAR, which had a long memory and volatility heterogene-
ity was proposed by Corsi [8], can predict volatility. It re-
gards daily, weekly, and monthly volatility as proxy variables
for short-term, medium-term, and long-term fluctuations. The
specific regression relationships are as follows:

RVt+1 = β0+βdRVt+βwRVt−5,t+βmRVt−22,t+εt+1 (1)
RVt =

∑n
i=1 r

2
t,i

RVt−5,t =
1
5

∑4
i=0 RV 2

t−i

RVt−22,t =
1
22

∑21
i=0 RV 2

t−i

(2)

Here, εt+1is a random error term; RVt, RVt−5,t , and
RVt−22,t represent daily, weekly, and monthly RV, respec-
tively.

B. LSTM Model

Long and short-term memory neural network (LSTM) has
the strengths of long memory and can play a better role in
volatility prediction. The unit of LSTM, as shown in Fig. 1.

At t, the forward propagation formula of LSTM as shown
in (8)–(13):

Storage unit candidate state:

c̃t = tanh(Wcx
t + Uch

t−1) (3)

Input gate:

it = σ(Wix
t + Uih

t−1) (4)

Forget gate:

f t = σ(Wfx
t + Ufh

t−1) (5)

Output gate:

ot = σ(Wox
t + Uoh

t−1) (6)

Storage unit update:

ct = it ⊙ c̃t + f t ⊙ ct−1 (7)

And finally, the result at t:

ht = ot ⊙ tanh(ct) (8)

Here, ht−1 is output at t-1 moment, xt is output at t,
W∗ and U∗ are the weight and the storage unit, respectively,
while σ is the sigmoid function; ⊙ represents the Hadamard
product between elements.

C. Evaluation Indicators and MCS Test

There is no fixed standard for model evaluation indicators.
According to Hansen et al. [21], a model is evaluated using as
many arrows as possible so that the evaluation results will be
as reasonable. Six indicators (MAE, MSE, HMAE, HMSE,
QLIKE, and R2LOG) are commonly used, nevertheless,
LSTM results may present negative values, we use the four
following evaluation indicators:

L1 : MAE =
1

N

N∑
t=1

|yt − ŷt| (9)

L2 : MSE =
1

N

N∑
t=1

(yt − ŷt)
2 (10)

L3 : HMAE =
1

N

N∑
t=1

∣∣∣∣1− ŷt
yt

∣∣∣∣ (11)

L4 : HMSE =
1

N

N∑
t=1

(
1− ŷt

yt

)2

(12)

Here, N is length of prediction sample, ŷt is prediction
result, and yt is volatility (RV, AWRV, MFV, and MVWA).

However, if a given rating index (Li) is used to evaluate
the model’s predictive ability, it can only prove that the model
has superiority in this period, and according to this evaluation
index, with a change in the data, this conclusion may be
wrong. We use the MCS test proposed by Hansen et al. [22]
to solve this problem. The MCS detects a model’s predictive
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Fig. 1. Unit (LSTM)

ability and finds the best model from a set for the selected
confidence level.

The MCS test proceeds follows: Construct a model
set M0 (in this paper, M0 contains 12 models, M0 =
{1, 2, · · · ,m0 = 12} ). Each model has N next-day predic-
tion result sets ŷt (t = 1, 2, · · · , N), with loss function values
of above four evaluation indicators (L1, L2, L3, L4) denoted
as Li,j,t, i = 1, 2, · · · ,m0, j = 1, 2, 3, 4, and t = 1, 2, · · ·N .
Relative loss function values dii+k,j,t = Li,j,t − Li+k,j,t

can be calculated for any two volatility models. Denoted as
µii+k,j = E (dii+k,j,t), ifµii+k,j < 0, the i-th model is better
than the i+k-th model. That is to say, it is denoted as the set
of superior objects M∗ = {i ∈ M0 : µii+k,j ≤ 0, forallj ∈
M0}.

The purpose of the MCS test is to find using a series of
significant tests to eliminate the model with poorer predictive
ability. Both models are assumed to have the same predictive
power each time H0,M : µii+k,j = 0, foralli, i + k ∈
M ,where M ⊂ M0.

The MCS test is based on equivalence testing (δM ) and
an elimination rule (eM ). Equivalence tests test the null
hypothesis for each M ⊂ M0; the elimination rule is: Delete
the models in M which reject the null hypothesis.

The MCS algorithm steps are as follows:
First, set M = M0.
Second, according to equivalence test δM test the null

hypothesis H0,M at significance level α.
Three, if accepting the null hypothesis H0,M , denote it as

M̂∗
1−α = M ; otherwise, remove the model that rejects the

null hypothesis according to the elimination rule, repeat steps
2 and 3, and finally get the MCS M̂∗

1−α.
In this paper, the MCS algorithm t statistics are as follows:

TR = max
i,i+k∈M

∣∣dii+k,j

∣∣√
var (dii+k,j)

(13)

TSQ = max
i,i+k∈M

(
dii+k,j

)2
var

(
dii+k,j

) (14)

dii+k,j =
1

N

N∑
t=1

dii+k,j,t (15)

The null hypothesis is rejected if the t statistic is more
significant than a given critical value. We used the bootstrap
algorithm to calculate TR, TSQ, and the p value.

D. HAR-LSTM Family Models
In this paper, the HAR-LSTM family models include the

following parts:
1) Construct volatility sequences using the closing price of

five-minute transaction data: RV, AWRV, MFV, and MVWA.
2) The HAR model predict the volatility sequences, which

can capture these sequences’ long memory and fat tail. The
HAR model prediction results are obtained, including HAR-
RV, HAR-AWRV, HAR-MFV, and HAR-MVWA.

3) The prediction results of HAR-RV, HAR-AWRV, HAR-
MFV, and HAR-MVWA, as well as the daily, weekly,
and monthly volatility sequences of RV, AWRV, MFV, and
MVWA, are input into the LSTM model to construct the
HAR-LSTM model. The HAR-LSTM model prediction re-
sults are obtained, including HAR-RV-LSTM, HAR-AWRV-
LSTM, HAR-MFV-LSTM, and HAR-MVWA-LSTM.

4) According to the MCS test, we compare and analyze
the prediction results of HAR-LSTM family models, HAR
family models, and LSTM family models.

The structure of HAR-LSTM is shown in Fig. 2.

III. RESULTS

A. Data Selection and Analysistitle
As the research object, the five-minute high-frequency

trading data of the Shanghai Composite Index from January
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Fig. 2. Family models (HAR-LSTM)

2, 2011, to September 30, 2021, are obtained from the
Wind database. To show that the asymmetric fractality of the
stock market has a predictive power, four volatility elements
are constructed accroding formulas (16)–(19), which are as
follows: RV, AWRV, MFV, and MVWA.{

RVt =
∑n

i=1 r
2
t,i

rt,j = log (Pt,j/Pt−1,j)
(16)



a = E(WRQt)/n
V ar(WRVt)

b = V ar(WRVt)−E(WRQt)/n
V ar(WRVt)

WARVt = aE(WRVt) + bWRVt

WRVt =
n∑

j=1

ϖjr
2
t−1+ j

n , j
n

WRQt =
2
3n

∑n
j−1 ϖjr

4
t−1+ j

n , j
n

ϖj =

∑
t

∑n

j−1
r2t,j

n
∑

t
r2
t,j

(17)

{
MFVt = λ1∆α,t, λ1 =

E(r2t )
E(∆α,t)

∆α = αmax − αmin

(18)

MVWAt = λSα,t, λ =
E(WARVt)

E(Sα,t)
(19)

Here, Pt,j marks the close of period i in trading day t; rt,j
represents the return rate during i for day t, total n sampling
intervals on t-th trading day. With α as the singular index,
Sα,t is the standard deviation for α.

Fig.3 is four volatility sequences, we can see that RV and
AWRV exist some abnormal values, and abnormal values in
AWRV are smaller than RV, but the number of abnormal val-
ues are not reduce. MFV and MVWA can reduce abnormal
values, and MVWA sequence seemingly more stable.

Table I shows the data statistics of the Shanghai Composite
Index. The standard deviation results show that MVWA has
the highest stability. At the same time, skewness and kurtosis
results show that RV, AWRV, MFV, and MVWA sequences
have a peak characteristic.As a result of the Jarque–Bera
test, all series in Table I are not the normal distribution

at a 1% significance level, each volatility sequence has fat-
tail characteristics. The skewness and kurtosis results are the
smallest in the MFV sequence, proving that MFV is closer
to normal distribution. The Ljung–Box Q statistics of RV,
AWRV, MFV, and MVWA sequences show that the null
hypothesis is rejected concerning a 1% significance level,
so the samples show autocorrelation, in other words, RV,
AWRV, MFV, and MVWA show long memory. The absence
of unit root is rejected with 1% significant level as a result
of the Augmented Dickey–Fuller (ADF) test. Therefore, all
time-series are stationary.

B. Experimental Process

As previously stated, we use HAR-RV, HAR-AWRV,
HAR-MFV, and HAR-MVWA to forecast the volatility series
of the Shanghai Composite Index. The results are shown in
Table II.

As Table II shows, in addition to the HAR-MFV model,
the parameter estimation with positive short-term, medium-
term, and long-term fluctuations in each model indicate that
the market has strong persistence. The parameters of the
realized volatility model are indigenous at the 1% signifi-
cance level. In the multi-fractal volatility models, the short-
term volatility of HAR-MFV was not indigenous at the
10% significance level. Compared with models based on
realized volatility, models based on multi-fractal volatility are
more affected by medium-term and long-term fluctuations.
Therefore, to improve the model’s prediction accuracy, in
this paper, we consider introducing LSTM, which is superior
in long memory. Compared with models based on multi-
fractal volatility, these models based on realized volatility,
the goodness of fit is notably higher. In addition, the HAR-
AWRV model has the highest measure of goodness of fit,
showing the more substantial explanatory power of AWRV
for market volatility characteristics.

Therefore, considering that long-term volatility has a
higher impact on the prediction of multi-fractal volatility, we
introduce LSTM with a long memory. The HAR family mod-
els’ prediction results and volatility sequences are input vari-
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Fig. 3. Several volatility sequences

TABLE I
STATISTICAL ANALYSIS RESULTS FOR VOLATILITY SERIES

RV AWRV MFV MVWA

mean 1.544615 1.544615 1.544615 1.544615
std 3.751937 2.932712 0.428785 0.149851

skewness 9.520172 7.711306 -1.21006 -2.06217
kurtosis 125.0194 82.29514 3.866211 8.724687

Jarque–Bera 1661118*** 710744.1*** 719.6432*** 5422.11***
Q (5) 3121.7*** 5061.9*** 83.978*** 2907.9***
Q (10) 4429.2*** 7590.8*** 117.50*** 5038.9***
Q (22) 6625.7*** 12571*** 199.28*** 9139.7***
ADF -11.57991*** -5.355688*** -18.03181*** -5.685381***

Note: “*”, “* *”, and “***” are expressed at the level of 1%, 5%, and 10%,
respectively. Q(n) is the Ljung–Box Q statistic with lag order n, and ADF is the
Augmented Dickey–Fuller unit root test result.

TABLE II
PARAMETER ESTIMATION RESULTS FOR EACH VOLATILITY MODEL

model β0 βd βw βm R2

HAR-RV
0.209188***
(2.922089)

0.406299***
(18.97775)

0.363457***
(10.64621)

0.104702***
(2.842903)

0.492801

HAR-AWRV
0.155912***
(2.646618)

0.441998***
(20.58368)

0.294097***
(8.585795)

0.171093***
(4.807281)

0.553077

HAR-MFV
0.714464***
(6.536924)

-0.00554
(-0.25302)

0.166553***
(3.001105)

0.378329***
(4.258418)

0.032692

HAR-MVWA
0.148407***
(3.873354)

0.243831***
(11.22174)

0.307793***
(7.136988)

0.351842***
(7.23526)

0.412301

Note: “*”, “* *”, and “***” are expressed at 1%, 5% and 10%, respectively.

ables for LSTM. We construct four hybrid models: HAR-RV-
LSTM, HAR-AWRV-LSTM, HAR-MFV-LSTM, and HAR-
MVWA-LSTM. The out-of-sample prediction results of RV-
LSTM, AWRV-LSTM, MFV-LSTM, and MVWA-LSTM are
compared with the prediction results of HAR-RV-LSTM,
HAR-AWRV-LSTM, HAR-MFV-LSTM, and HAR-MVWA-
LSTM.

C. LSTM Model Parameters Settings

This paper use a rolling window to predict volatility and
predicte the volatility of the eleventh day from the first
ten days’ daily, weekly, and monthly volatility indicators.
Whether the HAR model prediction results are input in-
dicators, the input dimension is 3 or 4, and the output
dimension is 1. The mean square error is the loss function
during model training, and the model optimizer select the
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Adam algorithm. We find the final model parameter with the
minor loss function by comparing the results from repeated
experiments. The number of hidden layers is 2, the number
of remote layer nodes is 128, and the learning rate is
0.0005, while the model’s batch processing capacity is 64;
the number of iterations is 500. The model’s predictive ability
is best at these parameters. Meanwhile, to prevent the model
from overfitting, we introduce an early stop mechanism
into LSTM, stopping training when the validation set’s loss
function do not change within 30 consecutive cycles.

D. MCS Test
Based on RV, we compare and evaluate the out-of-sample

predictive ability of the proposed models using the MCS test.
Use the bootstrap method to calculate the statistics and p-
value for the MCS test. We set d = 2 (block length), iteration
B = 10000, and significance level α = 0.1. Table III shows
MCS test results for each volatility model based on RV. The
numbers in the table show the corresponding p values of the
TR and TSQstatistics under each loss function of the MCS
test. If the p value less than 0.1, the model is weaker than
other models; If the p value is 1, the model is the best model.

Table III shows that HAR, LSTM, and HAR-LSTM family
models, which based on AWRV, MFV, and MVWA, respec-
tively, p values are less than 0.1. MCS results show that
when benchmark volatility is RV, models based on other three
volatility sequences: AWRV, MFV, and MVWA are poor.
Some p values of HAR, LSTM, and HAR-LSTM family
models based on RV are greater than 0.1, Thus, HAR, LSTM,
and HAR-LSTM family models based on RV have better
prediction accuracy. We believe that the MCS test results are
related to the selection of benchmark volatility sequences. In
addition, The HAR-RV model result only has two p values
are greater than 0.1 and less than 1, and RV-LSTM model
has four p values are greater than 0.1 and less than 1, so RV-
LSTM is better than HAR-LSTM. HAR-RV-LSTM model p
values are all equal to 1, showing HAR-RV-LSTM has the
most potent predictive ability. To verify this thought, which
the MCS test results are related to the selection of benchmark
volatility, and to further explore the effectiveness of multi-
fractal volatility in the Chinese market, we use AWRV, MFV,
and MVWA as the benchmark volatility for the MCS test,
respectively. The test results are shown in Table IV, Table V,
and Table VI.

As shown in Table IV, similar to Table III, only HAR-
AWRV, AWRV-LSTM, and HAR-AWRV-LSTM models
passed the MCS test, which p values are greater than 0.1.
HAR-AWRV and AWRV-LSTM models both have two p
values are greater than 0.1, therefore HAR-AWRV and
AWRV-LSTM have the similar prediction ability. HAR-
AWRV-LSTM p values are all equal to 1, so when AWRV
is benchmark volatility, HAR-AWRV-LSTM has the most
potent predictive ability.

As shown in Table V, also only HAR-MFV, AWRV-MFV,
and HAR-MFV-LSTM models passed the MCS test, which
p values are greater than 0.1. HAR-MFV and MFV-LSTM
models both have four p values are greater than 0.1, therefore
HAR-MFV and MFV-LSTM also have similar prediction
ability. HAR-MFV-LSTM p values are all equal to 1, so
when MFV is benchmark volatility, HAR-MFV-LSTM has
the most potent predictive ability.

As shown in Table VI, also only HAR-MVWA, AWRV-
MVWA, and HAR-MVWA-LSTM models passed the MCS
test, which p values are greater than 0.1. HAR-MVWA has
five p value greater than 0.1, and MVWA-LSTM model has
four p values are greater than 0.1, therefore HAR-MVWA
is better than MVWA-LSTM. HAR-MVWA-LSTM p values
are all equal to 1, so when MVWA as the benchmark
volatility, HAR-MFV-LSTM has the most potent predictive
ability.

Above four table results show that the MCS test results are
related to the selection of benchmark volatility. And as shown
in Table III to Table VI, the HAR-LSTM model p values are
1, greater than 0.1, further proving that HAR-LSTM model
has the highest out-of-sample predictive ability. In addition,
from Table IV to Table VI, when two realized volatility are
the benchmark, these modles, which are based on realized
volatility are more passed the MCS test, also consistent
when the base volatility is multi-fractal volatility. Thus multi-
fractal volatility sequences are better than realized volatility
sequences. In other words, two multi-fractal volatility are
more applicable to the Chinese market.

Fig. 4 shows the out-of-sample prediction results for
HAR-LSTM family models based on MFV and MVWA,
respectively. In our paper, when the prediction curve is
very close to the initial volatility sequence, it proved the
prediction model has high prediction accuracy. According to
Fig. 4, compared with the distance between prediction line
of HAR-MFV-LSTM and the MFV line, the prediction line
of HAR-MVWA-LSTM is remarkably close to the MVWA
line, indicating that the prediction accuracy of HAR-MVWA-
LSTM is higher, meaning that MVWA can more describe
Chinese stock volatility.

IV. CONCLUSION

In this paper, we obtain RV, WARV, MFV, and MVWA
sequences using the closing price series from the Shanghai
Composite Index. Through the statistical analysis, we find
that all four volatility series has the characteristics of peak,
fat tail, and long memory. Literatures show that HAR models
can well describe volatility characteristics, including peak,
fat tail, and long memory. Therefore, we construct HAR-RV,
HAR-WARV, HAR-MFV, and HAR-MVWA models based
on four kinds of volatility. The sample’s relevant results
show that AWRV has a more vital ability to explain the
market’s volatility characteristics; MFV is more suscepti-
ble to medium-term and long-term fluctuations. Since the
HAR model verifies the crucial role of medium-term and
long-term changes in volatility, LSTM with long memory
is introduced. The prediction results of HAR-RV, HAR-
AWRV, HAR-MFV, and HAR-MVWA combine with the
correlation volatility sequences, which contain RV, AWRV,
MFV, and MVWA, are input variables of the LSTM model.
Through MCS test the out-of-sample prediction accuracy
of four family models. Four family models include HAR-
RV-LSTM, HAR-AWRV-LSTM, HAR-MFV-LSTM, HAR-
MVWA-LSTM, RV-LSTM, AWRV-LSTM, MFV-LSTM,
MVWA-LSTM, HAR-RV, HAR-WARV, HAR-MFV, and
HAR-MVWA. The MCS test show that the MCS test results
are associated with the selection of benchmark volatility.
When two multi-fractal volatility curves are the benchmark
volatility, prediction models have higher prediction accuracy;
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TABLE III
VOLATILITY MODELS’ MCS TEST RESULTS (BASED ON RV)

MAE MSE HMAE HMSE

TR TSQ TR TSQ TR TSQ TR TSQ

HAR-RV 0 0 0.0001 0 0.0092 0.0067 0.2628 0.5885

HAR-AWRV 0 0 0 0 0 0.0067 0 0.0247

HAR-MFV 0 0 0 0 0 0.0067 0.0568 0.0247

HAR-MVWA 0 0 0 0 0 0.0001 0.0641 0.0885

RV-LSTM 0 0 0.2041 0.1927 0.0251 0.024 0.2628 0.6247

AWRV-LSTM 0 0 0 0 0.0193 0.0118 0.0628 0.0247

MFV-LSTM 0 0 0 0 0.0001 0.0067 0.0628 0.088

MVWA-LSTM 0 0 0 0 0 0.0003 0.0638 0.0081

HAR-RV-LSTM 1 1 1 1 1 1 1 1

HAR-AWRV-LSTM 0 0 0 0 0.0193 0.0118 0.0628 0.0247

HAR-MFV-LSTM 0 0 0 0 0.0001 0.0067 0.0641 0.0724

HAR-MVWA-LSTM 0 0 0 0 0 0.0002 0.0141 0.0585

Note: The numbers in the table show p values for MCS results from 10,000 bootstrap simulations;
p values greater than 0.1 appear in boldface.

TABLE IV
VOLATILITY MODELS’ MCS TEST RESULTS (BASED ON AWRV)

MAE MSE HMAE HMSE

TR TSQ TR TSQ TR TSQ TR TSQ

HAR-RV-LSTM 0 0 0 0 0 0 0.0303 0.0307
HAR-MFV-LSTM 0 0 0 0 0 0 0.0736 0.0935

MFV-LSTM 0 0 0 0 0 0 0.0763 0.0935
RV-LSTM 0 0 0 0 0 0.0001 0.0297 0.003

HAR-MVWA-LSTM 0 0 0 0 0 0 0.003 0.02
HAR-MFV 0 0 0 0 0 0 0.0281 0.0207

MVWA-LSTM 0 0 0 0 0 0 0.0028 0.0199
HAR-MVWA 0 0 0 0 0 0 0.0067 0.029

HAR-RV 0 0 0 0 0 0.0001 0.0876 0.0307
HAR-AWRV 0 0 0 0 0 0.0001 0.876 0.307
AWRV-LSTM 0 0 0 0 0 0.0001 0.763 0.325

HAR-AWRV-LSTM 1 1 1 1 1 1 1 1
Note: The numbers in the table show p values for MCS results from 10,000 bootstrap
simulations; p values greater than 0.1 appear in boldface.

compared with MFV, MVWA works better. In addition,
whatever benchmark volatility, the HAR-LSTM model has
the best effect and the slightest prediction error.
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Fig. 4. out-of-sample prediction results
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