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Abstract—As a classical combinatorial optimization problem,
capacitated vehicle routing problem (CVRP) has been contin-
uously studied. However, developing effective approaches for
CVRP remains very challengeable. This article presented a
two-stage selection hyper-heuristic algorithm for CVRP. The
proposed algorithm used the multi-armed bandit algorithm
as the high-level selection strategy, which selected a low-level
heuristic at each step in the iterative local search framework
according to the rewards that it had obtained. For the new
neighborhood solution that was found by the selected low-
level heuristic, a hybrid acceptance strategy was employed
to decide whether to accept it. In addition, we also designed
a low-level heuristic based on the ruin-and-recreate principle
to expand the search space of neighborhood solutions except
for the regular neighborhood operators widely used in CVRP.
Moreover, the routes of better solutions were also put into a
pool of routes. Then a set partitioning procedure model was
built based on these routes and then solved by CPLEX to
obtain better solution. Computational results on 82 instances
demonstrate that the presented algorithm is a satisfactory and
competitive approach for CVRP.

Index Terms—hyper-heuristic; vehicle routing problem;
multi-armed bandit; set partitioning; heuristics.

I. INTRODUCTION

VEHICLE routing problem (VRP) is a classical combina-
torial optimization problem, which has a very extreme-

ly wide range of applications. Since it was put forward by [1],
scholars have been continuously studying the vehicle routing
problems. Capacitated vehicle routing problem (CVRP) is
the basic problem of VRP. The goal of CVRP is to find a
set of routes with lowest travel cost to meet the demands
of the customers while satisfying with the vehicle capacity
constraints.

CVRP is an extremely difficult problem, which means that
the optimal solution of it cannot be found in polynomial time.
Thus, different kinds of algorithms are proposed to solve
CVRP. Exact algorithms can solve relatively small problems,
and the commonly used exact algorithms include column
generation, dynamic programming, branch and cutting and
so on. The recent review of exact algorithms for CVRP can
found in some literatures [2],[3],[4]. Exact algorithms can
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find optimal solution, but they spend more computation time.
It is the reason that many researchers prefer to use heuristics,
metaheuristics or hybrid algorithms. These algorithms can
find an approximate optimal solution in a limited time. There
are a huge number of researches about these algorithms
for CVRP [5],[6],[7]. The recent review of CVRP on these
algorithms could be found in the literatures [8],[9],[10],[11].

Although there are a lot of approaches for CVRP, develop-
ing effective approaches for CVRP is still a very challenging
job. As a basic problem of VRP, the developed methods
for the CVRP may be extended to solve its other variants.
Meanwhile, the methods with the less troublesome procedure
of parameters setting and tuning will be more attractive.

Hyper-heuristic is a kind of heuristic or metaheuristic algo-
rithm that guides or generates heuristic algorithms to tackle
difficult optimization problems [12],[13]. It uses a high-level
strategy (HLS) to guide a set of low-level heuristics (LLH),
which are related to the specific problem-solving domain.
The HLS is responsible for managing or manipulating several
LLHs to solve the problem. Therefore, the hyper-heuristic
algorithms cannot only solve different problems across do-
mains [12],[14],[15], but also solve many variants of a class
of problems [16],[17],[18]. Hyper-heuristic algorithm has the
advantages of having fewer parameters, simple parameter
setting, easy design and implementation.

In this study, we try to develop a two-stage hyper-heuristic
algorithm for CVRP, due to the advantages of the hyper-
heuristic algorithm. In the first stage, we used the multi-
armed bandit (MAB) algorithm based on Upper Confidence
Bound (UCB) [19] to select the proper LLH. For each new
obtained neighborhood solution by the chosen LLH, the
record-to-record travel method [20] or naive acceptance rule
will be chosen randomly to accept or refuse it. Moreover,
the routes of neighborhood solutions were also recorded into
a route pool. When the global best solution found in the
first stage was not the best-known solution, the routes in the
route pool was used to build a set partitioning procedure
(SP) model. Then the SP model was solved by CPLEX 12.6
optimization software to get a better solution. The presented
algorithm was tested on 82 standard CVRP instances. The
results prove that our proposed algorithm has a good perfor-
mance. Meanwhile, the proposed algorithm is also effective
when compared with the state-of-the-art algorithms.

The structure of this article is organized as follows. Section
II describes the definition of CVRP. The related works about
CVRP and hyper-heuristic are given in Section III. The
designed algorithm in this paper is described in Section IV.
In section V, the experimental study is carried out, and the
comparison results are given. Section VI gives the conclusion
and indicates the future research direction.
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II. PROBLEM DEFINITION

The CVRP can be described in the following. There is a
single depot and some vehicles. There are several customers
with a known number of demands, which will be served only
once by a vehicle. Every vehicle starts from the depot, serves
the customers and then returns to the depot. The objective
of CVRP is to find a set of routes that minimize the total
traveled distance by all the vehicles.

The CVRP is usually defined as a complete graph G =
(V,A). V = {0, 1, 2, ..., n} is the node set, and A =
{(i, j)|i, j ∈ V } is the arc set. Node 0 indicates the depot.
A set of K homogeneous vehicles are available at the depot,
each of them has the same capacity Q. The customers nodes
to be served are denoted as U = {1, 2, 3, ..., n}. For every
customer node i (i∈ U ), it has a certain demand qi. At the
same time, q0 = 0. The travel distance between node i and
node j is represented by cij . Each customer node must be
served only once by the vehicle. Whenever the total demand
of customer nodes served by the same vehicle must not be
larger than the vehicle capacity Q. We use binary decision
variable (xijk) to indicate if a vehicle k passes through
directly node i and then node j. When xijk = 1, it means
that the vehicle k directly visits node j after visiting node i,
otherwise xijk = 0. The mathematical problem of CVRP is
defined as follows.

Minimize

Z =
n∑

i=0

n∑
j=0

K∑
k=1

cijxijk (1)

Subject to:

n∑
i=0

K∑
k=1

xijk = 1,∀j ∈ U, k ∈ {1, 2, ...K}, i 6= j (2)

n∑
j=0

K∑
k=1

xijk = 1,∀i ∈ U, k ∈ {1, 2, ...K}, i 6= j (3)

n∑
i=0

n∑
j=0

xijkqi ≤ Q,∀i, j ∈ U, k ∈ {1, 2, ...K} (4)

n∑
j=0

x0jk =
n∑

i=0

xi0k = 1,∀k ∈ {1, 2, ...K} (5)

xijk ∈ {0, 1} (6)

The objective function (1) minimizes the total distances
of all routes. Constraints (2) and (3) guarantee that every
customer can be visited only once by one vehicle. Equation
(4) ensures that the total demands of all the visited nodes
by the same vehicle does not exceed the vehicle capacity.
Constraint (5) indicates that every vehicle must start from
the depot and end the depot. Equation (6) gives the value of
the decision variable xijk.

III. RELATED WORKS

This section will present the related works to the proposed
study. First, the algorithms that combine set partitioning
procedure for the CVRP and its variants are briefly described.
Then, the overview of hyper-heuristic algorithm used in
CVRP is shown.

A. Set Partitioning-based Approaches

Among the solving approaches of CVRP, exact algorithm
can find the optimal solution in theory. Although it has
limitations in computation time and problem scale, it still
attracts researchers to exploit the successful exact approach-
es for CVRP. Set partitioning is one of the mathematical
formulations of the CVRP, which was originally proposed
by [21]. The set partitioning-based exact approaches have
been summarized in [2] and [3].

The set partitioning procedure could be applied to re-
combine routes that are generated by a heuristic. There
also emerge some successful set partitioning-based hybrid
metaheuristics for CVRP and its variants. As early as in
1995, the set partitioning procedure was considered as a post-
optimization technique to improve the quality of the tabu
algorithm [22]. After that, a genetic algorithm hybrid with SP
was proposed by [23] for the CVRP with time window. The
genetic algorithm was firstly used to generate multiple routes,
and then SP model was accurately solved. And then the
iterated local search (ILS) metaheuristic mixed with SP was
developed for the heterogeneous VRP [24], which only the
routes of the local best solutions were used to construct the
SP model. Then the authors extended this hybrid approach
to solve a class of VRP problems [5]. Several experiments
proved that their hybrid approach had better performance
than the state-of-the-art algorithms for CVRP. Beyond that,
some works took the set partitioning procedure as inside
hybrid heuristics [25],[26],[27].

The set partitioning-based approaches can be applied to the
special variants of VRP. A special variant of heterogeneous
fleet VRP in the context of hazardous materials transportation
addressed was addressed, and a variable neighborhood search
(VNS) was developed [28]. Then SP problem was taken
as a post-improvement procedure, and then was solved on
the routes generated in the local search procedure of VNS.
Additionally, the hybrid algorithm combing ILS and SP
was proposed to solve school bus routing problem with
different problem characteristics and application scenarios in
our previous works [29],[30],[31].

The successfully experience of mixing SP with the meta-
heuristic algorithm reveals that it can take advantages of
exact algorithms and enhance effectively the quality of the
algorithm.

B. Hyper-heuristics for VRP

In this section, we focus on the hyper-heuristics that are
specially designed for CVRP and its variants, excluding those
designed for cross-domain problems including VRP [13].

Garrido and Castro [32] proposed a hyper-heuristic to
solve CVRP, which used some LLHs to construct and im-
prove the partial solutions in the framework of a hill climbing
method. Further, the authors designed an evolutionary hyper-
heuristic for the dynamic VRP [33]. Marshall et al. [34] con-
structed forty-eight combinations by six selection methods
and eight acceptance criteria to compare their performance
over randomly generated instances of CVRP. Experiment
results showed that the combination of simulated annealing
and naive acceptance had the best performance. Sabar et
al. [35] proposed a math-hyper-heuristic for CVRP with
time windows, which adopted column generation to construct
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Algorithm 1 HHMAB-SP
Input: maximum iteration maxiter, neighborhood list size
nb, scaling factor C, deviation factor dev, destruction factor
p and maximum trail number iter
Output: the best solution S
1: Sc = S = Null; RoutePool = Null;
2: Sc = GenerateInitialSolution();
3: AddRoutesToRoutePool(Sc, RoutePool);
4: LLH List = InitialLLH();
5: while Not meet the stop condition do
6: if there exists a LLH that has not been used then
7: LLHs = SelectByRandom(LLH List);
8: else
9: LLHs = SelectByUCBMAB(LLH List,C);

10: if LLHs is ruin-and-recreate operator then
11: Sn = AppliedLLH(Sc,LLHs,p,iter);
12: else
13: Sn = AppliedLLH(Sc,LLHs,nb);
14: AddRoutesToRoutePool(Sn, RoutePool);
15: if AcceptanceRule(Sc,Sn,dev) then
16: if Sn is better than S then
17: S = Sn;
18: Sc = Sn;
19: if S is not the best-known solution then
20: SP M = BuildSPModel(RoutePool);
21: Sp = SolveModelByCPLEX(SP M );
22: if Sp is better than S then
23: S = Sp;
24: return S

an initial solution and then used several LLHs improve
the solution. The algorithm employed a MAB selection
approaches and exponential Monte Carlo move acceptance
rules. The hybrid math-hyper-heuristic was proved to be
effective for large-scale VRPTW instances. Qin et al. [36]
developed a hyper-heuristic for heterogeneous VRP that is
based on reinforcement learning method, and the algorithm
was first evaluated on some well-known CVRP instances and
then used to solve the heterogeneous VRP.

IV. METHODOLOGY

A. Overall Procedure of Proposed Hyper-heuristic

In the framework of traditional selection hyper-heuristic,
two consecutive processes will be executed iteratively until
meeting the terminal condition. These two processes are the
selection of LLHs and move acceptance rules, which decides
whether accept a new solution found by the selected LLH.
Therefore, the selection strategy of LLHs and acceptance
mechanism are the key parts of the design of hyper-heuristic.
In our hyper-heuristic algorithm (named HHMAB-SP), we
used multi-armed bandit based on UCB as selection strategy
and a nondeterministic acceptance rule as acceptance rule. In
the second stage, a SP model was established and then solved
by CPLEX to find a better solution. Algorithm 1 describes
the outline of the HHMAB-SP algorithm.

The next is to describe Algorithm1 in detail. Step (1)∼(4)
do some initialization works, which include initialization
of the variables, solution and the list of LLHs. And then

the routes of initial solution are put into a pool of routes.
The main body of Algorithm in the first stage is step
(5)∼(18). When the loop number does not reach maxiter or
the immediate solution is not the best-known solution, the
main procedure of the algorithm will be executed iteratively
until it meets the stop condition. The selection of low-level
heuristic is defined in Step (6)∼(9). When there exists one
unused LLH, a LLH is chosen randomly. If all the LLHs
have been used, the LLH in the next will be selected by
multi-armed bandit method in Step (9). Step (10)∼(13) apply
the chosen LLH to find a new neighborhood solution Sn.
The routes of the new solution Sn are put into the routes
pool in Step (14), and Sn is evaluated by the acceptance
rules in Step (15). When Sn is accepted, the global best
solution S will be modified in Step (16)∼(17). Then, the
new solution Sn participates in the next loop as the current
solution Sc in Step (18). When the first stage finishes, the
global best solution S is gotten. The second stage of the
proposed algorithm is described in Step (19)∼(23). If S is
not the best-known solution, a SP model will be built and
solved to get a new solution Sp. If Sp is better than S, S
will be replaced by Sp. When the algorithm terminates, the
global best solution S returns.

B. Multi-armed Bandit Selection Strategy

For the proposed selection hyper-heuristic, the high-level
selection strategy selects one low-level heuristic from a set
of LLHs. The HLS needs to decide which LLH is to be
selected. The selection chance of each LLH is measured by
its performance under assessment. The selection of LLH can
be regarded as a problem of adaptive operator selection. For
this problem, there are some promising approaches such as
probability matching method [37], adaptive pursuit strategy
[38], and multi-armed bandit [19],[35]. The issued problem
can also be considered as a problem of the balance between
exploitation and exploration. On one hand, it should exploit
the operators that are often used. On the other hand, it should
give chance to the poor operators that may be better in the
future. Several MAB related approaches have been developed
to deal with this problem [39],[40].

In our proposed hyper-heuristic algorithm, we use an
UCB-based MAB as the selection mechanism. Each LLH can
be regarded as an arm in the MAB problem. At each time t,
the low-level heuristic, which makes the function defined in
Equation (7) have maximal value, will be selected.

h(t) = wi,t + C ×

√
2× ln

∑N
j=1 nj,t

ni,t
(7)

Where the first component wi,t is an empirical reward of
ith low-level heuristic obtained from the beginning to the
time t. The second one is an upper confidence bound that
depends on the number of times ni,t, which the ith low-level
heuristic has been used so far. These two components are
related exploitation and exploration respectively. The number
of low-level heuristics is N . The parameter C is a scaling
factor, which controls the tradeoff between exploitation and
exploration. When the parameter C is smaller, it prefers to
select the LLH that has the best reward of all the LLHs.
Otherwise, it will tend to choose the LLH that is applied
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infrequently. The empirical rewards wi,t is calculated by
Equation (8).

wi,t+1 =
ni,t−1 × wi,t + ri,t

ni,t
(8)

Where ri,t is the score of the ith low-level heuristic up to
time t.

C. Credit Score Assignment

The goal of high-level selection strategy is to select the
best appropriate low-level heuristic for the current solution
in the process of search. Thus, every low-level heuristic must
be evaluated whether it is suitable for the current solution.

For every low-level heuristic, the credit score assignment
defines the reward based on its recent performance in the
search process. The most common approach is to directly
use the improvements values of the objective, which is
obtained by the recently used low-level heuristic. However,
it is not suitable to evaluate the low-level heuristic in the
overall search process. At the beginning of the algorithm,
the improvement value of objective is relatively high. As
the algorithm executes, it will gradually decrease. Therefore,
the improvement target value does not accurately reflect the
performance of the low-level heuristic.

To this end, we use the improvement rate of objective
value to evaluate the low-level heuristic. At time t, Sc is the
current solution and its objective value is denoted as f(Sc).
After a low-level heuristic i is applied to Sc, a new solution
Sn is gotten and its objective value changes to f(Sn). The
score of the low-level heuristic i at time t is calculated by
Equation (9).

ri,t =
f(Sc)− f(Sn)

f(Sc)
× 100 (9)

D. Acceptance Criterion

For a new neighborhood solution found by the selected
low-level heuristic, acceptance rule must be used to accept
or refuse it. We use a hybrid acceptance rule that consists
of record-to-record travel and naive acceptance to make
a decision. It has the advantage of bringing about more
variety of solutions by allowing accepting less worsening
solutions. By this acceptance mechanism, a new solution
that is superior to the original solution is always accepted,
because the new solution is improved by the selected LLH.
For the worsening solution, these two acceptance rules will
be randomly selected to decide to whether accept it or not.
For naive acceptance, the worse solution will be accepted
by 50% probability. While for the record-to-record travel
acceptance, the worsening solution S will be accepted when
Equation (10) is true:

f(S) < (1 + dev)× record, dev ∈ [0, 1] (10)

Where S is the new solution and its objective value is f(S),
variable record indicates the objective value of current best
solution, and parameter dev is the deviation factor between
0 and 1. The value of record will change as the procedure
of local search.

E. Low-Level Heuristics

The low-level heuristics used in the proposed algorithm
consist of six regular neighborhood operators, which are
often used in VRP algorithm, and one operator based on the
ruin-and-recreate principle [41]. When each LLH is executed,
the obtained new solution must be a feasible solution. That
is to say, every moved must not violate all the constraints.

The low-level heuristics are described in the following.
(1) LLH1: Choose a customer node at random and move

it to another position in a route. It may occur at the same
route or between two different routes.

(2) LLH2: Exchange two customer nodes from two differ-
ent routes. It is also regarded as the swapping of two points.

(3) LLH3: Select two non-adjacent edges in the same route
and the nodes between two edges reverse to form a new route.
It is known as 2-opt.

(4) LLH4: Select two edges from two different routes and
cross the nodes between the edges.

(5) LLH5: Select two or four consecutive nodes from one
route and then shift them to the other route.It is also called
or-opt.

(6) LLH6: Exchange two edges from two different routes.
(7) LLH7: It is a neighborhood operator based on the

ruin-and-recreate principle. Several nodes from the current
solution are first chosen and removed. Then, they are tried
to inserted into the partial solution to create a new solution.
It should be pointed out that the number of destroyed
nodes is controlled by the destruction factor p. The value
of destruction factor must be appropriate to keep the bal-
ance between quality and performance. The operations of
this LLH include destruction and recreate two procedures.
The maximum number of destroy-and-repair procedures is
denoted as iter. First, the nodes that need to be deleted are
chosen randomly from the current solution, and then these
nodes are removed to generate a partial solution. Finally,
each removed node will be inserted in the position with the
cheapest insertion cost. If it cannot find the insertion position,
a new route will be recreated by the removed nodes. From
the point of view, the ruin-and-recreate operator may be find
a better solution or perturb the current solution.

F. Set Partitioning Procedure

In the second stage of the proposed algorithm, we will
use a set partitioning procedure to enhance the performance
of algorithm. We build a set partitioning procedure based on
the historical routes that were put into the routes pool. The
set partitioning model of CVRP can be defined as follows.

Minimize ∑
r∈P

drxr (11)

Subject to: ∑
r∈Pi

xr = 1,∀i ∈ U (12)

xr ∈ {0, 1},∀r ∈ P (13)

Where P is all the routes in the route pool, and dr is the
total distance of route r. U is the set of all customer nodes.
For a customer node i, all the routes that owner node i is
denoted as Pi (Pi ⊆ P ). When decision variable xr = 1, it
indicates the route r is in the final solution. When xr = 0,
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the route r does not included by the final solution. Equation
(11) defines the objective function that minimizes the total
distances. Constraint (12) ensures the every customer node
must locate in only one route. Constraint (13) indicates that
the value of decision variable must be 0 or 1.

As a weak NP-hard problem, the SP model could be solved
by CPLEX optimization software. To avoid consuming too
much computation time, the maximum execution time of
CPLEX is limited to 60 seconds. The solution obtained by
the CPLEX returns and compares with the global solution
found by the first stage of proposed algorithm.

V. EXPERIMENTS AND ANALYSIS

To evaluate the performance of the HHMAB-SP algorithm,
we introduce four experimental studies. Firstly, the obtained
results on CVRP standard instances by the HHMAB-SP
algorithm are given in some tables. Then the HHMAB-SP
is compared with other state-of-the-art algorithms for CVRP.
Secondly, we test the performance of the proposed algorithm
with different high-level selection strategies in order to
prove the advantage of MAB selection strategy. Thirdly, we
perform some experiments to evaluate the advantage of set
partitioning procedure. Finally, we analysis the influence of
the ruin-and-recreate operator in proposed algorithm.

The proposed algorithm was implemented by C# and run
on the personal computer of Intel i5-9500 3.0GHz CPU and
16GB RAM. The HHMAB-SP algorithm was used to solve
82 instances from four CVRP standard instances including
Set A, B and P proposed by [42] and Set E proposed by [43].
Every instance was executed independently by the HHMAB-
SP algorithm 10 times.

A. Parameters Setting

The parameters of the HHMAB-SP consist of the param-
eters that are used in the first stage of it and the parameters
of CPLEX solver. The parameters in the first stage include
maximum iteration number maxiter, size of neighborhood
list nb, learning factor C in MAB with upper confidence
bound, deviation factor dev, destruction factor p in ruin-
and-recreate operator and the iteration numbers iter of ruin
and recreate procedure. In the second stage of the HHMAB-
SP algorithm, a SP model may be built and solved by
CPLEX 12.6. For CPLEX solver, most of parameters are set
to default values, we just set the maximum execution time
max execute time and the tolerances of MIP tolerances.
The parameters setting of the HHMAB-SP algorithm are
shown in TABLE I.

TABLE I
PARAMETER VALUES OF THE HHMAB-SP ALGORITHM

Parameters values

maxiter 1000
nb 30
C 6

dev 10−4

p 0.2
iter 20

max execute time 60
tolerances 10−6

B. Comparison HHMAB-SP with Other Algorithms

To verify the effectiveness of the HHMAP-SP algorithm,
we used it to solve four CVRP benchmark instances sets
including 82 instances and then compared it with five existing
successful approaches. The comparison algorithms include a
heuristic named SC-ESA [44], a hybrid metaheuristic named
LNS-ACO [45], a hybrid firefly algorithm(CVRP-FA) [46],
a population-based simulated annealing(PSA) proposed by
[47] and an improved simulated annealing with crossover
operator(ISA-CO) [48]. The test results are shown in four
tables, which are TABLE II, TABLE III, TABLE IV, and
TABLE V respectively. In all tables, columns Instance and
BKS denote the instance name and the best-known solution
of instance. Column Time is the average execution time in
seconds. For the HHMAB-SP algorithm, column Best is the
best solution among 10 solutions. Column Gap represents the
deviation percentage between the best solution and the best-
known solution, which is calculated by the Equation (14).
For other CVRP algorithms, the deviation percentage values
come from the corresponding literatures. If the deviation
percentage value is null, it means that it does not be provided
in the corresponding literatures.

Gap =
Best−BKS

BKS
× 100 (14)

Additionally, we also calculated the success rate, which
indicates the ability of the algorithm getting the best-known
solutions out of all instances. The success rate of these
algorithms on four sets is shown in TABLE VI.

As shown in five tables, the proposed HHMAB-SP algo-
rithm achieves the lowest average deviation values on sets A,
P and E. Among these algorithms, the HHMAB-SP algorithm
finds 26 best-known solutions in the set A and the success
rate is 0.96. For PSA, it solves 14 instances and the success
rate is 0.57. ISA-CO has the highest success rate among
of other algorithms, which is 0.85. The set B consists of
22 instances and the results are shown in TABLE III. The
HHMAB-SP algorithm gains 20 best-known solutions and
the success rate is 0.91. The ISA-CO algorithm solves 21
instances and its success rate is 0.95, which is the highest
success rate of other algorithms. For set E, there are 11
instances in TABLE IV. The HHMAB-SP algorithm finds
8 best-known solutions and has the highest success rate of
0.73. For other algorithms, the highest success rate is 0.55
that belongs to the ISA-CO algorithm. In TABLE V, there
are 22 instances in set P and the HHMAB-SP algorithm
gets the lowest deviation percentage value. The HHMAB-
SP algorithm finds 20 best-known solutions and 1 new best-
known solution that was provided by [46], and the success
rate is 0.95.

In general, the HHMAB-SP algorithm is very effective.
For instance set A, P and E, the HHMAB-SP algorithm
is competitive than other approaches. For set B, the per-
formance of HHMAB-SP algorithm almost equals to the
ISA-CO algorithm. From the view of computation time, the
HHMAB-SP algorithm consumes relatively less computation
time. It can obtain a relative better solution in reasonable
time.
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TABLE II
RESULTS OF THE CVRP SET A

Instance BKS
SC-ESA LNS-ACO CVRP-FA PSA ISA-CO HHMAB-SP

Gap Gap Time Gap Gap Time Gap Time Best Gap Time

A-n32-k5 784 0.00 0.00 856.21 1.53 0.00 25 0.00 1449 784 0.00 3.08
A-n33-k5 661 0.00 0.00 900.06 0.00 0.00 26 0.00 1464 661 0.00 0.57
A-n33-k6 742 0.00 0.00 947.86 0.00 1.08 25 0.00 1564 742 0.00 4.69
A-n34-k5 778 0.00 0.00 909.04 0.00 0.00 1499 778 0.00 4.19
A-n36-k5 799 0.00 0.00 1055.60 0.00 0.00 1583 799 0.00 4.85
A-n37-k5 669 0.00 0.00 1103.70 0.00 0.00 24 0.00 1609 669 0.00 2.92
A-n37-k6 949 0.00 0.00 1113.40 0.00 2.42 25 0.00 1638 949 0.00 3.61
A-n38-k5 730 0.00 0.00 1139.20 0.00 0.00 1584 730 0.00 2.78
A-n39-k5 822 0.00 0.00 1202.80 0.00 0.00 1665 822 0.00 5.11
A-n39-k6 831 0.00 0.00 1266.00 0.00 0.00 28 0.00 1696 831 0.00 3.51
A-n44-k6 937 0.00 0.00 1567.80 0.00 0.00 1753 937 0.00 6.31
A-n45-k6 944 0.00 1.48 1728.10 0.95 1.48 26 0.00 1784 944 0.00 7.76
A-n45-k7 1146 0.00 0.00 1741.70 0.09 0.00 29 0.00 1775 1146 0.00 5.31
A-n46-k7 914 0.00 0.00 1804.50 0.00 2.74 28 0.00 1801 914 0.00 2.33
A-n48-k7 1073 1.03 1.03 1978.60 0.00 0.00 29 0.00 1845 1073 0.00 3.83
A-n53-k7 1010 0.10 0.00 2323.70 0.10 0.00 1973 1010 0.00 8.36
A-n54-k7 1167 0.09 0.00 2497.40 0.43 0.00 1999 1167 0.00 8.03
A-n55-k9 1073 0.00 0.00 2771.00 0.09 0.00 32 0.00 2080 1073 0.00 7.39
A-n60-k9 1354 0.07 0.00 3345.40 0.07 1.92 33 0.00 2128 1354 0.00 14.12
A-n61-k9 1034 0.00 3.19 3355.70 0.48 0.00 2238 1034 0.00 8.27
A-n62-k8 1288 0.78 1.55 3363.30 0.78 0.08 2207 1288 0.00 13.67
A-n63-k9 1616 0.50 2.04 3651.20 0.87 0.62 2230 1616 0.00 18.46

A-n63-k10 1314 0.08 1.14 3800.10 0.00 0.00 2255 1314 0.00 12.54
A-n64-k9 1401 0.57 1.00 3831.80 1.36 0.57 2277 1401 0.00 14.52
A-n65-k9 1174 0.34 0.94 3854.20 0.34 0.00 30 0.00 2277 1174 0.00 11.58
A-n69-k9 1159 0.00 0.95 4460.90 0.26 0.00 2436 1159 0.00 14.97

A-n80-k10 1763 0.74 2.94 6493.60 0.57 4.20 31 0.91 2704 1769 0.34 39.74
Average 1041.9 0.16 0.60 2335.66 0.29 0.99 27.93 0.08 1908 1042.15 0.01 8.61

C. Performance Analysis of MAB-based High-level Selection
Strategy

This section test the influence of different selection strat-
egy in the proposed algorithm. We select some selection
methods commonly used in the hyper-heuristic to evaluate
the performance of MAB selection strategy. These selection
methods include random selection (RS), roulette wheel selec-
tion (RW), probability matching (PM) and adaptive pursuit
strategy (AP).

First, we built other four algorithms based on the pro-
posed algorithm with different selection strategies. These
algorithms all have the same parameters values and the
same components of the HHMAB-SP algorithms. They are
just only different in the selection methods. For example,
the algorithm HHRS-SP represents the hyper-heuristic uses
random selection strategy as high selection rule. While for
probability matching and adaptive pursuit strategy, they have
more parameters, such as pmin, adaptive factor α, learning
rate β. They are set to 0.1, 0.8 and 0.6 respectively.

Next, we used these algorithms to solve all the instances
sets and calculated their deviation values. Fig.1 gives the
average deviation value of all instance sets of these algo-
rithms. For all instances sets, the HHMAB-SP all have the
lower deviation value. The results confirm that the multi-
armed bandit high-level selection strategy used in HHMAB-
SP is very resultful and it enhances the algorithms ability to

Fig. 1. Average deviation values obtained by five algorithms on four sets

find better solutions.
Therefore, we can come to a conclusion that the proposed

hyper-heuristic algorithm with MAB selection strategy is
more competitive than that with other selection strategy.

D. Performance Analysis of Set Partitioning Procedure

To evaluate the performance of set partitioning procedure,
we designed one experiment. On one hand, the experiment
was conducted to verify the influence of SP on quality of the
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TABLE III
RESULTS OF THE CVRP SET B

Instance BKS
SC-ESA LNS-ACO CVRP-FA PSA ISA-CO HHMAB-SP

Gap Gap Time Gap Gap Time Gap Time Best Gap Time

B-n31-k5 672 0.00 0.00 828.20 0.00 0.00 26 0.00 1441 672 0.00 7.83
B-n34-k5 788 0.00 0.00 908.51 0.00 0.00 26 0.00 1569 788 0.00 2.02
B-n35-k5 955 0.84 0.00 998.94 0.00 0.00 1527 955 0.00 2.66
B-n38-k6 805 1.24 0.00 1219.90 0.12 1.86 27 0.00 1632 805 0.00 5.93
B-n39-k5 549 0.18 0.00 1241.00 0.18 0.00 27 0.00 1662 549 0.00 0.57
B-n41-k6 829 4.46 0.00 1392.10 0.00 0.24 26 0.00 1683 829 0.00 3.02
B-n43-k6 742 0.54 0.00 1502.00 0.00 0.00 27 0.00 1757 742 0.00 4.38
B-n44-k7 909 1.32 0.00 1623.30 0.00 3.08 28 0.00 1780 909 0.00 3.19
B-n45-k5 751 0.00 0.00 1621.70 0.00 0.00 27 0.00 1829 751 0.00 4.07
B-n45-k6 678 1.18 0.00 1657.70 1.18 0.00 27 0.00 1771 678 0.00 7.84
B-n50-k7 741 0.00 0.00 2174.80 0.00 1.21 28 0.00 1969 741 0.00 0.21
B-n50-k8 1312 1.30 0.53 2169.20 0.46 3.51 28 0.00 1989 1312 0.00 67.79
B-n51-k8 1016 0.00 0.00 2228.50 0.00 1016 0.00 8.87
B-n52-k7 747 0.67 0.00 2289.30 0.00 0.00 2090 747 0.00 1.59
B-n56-k7 707 0.00 0.00 2709.80 0.28 0.00 30 0.00 2181 707 0.00 9.92
B-n57-k9 1598 0.13 0.00 3055.80 0.75 0.00 2076 1598 0.00 69.15

B-n63-k10 1496 2.81 1.20 3750.90 0.47 0.00 2269 1496 0.00 10.94
B-n64-k9 861 0.00 1.51 3834.60 0.12 0.00 2322 863 0.23 13.52
B-n66-k9 1316 1.90 1.06 4242.60 0.23 0.00 35 0.00 2327 1316 0.00 68.26

B-n67-k10 1032 1.74 1.74 4523.00 0.97 2.91 33 0.00 2340 1032 0.00 16.74
B-n68-k9 1272 1.57 1.42 4395.20 0.47 0.00 33 0.16 2349 1276 0.31 47.09

B-n78-k10 1221 2.05 0.57 6049.20 0.25 2.38 32 0.00 2630 1221 0.00 61.55
Average 954.4 1.00 0.37 2485.59 0.25 0.95 28.75 0.01 1962 954.68 0.02 18.96

TABLE IV
RESULTS OF THE CVRP SET E

Instance BKS
SC-ESA LNS-ACO CVRP-FA PSA ISA-CO HHMAB-SP

Gap Gap Time Gap Gap Time Gap Time Best Gap Time

E-n22-k4 375 0.00 0.00 447.39 0.00 1.60 22 0.00 1223 375 0.00 1.72
E-n23-k3 569 0.00 0.00 393.08 0.00 0.00 21 0.00 1363 569 0.00 0.04
E-n30-k4 503 0.00 0.00 698.98 0.59 0.00 1593 503 0.00 4.3
E-n33-k4 835 0.48 0.00 818.03 0.00 0.00 24 0.00 1548 835 0.00 0.67
E-n51-k5 521 0.00 0.00 26 0.00 2034 521 0.00 6.75
E-n76-k7 682 2.05 1.91 5186.30 0.15 2.20 29 0.15 2837 683 0.15 15.66
E-n76-k8 735 1.09 1.22 5289.70 2.40 30 0.00 2666 737 0.27 14.86
E-n76-k10 830 0.60 0.00 34 0.36 2503 830 0.00 17.58
E-n76-k14 1021 0.00 0.88 6190.70 0.78 2.45 36 0.29 2642 1021 0.00 17.51
E-n101-k8 815 2.21 31 0.25 3954 817 0.25 7.67
E-n101-k14 1067 1.41 1.41 12039.00 1.31 3233 1068 0.09 72.62

Average 723 0.63 0.68 3882.90 0.27 1.21 28.11 0.21 2327 723.55 0.07 14.49

proposed algorithm. On the other hand, it was used to test the
universality and effectiveness of SP procedure, which could
reduce the difference in solution quality caused by different
algorithm strategies.

We prepared 10 algorithms to solve all the instances.
The first five algorithms consist of HHMAB-SP and other 4
algorithms with different high-level strategy mentioned above
including RS, RW, PM and AP. The other five algorithms are
the former five algorithms without set partitioning procedure.
We used these 10 algorithms to solve all the instances, and
the average deviation percentage of instance sets are shown
in Fig. 2.

According to the result of Fig. 2, we have some find-

ings. For five algorithms without a SP procedure, HHAMB
has better performance than other four algorithms. In the
meantime, we also find that these hyper-heuristics with a
SP procedure are easier to have lower deviation values. Fur-
thermore, the hyper-heuristic algorithms with a SP procedure
can outperform those without a SP procedure. The adding of
SP procedure to the hyper-heuristic algorithm can reduce the
difference of these algorithms.

Taken together, we can draw a conclusion that combing set
partitioning procedure with the algorithms can enhance the
performance of it. The adding set partitioning procedure to
the algorithms with different selection strategies, it also can
reduce the difference between the algorithms with different
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TABLE V
RESULTS OF THE CVRP SET E

Instance BKS
SC-ESA LNS-ACO CVRP-FA PSA ISA-CO HHMAB-SP

Gap Gap Time Gap Gap Time Gap Time Best Gap Time

P-n16-k8 450 0.00 0.00 737.30 0.00 0.00 39 0.00 1379 450 0.00 1.39
P-n19-k2 212 3.30 0.00 363.90 0.00 2.83 22 0.00 1139 212 0.00 0.51
P-n20-k2 216 0.93 0.00 353.04 0.00 1.39 33 0.00 1165 216 0.00 1.91
P-n21-k2 211 0.47 0.00 399.88 0.00 2.84 35 0.00 1212 211 0.00 0.47
P-n22-k2 216 0.00 0.00 413.12 0.00 0.00 32 0.00 1244 216 0.00 0.36
P-n22-k9 590 0.00 0.00 562.84 0.00 590 0.00 2.09
P-n23-k8 529 0.00 0.00 615.53 0.00 0.00 1514 529 0.00 2.46
P-n40-k5 458 0.22 0.00 1227.50 0.00 2.18 39 0.00 1694 458 0.00 2.03
P-n45-k5 510 0.20 0.00 1569.40 0.00 1.37 41 0.00 1811 510 0.00 4.56
P-n50-k7 554 0.00 0.00 2025.60 0.00 1.26 42 0.00 1868 554 0.00 4.73

P-n50-k10 696 0.14 0.00 2347.80 0.14 2.87 32 0.00 1933 696 0.00 8.29
P-n51-k10 741 0.00 0.81 2449.10 0.13 3.78 34 0.00 1990 741 0.00 8.14
P-n55-k7 568 1.06 0.00 2532.90 0.00 2.29 42 0.00 2003 568 0.00 9.56
P-n55-k8 588 0.00 0.26 2648.85 -2.04 -2.04 2032 576 -2.04 7.45

P-n55-k10 694 0.14 0.00 2876.60 0.58 3.89 42 0.14 2047 694 0.00 12.69
P-n60-k10 744 0.13 1.48 3992.70 0.67 5.38 43 0.00 2143 744 0.00 12.33
P-n60-k15 968 0.00 0.93 3997.20 0.00 2.17 30 0.00 2475 968 0.00 12.89
P-n65-k10 792 0.51 1.01 3883.00 0.00 1.81 35 0.00 2216 792 0.00 13.16
P-n70-k10 827 0.00 1.21 4640.60 0.00 2.15 37 0.24 2335 827 0.00 15.28
P-n76-k4 593 2.36 0.84 5054.70 0.00 1.52 36 0.00 4449 594 0.17 15.58
P-n76-k5 627 3.03 2.87 4940.00 0.16 1.75 37 0.00 3564 627 0.00 15.3

P-n101-k4 681 0.00 3.52 40 0.00 6897 681 0.00 23.26
Average 566.59 0.64 0.51 2262.45 -0.02 2.26 36.37 -0.08 2243 566.09 -0.09 7.93

TABLE VI
SUCCESS RATES OF ALL THE ALGORITHMS

Instances SC-ESA LNS-ACO CVRP-FA PSA ISA-CO HHMAB-SP

set A 0.63 0.63 0.48 0.57 0.85 0.96
set B 0.32 0.68 0.41 0.56 0.95 0.91
set E 0.50 0.50 0.50 0.44 0.55 0.73
set P 0.43 0.62 0.73 0.11 0.90 0.95

Fig. 2. Average deviation values obtained ten algorithms on four sets

high-level selection strategies. The set partitioning procedure
can find a better solution from the sight of global view and

it can take advantage of exact algorithm. From the view of
computation time, it consumes more CPU time because it
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Fig. 3. Average deviation values obtained two algorithms on four instance
sets

needs to be solved by CPLEX optimization software.

E. Performance Analysis of Ruin-and-Recreate Low-Level
Heuristic

The low-level heuristics in the proposed algorithm are
made up of six regular neighborhood operators and one
neighborhood operator based on ruin-and-recreate. It is gen-
erally regarded that the neighborhood operator based on
ruin-and-recreate can explore larger solution space [41].
Therefore, we test the performance of ruin-and-recreate low-
level heuristic in our proposed algorithm.

We used the algorithm without ruin-and-recreate low-level
heuristic (denoted as HHMAB-SP-N) and the HHMAB-SP
algorithm solve four instance sets. The results of all instances
sets are shown in Fig. 3. We can see that the HHMAB-
SP algorithm outperforms HHMAB-SP-N. For each instance
set, the HHMAB-SP algorithm has lower average deviation
value. The average deviation values of all sets have greatly
decreased because of the ruin-and-recreate operator, and the
improvement percentages of them are all larger than 98%.
The results also verify that the low-level heuristic based on
ruin-and-recreate is very effective in our proposed algorithm.

VI. CONCLUSION

In this article, we designed a selection hyper-heuristic
algorithm solving CVRP. The proposed hyper-heuristic al-
gorithm used a multi-armed bandit algorithm with upper
confidence bound strategy as the high-level selection method.
In the iterative local search framework, every low-level
heuristic was selected by the accumulative reward. The low-
level heuristics consisted of some regular neighborhood oper-
ators and a ruin-and-recreated based neighborhood operator.
Meanwhile, the indeterminate acceptance rules were em-
ployed to decide to accept or refuse the neighborhood solu-
tion. These designed strategies made the proposed algorithm
keep the balance between diversification and intensification.
Further, a set partitioning model was built by the routes that
recorded in the local search phase, when the algorithm could
not obtain the best-known solution. Then the SP model was
solved by CPLEX 12.6 to get a better solution. It takes
advantage of exact algorithms to overcome the short-sight
shortcoming of local search algorithms.

We tested our algorithm on four CVRP standard instance
sets including 82 instances and did some comparison experi-
ments. From the results, we reach some conclusions. First of

all, the proposed algorithm is more competitive. For four
instance sets, the proposed algorithm has lowest average
deviations relative to the best-known values. Secondly, the
multi-armed bandit selection strategy used in the proposed
algorithm is more effective than other selection strategies,
such as random selection, roulette wheel selection, probabil-
ity matching and adaptive pursuit strategy. Thirdly, the SP
procedure in the second stage of the proposed algorithm can
find a better solution from a view of global. Finally, the
low-level heuristic designed based on the ruin-and-recreate
rules can not only enlarge the search space of neighborhood
solution in the local search of process, but also help to avoid
trapping local optima. The experimental results show that the
ruin-and-recreate low-level heuristic can enhance the quality
of our proposed algorithm.

In the future, we will study other selection strategies
based on reinforcement learning because of its excellent
performance. Further, we will extend our proposed algorithm
to solver other VRP variants.
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