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Analysis of the Stablility of the Riemann Solutions
for the Suliciu Relaxation Systém

Yujin Liu and Wenhua Sun

Abstract—In this study, we investigate the perturbed Rie- and the small perturbation parameter> 0. (3) can be
mann problem which contains the delta shock wave for the viewed by the local perturbation on
simplified Suliciu system. We observe that the stability of the
Riemann solutions under the small perturbation. Furthermore, (p",u",v"), x>0,
we investigate the perturbed initial problem and obtain the (p,u, v)(z,0) =
instability of the Riemann solutions under the perturbation. T ’
The above results both reveal the internal mechanism of the

Suliciu relaxation system which is of the Temple class type and . -
shows that the solution of the Temple class type has much more Ve have detailed analysis in the phase plane), and see
simpler structure. that.Ss may disappear after the small perturbation. The per-

Index Terms—Wave interaction, Riemann problem, hyper- turb(_ad Riemann problem and Riemann prc_)blem were widely
bolic conservation laws, generalized Riemann problem, delta studied([9], [10], [11], [12]). Through detailed analysis and
shock, Suliciu system. discussions, we obtain the instability of the initial problem

(1) and (4) after the above small perturbation (3).
|. INTRODUCTION Furthermore, we study the perturbed initial problem (1)
E consider the following Suliciu relaxation equation&/ith the following initial values

(I11, 121, 3], [4] and the references cited therein)
which describes the viscoelastic shallow fluid as follows

(4)

(pl7ul7vl)a x <0.

(Pv“; ’U)(xv 0) = (ﬁl,r; 'al,'r; 'Dl,'r‘)(m)a xr > 07 orr < 07 (5)

where p; - (x), u,(z), U,(x) are the arbitrary smooth

pt + (pu)e =0, functions satisfying

' 220
(pu)e + (pu” + 570)e =0, (1) Hm (pu,y, e, V1) (@) = (PLrs Utrs Vi)
(pv)i + (puv + u)y = 0, e -

wherep > 0, u, s > 0, v = % denotes respectively the Iayer(l) and (5) is viewed as the perturbation of the (1) and (4).

depth of fluid, the horizontal velocity, the related to the stre§¥¢ should solve the problem that is whether the solution
tensor, the new variable in connection with the pressure, afiguctures of the perturbed initial problem (1) and (5) are

7 is the relaxed pressure. similar with the original initial problem (1) and (4).
(1) is viewed the relaxation for the following isentropic For the most cases, we find that the stability of the initial
Chaplygin gas equations ([5], [6]) problem (1) and (4). However, for some other casgsmnay
disappear after the local small perturbation and it shows the
pe+ (pu)z =0, (2) instability of the initial problem (1) and (4)
(pu)t + (pu® + P), = 0, The arrangement of the article is as follows. The initial

the velocity and thgroblem (1) and (4) is given briefly for convenience in Il. In
Section Ill, we study mainly the elementary wave interactions
containing the delta shock wave for the perturbed initial

Many authors ([7], [8] and the references cited therei roblem (1) and_ (3). In Section IV, we cons_truct the splutions
studied the Suliciu system (1). In [8], we studied the wa f the perturbation for (1) and (5). Our main conclusions are

interactions containing n®; for (1) and found some inter- given in Section V.
esting phenomena.

In this study, we will study the elementary wave interac- Il. PRELIMINARIES
tions containingS;s solution for (1) with

wherep, u, P is respectively the density, ;
pressure, the state equation is given®gp) = -, where
s > 0 is a constant.

. Now give curtly the initial problem (1) and (4). For the
(0", u’,v0), z € (—o0, —0), detailed discussions, please refer to [7], [8].
(p,u,v)(z,0) =< (p™,u™,v™), xe—(0,0), (3) The characteristic roots of (1) arg = v — 2, k2 = u

(0" ", o), 2 € (6, +00), kg =u+ 2, it tells the strictly hyperbolic of (13. Since
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We study the self-similar solution(p, u,v)(z,t) =

(p,u,v)(s), ¢ = . (1) and (4) turns into the problem Y
—sps + (pu)s =0, S o ﬁ
—(pu)s + (pu? + s*v); =0, (6) I
—<(pv)s + (puv + u)s =0, & P "
- R
Il v

and (p, u,v)(+o00) = (p+,uy,vy). For the smooth solu-
tions, we denotd/ = (p,u,v)” and convert (6) to M

Fig. 1 Elementary wave curves frofi) in (u, v).

u

B(H)H, =0, (7)
where y
U—g p 0 ®
B(H) = 0 plu—g) 0 . <
0 1 p(u—<) #
. . l T
Besides (p,u,v) = constant, for the given left state ’ 5
(p!,ut,v"), the backward rarefaction wave curve is described B
by < u
f =K1 =U— %, Fig. 2 Elementary wave curves frofr) in (u, v).
<_
R(p'ufv) ¢ w=ul = s(v =), (8) When (u,,v,) € V, that is to sayu, + = < u; — =, in
v<ol, u>ul the follows we seek the delta shock wave solution.
. - . For the piecewise smooth solution of the system (1), we
For the bounded discontinuity at = w, it holds the have
Rankine-Hugoniot relations
—wlp] + [pu] =0, (p', ul,0h), as x < x(t),
7&)[/)114] -+ [pu2 -+ 821)] = 0, (9) (p7 u, ’U)(x7 t) = (O'(t)(S(JL‘ - l‘(l‘,)), Us (t)7 f(f’))a T = l‘(l‘,),
—w[pv] + [puv + u] = 0, (p" u”, "), as x > x(t),

(12)

where[p] = p" — ', p' = p(w = 0), p" = p(w + 0), etc.
For the given left statdp,u!,v!), the backward shock where d(z — z(t)), o(t) denotes they— measure and the
wave curve is described by weight respectively. Furthermore, we have the generalized

Rankine-Hugoniot condition as follows

T=u—32
P’
<§(pl,ul,vl) 8 u=ul —s(v—l), (10) dzgt) = us(t),
v>ol u<al d‘;(tt) = —[plus(t) + [pul,

From (9) we know the expression of the contact disconti- w = —[pulus(t) + [pu? + s20)], (13)

nuity is given by Y
l l Wo@at) — [ po]us(t) + [puv + u)).
J: ou=u', v=0', [p]#D0. (12)

R, S, andJ are called the elementary waves of the system The §-entropy condition is given by
(1). Because the shock curves coincide with the rarefaction
curves in(u, v) ([13]), we know that it is the classical Temple k3(p” " v") <us(t) < ma(phut,oh), (14)
type.

The elementary wave curves(n, v) from the statel) are o
given in the plan€u,v) (Fig. 1), and the liné, is described
byvzé[u. = (w + sv)], and M (u; + svy, 0). . ur S §u(5(1§)§ul—i. (15)

In the similar way, the elementary wave curves(inv) pr Pl
from the state(r) are given in the plandu,v) (Fig. 2),
where the linel; is given byv = —1[u — (u, — sv,)], and ~ When[p] = 0, it follows that
N(u, — sv,, 0).

When (u,.,v,.) € |, we know that the Riemann solution is us = wul 4 g2 vi—o!

i : : 2 2w —ul)?
expressed by isS +J+ R; when(u,,v,) € Il, the Riemann (1) = ugt
solution is expressed by i§ + J+ S ; when (u,., v,.) € lll, f ’l _ (16)
the Riemann solution is expressed byRs+ .J + S'; when o(t) = p'(u’ —ut,
(ur,v,.) € IV, the Riemann solution is expressed byis+ £(6) = (pruTvTJrquplullv;7ul)7u5t
pru7‘7p u Y

J+ R.
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When [p] # 0, it follows that wherel[-]; denotes the jump betweérandr, [-]» denotes the
N (v s jump betweenn andr.
= (e ])[p]([p])([p = D, In this case, it follows that the unique solution after

2(t) = ust, perturbation is shown by?-> + 4§ — 0.
a(t) = /([pu])? = ([]) ([pu? + s20] -, ¢

_ —lpvllpul+pvly/ ([pul)2—([p]) ([pu +52v]) +[p] [puv+u]
f(t) - )2 — 124524 !

(1) v/ (lou)2— () ([pu2+s2v])
17)
t=to
According to the analysis, we obtain the result as follows.
Theorem 2.1There is uniquely the Riemann solution of w d
the initial value problem (1) and (4). 0 (m) ()
—0 0 v
[1l. WAVE INTERACTION FOR (1) AND (3) Fig. 3 Interaction ofi¥” and .

In what follows, we study the elementary wave interactions
for (1) and (3), and construct the unique solution(inv)
(see [14], [15]). We view the initial data (3) as the small
perturbation on (4) and want to know whether or not the
initial problem (1) and (4) are the limits of the perturbed

initial problem (1) and (3) whe® — 0. To discuss the all 5 2
possible cases contalnlng the delta shock, we should consider = ) )
the four cases as foIIowsW nd§ %an 01, andds, J m "

andd, and notice thaﬁ} = U?, 7(%U]<§ o i

Case 1: The wave interaction ofl" and §. (Fig. 3)
Considering the delta entropy conditions

Fig. 4 Overtaking ofg> andd, v. < 0.

S S
Ur + S U(s(t) S Um — ) (18)
Pr Pm

, ) —
and the slope‘% = u,, + == of the forward wavell/, we

d pm
know that the forward wavel’ will overtake the delta shock K
wave att = tp, and should solve the new Riemann problem. S\aN™ (r)
From the following conditions (DR B

%
W(QlQ'rn) DUy = U+ S(U'rn - Ul);

Fig. 5 Overtaking ofﬁ andd, v. < 0.

(Qm) : U= Uy — s(V—"1Vm),
(QiQy) + ux = uy — s(vs — V1),
wW(Q,

Q+) : Us = up + s(ve —vp),

(19) v

i%T%T

we conclude that there are three subcases for this case.

Subcase 1.1 + ¢ and v, < 0. (Fig. 4)

For this subcase; andQ; in the (u,v) plane are given
in Fig. 4. From@Q, we drawW(Q;), and from@, we draw _ _
W(Q,), therefore we should consider tdesolution. The Fig. 6 Overtaking of ' ands, v. > 0.
strength of the new solution is superimposed on the original Subcase 1. Zﬁ + ¢ and v, < 0. (Fig. 5)

0 curve, and the new solution of the new initial problem  Similar discussions with the above subcase, the relations

is constructed by as follows. of @Q; andQ); are given in Fig. 5. In this case, we just consider
Whenp; = p,., we obtain that 0 wave solution. The strength and the slope of the new delta
Wt 9 oot shock wave is given as (20) and (21). It follows that the
Us = T S gy (20) Unique solution of the perturbed initial problemist-§ — 6.
o(t) = pi(u! —u")(t —to) + p™ (u™ — u")to, Subcase 1.35 + 4 and v, > 0. (Fig. 6)

For this subcas&; and@; in the (u,v) plane are given

whenp; # pr, we know that in Fig. 6. W(Q,) intersects withi’(Q,) at the pointQ.

w ([pu]1) =/ ([pu]1)2 — ([p]1) ([pu+52v]1) and v, > 0. It reveals that the unique solution after the
° [Pl ’ perturbation is shown as + 5 — R + J +
a(t) = /([pul1)? — ([p]1) ([pu? + s?v]1)(t — to) Theorem 3.1When S intersects withy, we flnd thate%le
+ W02 — (low W2+ 520]5)to, new ¢ wave solutign occurs, oR occurs. Furthermor
\/([p l2) (L) (le J2)to may occur. Wher% intersects withy, the result is the new

(21) 5 wave solution. This reveals the stability of (1) and (4).
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Case 2: The wave interaction oﬂ%_/ and 0. 12 For the the backward Wa\% (Q,) with the forward wave
For this subcase; andQ; in the (u,v) plane are given W(Q .), we just consideps, that is to sayd; + d2 — I3
in Fig. 8 and Fig. 10. (see Fig. 11). The strength and the slopei.pfire given by

It can be seen that the stafg, is located in the wave respectively as follows.
curve W(Q,,), andé wave solution should be considered.
The unique solution is listed by + 0 — ¢ (see Fig. 7) and
S +d — ¢ (see Fig. 9). The strength and the slope of the

t

new§ are given by (20) and (21) respectively.

t

(m) (r)

—0 0
Fig. 7 Interaction of§ andé.

O}

—

S
l El
R\ (m) B
u
Fig. 8 Interaction of<§ andé.
t
5
t=to
5 )
0 (m) (r)
xr
- n
Fig. 9 Interaction ofg andé.
v
(m)
5 3
l
( ) (T‘)
< R

u

Fig. 10 Interaction of? andé.

Theorem 3.2When<§ or <§ intersects with, we find the

03

51 02
(m)

—0 0
Fig. 11 Interaction of; andds.

@ (r)

W(@Qm) W(Qm)

N3

Fig. 12 Interaction of5; andds.

Whenp; = p,, we have that

v 71}’

+ 8% sty

Us = 4 ;u
{ a(t) = p'([ul1)(t — to) + pm([ul2)to + o' ([ul3)to,

(23)
when p; # p,, we obtain that
o (eu) =/ (pu]1)? = ([pln) ([pu+52v]1)
Us = [p]1 ’
a(t) = /([pu]1)? = ([p]1) ([pu? + s2v]1)(t — to)
+\/([PU]2)2 — ([pl2)([pu? + s?v]2)to
+v/([pul3)? — ([pla) ([pu? + s2v]3)to,
(24)

where[-]; denotes the jump betweérandr, [-]» denotes the
jump betweenm andr, [-]; denotes the jump betweérand
m.

Theorem 3.3When ¢ intersects with anothe¥, we find
that after the perturbation, the new solution is stilvhich
tells the stability of (1) and (4).

Case 4: The wave interaction ofJ and 4.

From

unigue solution is thé wave solution which reveals reveals

the stability of (1) and (4).
Case 3: The wave interaction of5; and 6.
From the delta entropy conditions

01 : s < ug(t) <ul —
(52:

we know thatd; will overtake 6, at ¢ = ty3, The delta
shock wave); is fo_r>med by the backward wa\% (Q:) with
the forward wavelW (Q.,,), and the delta shock wawe is
formed by the backward wav®/ (Q,,) with the forward
wave W (Q,). The relations of; and Q; are given in Fig.

u™ + 5 pl,
S

m 22
s < <um -, @D

o1 w4 o Sws(t) Su™ - o,
JooG

and sinceu™ — -2 < u™, J will overtaked, att =ty (Fig.
13), and we should solve the new initial probleR).andQ;
are given respectively in the:, v) plane in Fig. 14 ifv, <0
and in Fig. 16 ifv, > 0.

Due to

— (26)

W(Qr@*) :

Uy = u" + s(ve — "),

{ W(QIQ*) D uy = ul — s(v, — o),
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for W(Ql) and W/(Q,.), whenwv, <0 we find that it is just x_t, and the characteristic cur@Q is given byz = x.t
to considerd, (see Fig. 13), and the strength and the slodsee Fig. 17).
of the newds are given respectively by (20) and (21). When

v, >0, we getR +J+ R or S (see Fig. 15).

P Q
t
G Gy
02
o o o o o o xr
= to (pu, tir, 0) () O (pr,tir, Up)(x)
7 51 Fig. 17 The region inz, t) plane.

@ (m) (r) In what follows, we study the perturbed solution of (1) and
] n (5), and use the same symbols in our next discussions after
Fig. 13 Interaction of/ ands. the small perturbation because there will be no confusion.
Case 1" + pi > ul — ﬁ. After perturbation, we still have
u 4 S >l — 2
Subcase 1,1When (u",v") € | (see Fig. 1), i.e., the initial

e
@ 2 solutionis S +J + R. . _
(1) = (m) ") By the small perturbation on the initial data, it follows that
S+J+ R.
R R Subcase 1.2When(u”,v") € Il (see Fig. 1), i.e., the initial

. R
solutionis S +J+ S.

Fig. 14 | i fJ andd, v, < 0. . .
19 14 Interaction ot ando, v- = 0 By the small perturbation on the initial data, it follows that

S+J+ 5.
! Subcase 1.3When(u”,v") € lll (see Fig. 1), i.e., the initial
J solution is<}_% +J+ 5.
‘" For's By the small perturbation on the initial data, it follows that
- R+J+S.
Subcase 1.4When(u",v") € IV (see Fig. 1), i.e., the initial
7 5 solution is R + J + R.
0 (m) (r) %By the small perturbation on the initial data, it follows that
— 0 z R+J+ R.
Fig. 15 Interaction of/ ands. Now, we know the following conclusions.
v Theorem 4.1When the Riemann solution contains 6,0

we find that there is still né for the perturbed initial problem
(2) and (5), which shows that the initial problem (1) and (4)
are stable.
Case 2" + = < u'— %, and the solution of (1) and (4) is
0. By the small perturbation on the initial data, it reveals two
subcases as follows’ + = < ul — Sorul 45> ul — =
u Subcase 2.1.If u" + =% < ul — p—i the perturbed initial
Fig. 16 Overtaking ofJ and§, v, > 0. problem has thé solution.
Subcase 2.2If u, + pl > u; — p—sl we discuss as follows.
When (u,,v,) € 1, the perturbed initial problem has the
solution S +.J+ R; when(u,,v,.) € ll, the perturbed initial

Theorem 3.4When J intersects withy, we observe that
the unique solution is stilh, or R will occur propagating in

the opposite direction, anﬁ (or S) will occur. The above problem has the solutios +.J + S : when (u,,v,) € IIl,

results show the instability of (1) and (4). o ) )
Now we summarize the following conclusions for théhe perturbed initial problem has the. .SOIUIKR]JF S+ 5
. when (u,,v,) € IV, the perturbed initial problem has the
Riemann problem (1) and (4). luti <
Theorem 3.5The Riemann solution of (1) and (4) is stabl&© ur;uon R+J +h ' he initial | .
for the most case, while for few cases, the Riemann solutign! n€orem 4.2When the initia problem (1) and (4) contains

is unstable which shows the instability of the system (1). 0, we _conclude that the pertur_bed initial problem (1) and (5)
containsd for subcase 2.1, while for subcase 212joes not

occur for the new perturbed initial problem (1) and (5) which
shows the stability of the initial problem (1) and (4).

Next we discuss the construction of the perturbed initial Based on the above discussions, we get the following
problem of (1) and (5). From the conclusions in [16] andonclusions for the perturbed Riemann problem.
[17], we know that the conventional solutiop!, u', v!)(x, t) Theorem 4.3For the perturbed initial problem (1) and (5),
((p",u",v")(x, 1)) is respectively expressed @ (G, ) when it follows that the initial problem (1) and (4) are stable under
t > 0 is small. The characteristic curvgP is given byxz = the such small local perturbation on the initial data. However,

IV. THE PERTURBED INITIAL PROBLEM(1) AND (5)
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for some cases, the delta shock wave of the initial problems] T.T. Li, “Global classical solutions for quasilinear hyperbolic system,”
(1) and (4) may disappear which indicates the instabiliﬁ John Wiley and Sons\ew York, 1994.

L T. Li and W.C. Yu, “Boundary value problems for quasilinear
of the 'n_'t'al problem (1) and (4) under the such sma hyperbolic systems,Duke University Mathematics, 1985.
perturbation.

V. CONCLUSION

We construct uniquely in detail the perturbed solution of
the initial problem (1) and (3) by virtue of the characteristic
analysis skills. We conclude that for some cases, the delta
shock wave of the initial problem (1) and (4) may disappear
after the perturbation which indicates that the initial problem
(1) and (4) are unstable. For the perturbed initial problem (1)
and (5), we observe that for some cases the delta shock wave
may disappear which reveals the instabilty of the Riemann
solutions for such small perturbation.

The elementary wave interactions and the generalized
Riemann problem for system (1) play an important role in
Suliciu relaxation system such as the comparison with the
numerical analysis, and it is also important for mathematical
theory of the Suliciu system.

In our coming works, we would like to discuss the numeral
calculations analysis for the Suliciu system. In the future, we
also consider to relax or extend some conditions and discuss
the more general initial value problem.
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