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Abstract—In this paper, a new set of matrices - outer theta
matrices and theta outer matrices are defined. These classes
of matrices serve as outer inverses of (A†s)θ where (A†s)θ

is the s-conjugate transpose of s-g inverse of A provided it
exists. Certain characterizations of outer theta matrices and
theta outer matrices are given here. Also, the integral and limit
representations of both outer theta and theta outer matrices
are explained. To demonstrate their application, some system
of linear equations are solved using these matrices.

Index Terms—Moore Penrose inverse, outer inverse, trans-
pose, secondary conjugate transpose

I. INTRODUCTION

THE purpose of this paper is to define a new set of ma-
trices - outer theta matrices and theta outer matrices. In

fact, the class of matrices defined here serve as outer inverse
for (A†s)θ. The recent developments in the characterization
of DMP inverse [7] and CMP inverse [8] is the main moti-
vation of this study. The DMP inverse is a new generalized
inverse defined using the drazin inverse and Moore Penrose
inverse. Meng [9] extended the notion of DMP inverse to
rectangular matrices. For more characterizations of DMP
inverse one can refer [17], [5] and [1]. In [10] Dijana Mosic
defined a new class of matrices known as Drazin star and star
Drazin Matrices. Along with these matrices, the outer star
and star outer matrices [11] help in solving certain types of
matrix equations. For more characterizations of CMP inverse
one can refer [6], [12], [13].

Motivated by these studies, two classes of matrices are
defined here with the help of outer inverses with specified
column space and nullspace, and secondary conjugate trans-
pose of a matrix. Also, certain characterizations and the
integral and limit representations of both outer theta and
theta outer matrices are explained. Additionally, using these
matrices some system of linear equations are solved.

A. Preliminaries and Notations

The set of all m × n matrices is denoted by Cm×n. The
notations C(A),R(A) and N (A) stand for the column space,
row space and null space of the matrix A respectively. A(2)

T,S

is the unique outer inverse of the matrix A with column space
T and null space S.

In 1976, Anna Lee [3] introduced the concept of secondary
symmetric matrices. The secondary transpose or s-transpose
of a matrix A ∈ Cn×n is defined by reflecting the entries
through the second diagonal.

Definition 1: [3] Let A ∈ Cn×n. Then the secondary
transpose of A denoted by As and is defined as As = (bij)
where bij = an−j+1,n−i+1 where i, j = 1, 2, ...n.
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The s-transpose As of A is orthogonally similar to the
ordinary transpose AT of A. i.e.;

As = V ATV

where V is a permutation matrix containing units in the
secondary diagonal. Vijayakumar [14] defined s-g inverse
of a complex square matrix using the concept of secondary
conjugate transpose.

Definition 2: [2] Let A ∈ Cn×n. Then the conjugate
secondary transpose of A denoted by Aθ and is defined as
Aθ = A

s
= (cij) where cij = an−j+1,n−i+1.

Definition 3: [14] Let A ∈ Cn×n. The unique matrix X
satisfying the conditions

(1) AXA = A (2) XAX = X
(3) (AX)θ = AX (4) (XA)θ = XA.

is called the s-g inverse of A and is denoted as A†s .
Without loss of generality this definition can be extended
to any rectangular matrix. The concept of s-g inverse
is analogous to the well known Moore Penrose inverse.
However, these are two different inverses as clarified in the
following example.
Example:- Consider a square matrix A ∈ C2×2, such that

A =

[
2 + i 5
1 2− i

]
.

Here, A is a singular matrix of rank 1.
The Moore Penrose inverse of A is
A† =

1

36

[
2− i 1
5 2 + i

]
.

The s-g inverse of A is A†s =
1

16

[
2 + i 5
1 2− i

]
.

It can be observed that the s-g inverse does not exists
for all matrices unlike the Moore Penrose inverse since
rank(AAθ) ̸= rank(AθA) ̸= rank(A) in general.
However, the existence of s-g inverse is assured whenever
this condition holds.

II. OUTER THETA AND THETA OUTER MATRICES

Theorem 1: Consider A ∈ Cm×n of rank r. Assume that
AAθ and AθA exist such that rank(AθA) = rank(AAθ) =
r.
(i) Then the set of equations

G(A†s)θG = G, AG = AA
(2)
T,SAAθ, G(A†s)θ = A

(2)
T,SA

(1)
are consistent. Also G = A

(2)
T,SAAθ is the unique solution of

equation 1.
(ii) The set of equations

G(A†s)θG = G, GA = AθAA
(2)
T,SA, (A†s)θG = AA

(2)
T,S

(2)
are consistent. Also G = AθAA

(2)
T,S is the unique solution of

equation 2.
Proof: (i) Consider
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G(A†s)θG = A
(2)
T,SAAθ(A†s)θA

(2)
T,SAA

θ

= A
(2)
T,SAA

(2)
T,SAAθ = G

Also,

AG = AA
(2)
T,SAAθ and

G(A†s)θ = A
(2)
T,SAAθ(A†s)θ = A

(2)
T,SAA

θA.

Hence G = A
(2)
T,SAAθ satisfies Equation (1).

Let G1 and G2 be two matrices satisfying (1).

G1 = G1(A
†s)θG1 = A

(2)
T,S(AG1)

= (A
(2)
T,SA)G2 = G2(A

†s)θG2 = G2

which proves the uniqueness.
Part (ii) of the theorem can be proved in a similar way.

Definition 4: Consider A ∈ Cm×n of rank r. Assume that
AAθ and AθA exist such that rank(AθA) = rank(AAθ) =
r.
(i) The (T, S) outer theta matrix of A is defined as

A
(2,θ)
T,S = A

(2)
T,SAA

θ.

(ii) The theta (T, S) outer matrix of A is defined as

A
(θ,2)
T,S = AθAA

(2)
T,S .

It can be noted that both A
(2,θ)
T,S and A

(θ,2)
T,S are outer inverses

of (A†s)θ.
The following lemma discusses the range space and null

spaces of outer theta and theta outer inverses of (A†s)θ.
Lemma 1: Consider A ∈ Cm×n. Then the following

statements holds:
(i) (A†s)θA

(2,θ)
T,S is a projector on C((A†s)θA

(2)
T,S) along

N (A
(2)
T,SAAθ).

(ii) A
(2,θ)
T,S (A†s)θ is a projector on T along N (A

(2)
T,SA).

(iii) A
(2,θ)
T,S = [(A†s)θ]

(2)

T,N (A
(2)
T,SAAθ)

.

(iv) (A†s)θA
(θ,2)
T,S is a projector on C(AA(2)

T,S) along S.
(v) A

(θ,2)
T,S (A†s)θ is a projector on C(AθAA

(2)
T,S) along

N (A
(2)
T,S(A

†s)θ).
(vi) A

(θ,2)
T,S = [(A†s)θ]

(2)

C(AθAA
(2)
T,S),S

.

Proof:

(i) (A†s)θA
(2,θ)
T,S (A†s)θA

(2,θ)
T,S

= (A†s)θA
(2)
T,SAAθ(A†s)θA

(2)
T,SAA

θ = (A†s)θA
(2,θ)
T,S

implies that (A†s)θA
(2,θ)
T,S is a projector.

Since (A†s)θA
(2,θ)
T,S = (A†s)θA

(2)
T,SAA

θ,

C((A†s)θA
(2,θ)
T,S ) ⊆ C((A†s)θA

(2)
T,S)

= C((A†s)θA
(2)
T,SAA†sAA

(2)
T,S)

= C((A†s)θA
(2)
T,SAAθ(A†s)θA

(2)
T,S)

⊆ C((A†s)θA
(2,θ)
T,S ).

Hence C((A†s)θA
(2,θ)
T,S ) = C((A†s)θA

(2)
T,S).

Also

N (A
(2,θ)
T,S ) ⊆ N ((A†s)θA

(2,θ)
T,S )

⊆ N (A
(2,θ)
T,S (A†s)θA

(2,θ)
T,S ) = N (A

(2,θ)
T,S ).

(ii) Clearly A
(2,θ)
T,S (A†s)θ is a projector.

Since A
(2,θ)
T,S (A†s)θ = A

(2)
T,SA and C(A(2)

T,SA) = C(A(2)
T,S),

the condition C(A(2,θ)
T,S (A†s)θ) = T follows directly and

hence N (A
(2,θ)
T,S (A†s)θ) = N (A

(2)
T,SA).

(iii) It follows by C(A(2,θ)
T,S ) = C(A(2,θ)

T,S (A†s)θ) = T and
N (A

(2,θ)
T,S ) = N ((A†s)θA

(2,θ)
T,S ) = N (A(2)AAθ).

The remaining part of the theorem can be proved in an
analogous way.

Unlike the conjugate transpose, in the case of secondary
conjugate transpose rank(AAθ) ̸= rank(AθA) ̸= rank(A)
which is clear from the following example.

Let A =

2 2 0
0 8 0
0 0 0

 ∈ R3×3.

The secondary conjugate transpose of A is Aθ =

0 0 0
0 8 2
0 0 2


and AAθ =

0 16 4
0 64 16
0 0 0

.

Here rank(AAθ) ̸= rank(A).
So all these conditions holds only when rank(A) =
rank(AAθ) = rank(AθA).
The following theorem gives necessary and sufficient condi-
tions for a matrix to be the outer theta matrix.

Theorem 2: Consider A ∈ Cm×n. Then the following
statements are equivalent:

(i) G is (T, S) outer - theta matrix of A.
(ii) G satisfies the conditions

G(A†s)θG = G, (A†s)θG(A†s)θ = (A†s)θA
(2)
T,SA

AG = AA
(2)
T,SAAθ, G(A†s)θ = A

(2)
T,SA.

(iii) G satisfies the conditions

A
(2)
T,SAG = G and AG = AA

(2)
T,SAAθ.

(iv) G satisfies the conditions

A
(2)
T,SAGAA†s = G and AG(A†s)θ = AA

(2)
T,SA.

(v) G satisfies the conditions

A
(2)
T,SAG = G and (A†s)θG = (A†s)θA

(2)
T,SAA

θ.

(vi) G satisfies the conditions

GAA†s = G and G(A†s)θ = A
(2)
T,SA.

(vii) G satisfies the conditions

G(A†s)θA
(2)
T,SAAθ = G and G(A†s)θA

(2)
T,S = A

(2)
T,S

(viii) G satisfies the conditions

GAA†s = G and GA = A
(2)
T,SAAθA.

(ix) G satisfies the conditions
G(A†s)θA

(2)
T,SAG = G, (A†s)θA

(2)
T,SAG =

(A†s)θA
(2)
T,SAAθ and

G(A†s)θA
(2)
T,SA = A

(2)
T,SA.

(x) G satisfies the conditions
G(A†s)θA

(2)
T,SAG = G

(A†s)θA
(2)
T,SAG(A†s)θA

(2)
T,SA = (A†s)θA

(2)
T,SA,

(A†s)θA
(2)
T,SAG = (A†s)θA

(2)
T,SAAθ and

G(A†s)θA
(2)
T,SA = A

(2)
T,SA.
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(xi) G satisfies the conditions
A

(2)
T,SAG = G, (A†s)θA

(2)
T,SAG = (A†s)θA

(2)
T,SAAθ.

(xii) G satisfies the conditions
G(A†s)θA

(2)
T,SAA

θ = G, G(A†s)θA
(2)
T,SA = A

(2)
T,SA.

Proof: (i) =⇒ (ii):
By definition of G = A

(2)
T,SAA

θ, we get

(A†s)θG(A†s)θ = (A†s)θA
(2)
T,SAA

θ(A†s)θ

= (A†s)θA
(2)
T,SAA†sA = (A†s)θA

(2)
T,SA

By Theorem 1 the remaining equations hold true.
(ii) =⇒ (iii): It is clear from the defintion that
A

(2)
T,SAG = A

(2)
T,SAA

(2)
T,SAA

θ = G
(iii) =⇒ (iv):

A
(2)
T,SAGAA†s = GAA†s = A

(2)
T,sAA

θAA†s

= A
(2)
T,SAA

θ(AA†s)θ = G

Also
AG(A†s)θ = AA

(2)
T,SAA

θ(A†s)θ = AA
(2)
T,SA

(iv) =⇒ (i):

G = A
(2)
T,SAGAA†s = A

(2)
T,S(AG(A†s)θ)Aθ

= A
(2)
T,SAA

(2)
T,SAAθ = A

(2)
T,SAA

θ

(i) =⇒ (v) - (xii): The rest of the theorem can be verified
with G = A

(2)
T,SAAθ.

The definition of (T, S) - outer theta matrix can be gen-
eralized for any rectangular matrix U and V with column
space T and null space S. The next theorem gives the
characterization of such matrices.

Theorem 3: Consider A ∈ Cm×n
r . Let U ∈ Cn×p and

V ∈ Cm×q . Also assume that AAθ, AθA and A
(2)
C(U),N (V )

exist. Then the following statements for G ∈ Cn×m are
equivalent.

(i) G is the (C(U),N (V )) outer theta matrix of A.
(ii) G satisfies the conditions

V AG = V AAθ and A
(2)
C(U),N (V )AG = G.

(iii) G satisfies the conditions
V AG(A†s)θ = V A and A

(2)
C(U),N (V )AGAA†s = G.

(iv) G satisfies the conditions
V AGAA†s = V AAθ and A

(2)
C(U),N (V )AGAA†s = G.

(v) G satisfies the conditions
G(A†s)θU = U and G(A†s)θA

(2)
C(U),N (V )AA

θ = G.
(vi) G satisfies the conditions

AG(A†s)U = AU and
A

(2)
C(U),N (V )AG(A†s)θA

(2)
C(U),N (V )AA

θ = G.
(vii) G satisfies the conditions

AθAG(A†s)θU = AθAU and
A

(2)
C(U),N (V )AG(A†s)θA

(2)
C(U),N (V )AA

θ = G.

Proof: We refer Theorem 2.3 of [11] which is a pre
requisite to prove these results.
A

(2)
C(U),N (V )AU = U and A

(2)
C(U),N (V ) = UU (1)A

(2)
C(U),N (V ),

for U (1) ∈ U{1}.
Also V AA

(2)
C(U),N (V ) = V and

A
(2)
C(U),N (V ) = A

(2)
C(U),N (V )V

(1)V for V (1) ∈ V {1}.

We use the above mentioned result while proving our
theorem.
(i) =⇒ (ii) Given that G = A

(2)
C(U),N (V )AA

θ.

So, V AG = V AA
(2)
C(U),N (V )AA

θ = V AAθ. Also

A
(2)
C(U),N (V )AG = A

(2)
C(U),N (V )AA

(2)
C(U),N (V )AAθ

= A
(2)
C(U),N (V )AAθ = A

(2)
C(U),N (V )AAθ = G.

(ii) =⇒ (i) Since
V AG = V AAθ and A

(2)
C(U),N (V ) = A

(2)
C(U),N (V )V

(1)V ,
we have

G = A
(2)
C(U),N (V )AG = A

(2)
C(U),N (V )V

(1)V AG =

A
(2)
C(U),N (V )V

(1)V = (A
(2)
C(U),N (V )V

(1)V )AAθ

= A
(2)
C(U),N (V )AAθ.

(i) =⇒ (iii) V AG(A†s)θ = V AAθ(A†s)θ = V A.

A
(2)
C(U),N (V )AGA†s = GAA†s = A

(2)
C(U),N (V )AAθAA†s

= A
(2)
C(U),N (V )AAθ = G.

(iii) =⇒ (iv) Since V AG(A†s)θ = V A,
V AG(A†s)θAθ = V AAθ =⇒ V AGA(A†s) = V AAθ.
(iv) =⇒ (i) Consider

G = A
(2)
C(U),N (V )AGAA†s = A

(2)
C(U),N (V )V

(1)(V AGAA†s)

= (A
(2)
C(U),N (V )V

(1)V )AAθ = A
(2)
C(U),N (V )AAθ

(i) =⇒ (v) Consider

G(A†s)θU = A
(2)
C(U),N (V )AAθ(A†s)θU

= A
(2)
C(U),N (V )AU = U

and

G(A†s)θA
(2)
C(U),N (V )AAθ

= A
(2)
C(U),N (V )AAθ(A†s)θA

(2)
C(U),N (V )AAθ

= A
(2)
C(U),N (V )AAθ = G.

(v) =⇒ (i)

G = G(A†s)θA
(2)
C(U),N (V )AAθ

= G(A†s)θUU (1)A
(2)
C(U),N (V )AAθ

= UU (1)A
(2)
C(U),N (V )AAθ = A

(2)
C(U),N (V )AAθ

Hence G is the (C(U),N (V )) outer theta matrix of A.
(i) =⇒ (vi) Consider

A
(2)
C(U),N (V )AG(A†s)θA

(2)
C(U),N (V )AAθ

= A
(2)
C(U),N (V )AA

(2)
C(U),N (V )AAθ(A†s)θA

(2)
C(U),N (V )AA

θ

= A
(2)
C(U),N (V )AAθ = G.

(vi) =⇒ (vii) The result is obvious.
(vii) =⇒ (i) Consider

G = A
(2)
C(U),N (V )AG(A†s)θA

(2)
C(U),N (V )AAθ

= A
(2)
C(U),N (V )(A

†s)θ(AθAG(A†s)θU)U (1)A
(2)
C(U),N (V )AA

θ

= A
(2)
C(U),N (V )(A

†s)θ(AθA(UU (1)A
(2)
C(U),N (V ))AAθ

= A
(2)
C(U),N (V )AA

(2)
C(U),N (V )AAθ

= A
(2)
C(U),N (V )AAθ.

Remark:- An analogous result can be obtained for theta -
outer matrix also.
The following lemma gives the relationship of outer theta
inverses with various other generalized inverses.

Lemma 2: Consider A ∈ Cm×n. Then the following
conditions hold:
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(i) N (A) = N (A
(2)
T,SA) ⇔ (A†s)θA

(2,θ)
T,S (A†s)θ = (A†s)θ

⇔ A†AA
(2)
T,SA = A†AA

(2)
T,SA = A†sA

⇔ AA
(2)
T,SA = A ⇔ AA

(2)
T,SAA

†s = AA†s

⇔ (A†s)θA
(θ,2)
T,S (A†

s)
θ = (A†

s)
θ

⇔ C(A) = C(AA
(2)
T,S).

(ii) AA
(2,θ)
T,S = AA

(2)
T,S ⇔ A

(2,θ)
T,S = A

(2)
T,S .

(iii) A
(2,θ)
T,S A = A

(2)
T,SA ⇔ A

(2,θ)
T,S = A

(2)
T,SAA

†s .
(iv) A

(2,θ)
T,S A = A†sA ⇔ A

(2,θ)
T,S = A†s .

(v) AA
(2,θ)
T,S = AA†s ⇔ AA

(2,θ)
T,S A = A.

(vi) A
(2)
T,SAA†s = A†s ⇔ A

(2)
T,SA = A†sA

=⇒ A
(2,θ)
T,S = Aθ

(vii) A
(θ,2)
T,S A = A

(2)
T,SA ⇔ Aθ,2

T,S = A†sAA
(2)
T,S .

(viii) AA
(θ,2)
T,S = AA

(2)
T,S ⇔ A

(θ,2)
T,S = A†sAA

(2)
T,S .

(ix) AA
(θ,2)
T,S = AA†s ⇔ A

(θ,2)
T,S = A†s .

(x) A
(θ,2)
T,S A = A†sA ⇔ AA

(θ,2)
T,S A = A.

(xi) Aθ,2
T,S = Aθ ⇔ AA

(2)
T,S = AA†s ⇔ A

†s,(2)
T,S = A†s .

III. REPRESENTATION OF OUTER - THETA AND THETA -
OUTER INVERSES

The following lemma is useful in representing outer theta
inverses.

Lemma 3: [15] Let A ∈ Cm×n
T,S . Suppose G ∈ Cn×m

such that R(G) = T and N (G) = S. If A has an outer
inverse A

(2)
T,S , then ind(AG) = ind(GA) = 1 and

A
(2)
T,S = (GA)♯G = G(AG)♯.

Theorem 4: If A and G satisfy the conditions of Lemma
3, then

A2,θ
T,S = (GA)♯GAAθ = PT,N (GA)A

θ

and
Aθ,2

T,S = AθAG(AG)♯ = AθPR(AG),S .

Proof: Since R(G) = T = R(A
(2)
T,S) and N (G) = S =

N (A
(2)
T,S), G = A

(2)
T,SAG and G = GAA

(2)
T,S , which implies

N (AG) = N (G) = S and R(GA) = R(G) = T . Referring
lemma 3 and properties of group inverse, we obtain

A2,θ
T,S = (GA)♯GAAθ = PR(GA),N (GA)A

θ = PT,N (GA)Aθ

and

Aθ,2
T,S = AθAG(AG)♯ = AθPR(AG),N (AG) = AθPR(AG),S .

Corollary 1: If A ∈ Cn×n and ind(A) = k, then

AD,θ = (Al)♯AlAθ = PR(Ak),N (Ak)A
θ

and
Aθ,D = AθAl(Al)♯ = AθPR(Ak),N (Ak)

for l ≥ k.
Proof: If G = Al for l ≥ k in Theorem 4, we get

AD,θ = (Al+1)♯Al+1Aθ = PR(Al+1,N (Al+1))A
θ

= PR(Al,N (Al))A
θ = (Al)♯AlAθ

Similarly Aθ,D = AθAl(Al)♯ = AθPR(Al),N (Al)).

The integral representation and the representation of outer
theta inverses in their limiting form are depicted in theorem
5 and theorem 6.

Theorem 5: If A and G satisfy the conditions of Lemma
3, then

A
(2,θ)
T,S =

∫ ∞

0

exp[−G(GAG)θGAt]G(GAG)θGAAθdt

and

A
(θ,2)
T,S =

∫ ∞

0

AθAexp[−G(GAG)θGAt]G(GAG)θGdt.

Proof: From the integral representations of outer inverse
given in [16] the given result follows.

Theorem 6: Let A ∈ Cm×n be of rank r, B ∈ Cn×s be
of rank s and C ∈ Cs×m be of rank s. If A(2)

R(B),N (C) exists,
then

A
(2,θ)
R(B),N (C) = lim

t→0
B(tI + CAB)−1CAAθ

and

A(θ,2) = lim
t→0

AθAB(tI + CAB)−1C

Proof: According to [4]

A
(2)
T,S = lim

t→0
B(tI + CAB)−1C.

So the result follows directly.

IV. APPLICATIONS OF OUTER THETA AND THETA OUTER
MATRICES

Applying outer theta and theta outer matrices, we can solve
certain systems of linear equations.

Theorem 7: Let A ∈ Cm×n
T,S . Then the equation

A
(2)
T,SAx = A

(2,θ)
T,S b (3)

is consistent and its general solution is

x = A
(2,θ)
T,S b+ (I −A

(2)
T,SA)y (4)

for arbitrary y ∈ C(n).
Proof:

A
(2)
T,SAx = A

(2)
T,SAA

(2,θ)
T,S b = A

(2)
T,SAA

(2)
T,SAAθb = A

(2,θ)
T,S b.

Suppose x is a solution of (3). Then A
(2,θ)
T,S b = A

(2)
T,SAx gives

x = A
(2,θ)
T,S b+x−A

(2)
T,SAx = A

(2,θ)
T,S b+(I−A

(2)
T,SA)x. Hence

the solution x is of the form (4).

V. CONCLUSION

A new set of matrices - outer theta and theta outer matrices
are defined, and a few characterizations and applications are
obtained here. Further, we can study iterative methods for
computing the outer theta inverse and theta outer inverses.
These results can also be extended to Hilbert spaces to
broaden research in those lines.
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[10] D. Mosić, “Drazin - star and star - Drazin matrices” in Results in
Mathematics, vol.75, no. 61, 2020.
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