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Particle Swarm Optimization Algorithm Based
on Different Inertia Weights for Solving the
P-Hub Allocation Problem

Yu-Xuan Xing, Jie-Sheng Wang *, Yue Zheng, Yu-Cai Wang

Abstract—The p-Hub allocation problem is a classical
problem in the location allocation problem, where an optimal
network of node allocation paths is formed by placing Hub
device locations and assigning each demand node to the
corresponding Hub. In this paper, a solution strategy is
proposed to solve the p-Hub allocation problem based on the
particle swarm optimization (PSO) algorithm with different
inertia weights. Firstly, a mathematical model of the p-Hub
allocation problem is established. The PSO algorithm is
improved by introducing the idea of mutation operator in
genetic algorithm (GA) and Metropolis criterion in simulated
annealing (SI) algorithm. Then five different inertia weight
adjustment strategies (linear decreasing, parabolic, sinusoidal,
stochastic and adaptive inertia weights) are adopted in the PSO
algorithm. The proposed improved PSO algorithm is used to
solve three p-Hub allocation problems, and different inertia
weight strategies are compared. Finally, the optimal improved
PSO algorithm, cat swarm optimization (CSO) and harmony
search (HS) algorithm are selected to optimize the P-Hub
allocation problems. Simulation results verify the effectiveness
of the improved PSO algorithm.

Index Terms—Particle swarm optimization algorithm ;
p-Hub allocation problem; Inertia weights; Metropolis criterion

I. INTRODUCTION

T he location allocation problem is an important topic in
the field of operations research, and it has been widely
studied and applied in urban planning, production and
military fields. The basic location allocation problems can be
divided into three main categories, namely the p-median
problem, the p-centre problem and the p-cover problem. The
p-median problems explore the selection of the optimal P
locations in the set of candidate locations to obtain the
objective function with the smallest value, that is, find the P
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locations with the smallest sum of the product of demand and
transmission distance between the demand node and the
service node. The difference between the p-median problem
and the p-centre problem is that the objective of the p-centre
problem is to minimize the maximum distance from each
demand node to the nearest service node. The p-cover
problems are to explore how to build the minimum number of
service stations or spend less under the condition that all
demand points are covered [1]. The p-Hub allocation
problem is one of the location allocation problems. The
p-Hub allocation problem can be divided into two categories
according to the objective function: median objective class
and center objective class. The Median target class 1s similar
to the p-median problem. Its principle 1s to select P Hub
points and assign all the demand points to the corresponding
Hub nodes so as to minimize the overall cost. This target
class is generally applicable to the network data
communication system [2]. The Center target class model 1s
similar to the p-center problem, which aims to minimize the
maximum distance between the demand point and the Hub
point. The target class applies to areas, such as transportation
of items with shorter shelf life and accelerated mail delivery
[3], accelerated mail delivery and other fields. This paper
studies a single-allocation p-Hub median problem without
capacity constraints, that 1s, the p-Hub median problem of
facilities without capacity constraints and each demand point
only connects to one Hub point.

For the p-Hub allocation problem, there are generally the
following three constraints. Each Hub node is connected to
each other; The discount factor is used to represent the
economic cost generated by the connection between Hubs;
HExcept Hub node, there is no direct service between any two
nodes [4]. Based on these three prerequisites, scholars have
made many in-depth studies in each type of p-Hub allocation
problem. In Ref [5], a heuristic algorithm based on Tabu
search and greedy random adaptive search process (GRASP)
is proposed for discrete p-hub location problem. Simulation
results show that the proposed method can find better
solutions in general. Ref. [6] considered the location problem
of single distribution hub under demand uncertainty,
proposed an alternate convex mixed integer nonlinear
programming for variable allocation and a customized
solution method based on the cutting plane to solve this
computing problem. It solved the capacity constraint and
single distribution P-median problem. Ref. [ 7] carried out the
research on a Hub location allocation problem of distribution
network. First of all, the mixed integer linear programming
(MILP) method is applied, and then four heuristic algorithms
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{genetic algorithm, simulated annealing algorithm, particle
swarm  optimization algorithm and  anti-vibration
optimization algorithm) were used to obtain the optimal
solution with reasonable execution time, overcome the limit
of accurate solution method. Ref. [8] proposed a new mixed
integer linear programming (MILP) method for the
multiple-allocation P-Hub median value problem based on
linear programming and an explicit enumeration algorithm to
obtain the exact solution. Ref. [9] put {orward a new general
variable neighborhood search method, which 1s used to solve
the network capacity limits of the single distribution of p-Hub
median problem by using three neighborhood and efficiently
updating the data to calculate the new traffic of the network
structure. The new nested variable neighborhood descent
method was used to solve a very large test instance and show
the best performance. Ref. [10] studies the single-allocation
p-Hub median problem (USApHMP) with no capacity
limitation, and proposes two GAs to solve this NP-hard
problem. Numerical experiments on standard ORLIB Hub
datasets show robust and efficient solutions for USApHMP
with up to 200 nodes and 20 hubs. Ref. [11] proposed a
hybrid method to solve the p-hub center problem by locating
P hubs from a group of candidate hub locations and assigning
demand and supply nodes to hubs and minimizing the
maximum travel time in the network, and proposed a hybrid
solution to the fuzzy VIKOR modeling hub location problem.
Genetic algorithm 1s used to solve several problem examples
successfully. Particle swarm optimization (PSO) algorithm is
a random search algorithm based on swarm collaboration
developed by simulating the foraging behavior of birds.
Based on the observation of animals and swarm activities, the
PSO algorithm makes use of the information sharing of
individuals to make the movement of the whole swarm
produce an evolution process from disorder to order in the
problem solving space, so as to obtain the optimal solution. It
has been widely used in soft sensor modeling [12], knapsack
problem [13], path planning [14], adaptive control [15],
multi-objective optimization [16], optimal power f{low
calculation [17] and other fields because of its easy
implementation, high precision and fast convergence.

This paper proposes a method for solving p-Hub allocation
problem based on the PSO algorithm with different inertia
weights. The structure of the paper is arranged as follows.
Section 2 introduces the mathematical model of the p-Hub
allocation problem. The third section introduces the working
principle and workflow of the basic PSO algorithm. Then the
PSO algorithm is improved by introducing other intelligent
algorithms and five inertia weight adjustment strategies.
Finally, the algorithm coding and parameter setting are
expounded. The fourth section is the experimental simulation
and results analysis. Finally is the conclusion of the paper.

II. MATHEMATICAL MODEL OF P-HUB ALLOCATION
PROBLEM

The p-Hub median problem has the single allocation
without capacity constraints, that is to say that the facility is
not limited in capacity, and each demand point is only
connected to a Hub point. The total cost of this problem is
composed of the fixed cost of establishing a Hub and the
transportation cost. This kind of mathematical model was
first proposed by Kelly in 1987 in the study of route hub

location planning of aerospace system, that 1s, the number of
nodes is given, and a certain nodes are selected from them as
the Hub point and the cost generated by connection and
transmission between Hubs 1s represented by a discount
factor o . At the same time, the product of the distance and
unit distance between two nodes is given so that the total cost
generated between nodes and Hubs and between Hubs and
Hubs is the least.

According to the description of p-Hub allocation problem,
the following mathematical models can be obtamned.

szj[zxikcik + 2 X5 C i +aZinkxijmj (1)
i j k m k m

X, =x, forallthe & j (2)

Zk: Yi =1 forall the i 3)
X.

2/ )

{01} for all the i,k (5)

where, W; represents the total flow between node i and
node 7 ,and € represents the transportation cost per unit
distance between node i and node J . When node i is
assigned to Hub at node &, the value is 1, otherwise 0. X 1s
the same. Eq. (1) is used to calculate the sum of the total
transportation costs of the model. The purpose of Eq. (2) is to
ensure that each demand node 1s connected to a Hub node. Eq,
(3) and (5) ensure that each node can only connect to a Hub
node at most. Eq. (4) is the cost of establishing a Hub node.

When point 7 is a Hub node, it is 1, otherwise it is 0, and f;

is the cost of establishing a Hub at different nodes.

III. SoLvING P-HUB ALLOCATION PROBLEM BASED ON
PSO ALGORITHM WITH DIFFERENT INERTIA WEIGHTS

A. Basic Principle of PSO Algorithm

The PSO algorithm was proposed by Kennedy and
Eberhart by studying the behavior pattern of bird collective
predation 1n nature [19]. The basic PSO algorithm is
described as follows.

If there are N particles in a ) -dimensional space, the
i -th particle is represented as a D -dimensional vector, and
the position of the i -th particle 1s represented as:

Xl':(Xﬂ:Xﬂ"" XID),I'=1,2..., N (6)

The moving velocity of the 7 -th particle is also expressed
asa [) -dimensional vector.

V, =WV, Vg hi=12.,N 0

1

The individual optimal value of the 7 -th particle is named
as the individual extremum, which is denoted as:

pbesr:(pn,pl-z...,pID),i:1,2...,N (8)

The optimal value of all particles in the particle swarm is
named as the global extremum, which is denoted as:

gbesl:(pgl,pgg LERE) pgD) (9)
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The particle starts updating its speed and position
according to Ppes and &pey -

X=Xl vt (11)
k+1

where, V,;~ represents the D -dimensional velocity of the
i -th particle at the (& +1)-th iteration; The maximum value
of I/z'§+l iS Vinax (Vmax - 0)§ If Vz'gﬂ > Vinax » Vz'§+1 =Vinax
X ,»/jfl represents the position of the 7 -th particle at the
(k+1)-th iteration; i =L2....N represents that there are N
particles in the particle swarm; @ is the inertia weight which
controls the particle to adjust its weight according to the
current velocity; rand, and rand, represent two random
numbers between 0 and 1; ¢; and ¢, are learning factors, and
their values determine the weight of particles self-adjustment
according to their own experience and social information;
phest’; represents the individual extreme value of the i -th
particle found after k iterations; gbestzlfl represents global
extreme of population after k iterations. The procedure of
PSO algorithm is shown in Fig. 1.

B. Coding and Parameter Design of p-Hub Allocation
Problem

In this paper, the PSO algorithm is used to solve the p-Hub
allocation problem based on MATLAB simulation software.
The optimal allocation model is obtained by constructing the
p-Hub model, coding the algorithm optimization index,
setting the particle swarm parameters, debugging and
running the program.

(1) Code Strategy

In the spatial domain, there are N nodes waiting for Hub
location allocation. Given the N point coordinates, the
transfer fees C between any two points, the throughput *
between two points, the discount factor @ for the connection
cost between Hubs, the weights W} and W, of circulation
cost and establishment cost between hubs, respectively. The
Hub in different nodes is set as the cost /*, and the particle

VEY =w*Vh + ¢ *rand, * (pbest,f, - Xk )+ ¢, *rand, * (gbest,-/; - X,/d)

sumocR-YY [z Gty 10 Y o, + Y€, J
P k kel !

Initialize the Calculate the fitness of

A 4

is coded as the matrix of N x N . In the initialization phase,
all particles in the particle swarm randomly generate the
position matrix of NxN between 0 and 1, which
represents the zero matrix of N x N of particle velocity. In
each particle position matrix diagonal element greater than
0.5, Ppax elements with the largest numerical value are
selected as Hub nodes. If the number of Py, elements with
numerical value greater than 0.5 is less than , all elements
with numerical value greater than 0.5 are taken as Hub points.
If there is no element with numerical value greater than 0.5 in
the diagonal element, the largest element in the diagonal
element is taken as Hub point, and the remaining element is
taken as the demand node. Determine which Hub node is
assigned to each requirement node by comparing the element
values of the column where the requirement node is and the
row where the Hub node is. The transmission cost between
nodes is defined as:

The constraint of Eq. (12) is X <X, Xz X;; € 10.1§ and
(v —P+l)xkk —>x; >0 If point 7 is assigned to Hub at
point &, X is 1, otherwise it is 0. If point J is assigned to
Hub at point /, X;; is 1, otherwise it is 0. If & is selected as
Hub point, X is 1, otherwise 0, so as to ensure that each
demand node has and only one Hub is connected to it. The
total cost of establishing Hub is calculated by:

SumXF = Z X fom (13)

When 7 is selected as Hub point, X, is 1, otherwise it is
zero. The total cost is calculated based on Eq. (12) and Eq.

(13).

TotalCost =W, - SumOCR + W, - SumXF (14)

The global optimum is obtained by comparing the
TotalCost of all particles. The new TotalCost is obtained
by adjusting the position and velocity of the particles at each
iteration and the global optimum is updated. The final
solution of the PSO algorithm is obtained at the end of the
iteration.

(10)
(12)

each particle and
initialize pbest and gbest

. position and velocity
of the particle

swarm

Fig. 1 Procedure of PSO algorithm.

Adjust the speed Calculate the fitness of each
» and position of each P particle and update pbest and
particle gbest

A

Determine whether iteration termination
conditions are met
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{2) Parameter Setting

1) Population size

The population size is the number of particles in the PSO
algorithm. In general, the smaller population size will lead to
the algorithm easier to fall into local optimum, and the larger
population size can improve the convergence of the
algorithm and make the optimization ability of the algorithm
stronger, but it will increase the amount of calculation
required by the PSO algorithm and reduce its efficiency.
This paper selects population size Npop=150.
2) Number of iterations

As the number of iterations increases, the solution of the
algorithm becomes more and more stable, and the amount of
calculation increases. According to the specific situation
studied in this paper, the number of iterations G, is selected
as 250.
3) Inertia weight

The inertia weight @ determines the proportion of
particle flight velocity retention. In this paper, five dynamic
adjustment ertia weights are used to optimize the
algorithm.
4) Learning factor

¢y and ¢; are the learning factors of the PSO algorithm.
¢ 1s the self-learning factor, which 1s the weight parameter
of the learning adjustment part through the individual
historical optimization experience. ¢, is the social learning
factor, which adjusts the weight parameters by learning {rom
the historical experience of the entire particle swarm.
¢ +¢; <4 and ¢ =1.5,¢; =2 in this paper.

C. Improved Particle Swarm Optimization Algorithm

{1) Improved PSO Algorithm Based on Metropolis Criterion
and Mutation Operator

Based on the basic PSO algorithm, this paper introduces
the Metropolis criterion in simulated annealing and the
mutation operator in genetic algorithm. Metropolis criterion
1s an important sampling method proposed by Metropolis.
The main idea of Metropolis criterion is to accept the new
non-optimal state of the algorithm with certain probability.
The mutation operator of GA 1s to change the gene value of
individuals in the population to accelerate the algorithm to
converge to the global optimal solution. In this paper, the
Metropolis criterion 18 combined with mutation operator,
and the position of each particle after adjustment is mutated
in each iteration. Then, according to the Metropolis criterion
in the SA algorithm, whether the fitness of the mutated
particle is better than that of the particle before mutation 1s
judged. If the mutated particle 1s better, the particle inherits
the position velocity and fitness after mutation. If the
particle fitness before mutation is better than that after
mutation, the new solution after mutation 1s accepted with a
probability of 10%. At each iteration, the global optimal
solution 1s obtained by comparing the individual historical
optimal found by all particles, and then the global optimal is
mutated three times again. By comparing the fitness before
and after the mutation, the optimal inheritance 1s selected,
and the poor solution obtained by the algorithm is no longer
probability accepted when the global optimal is mutated. In
this paper, seven different variants are introduced, and one
of them is randomly selected at each mutation.

1) Mutation one: exchange two random rows of the
matrix.

2) Mutation two: exchange two random columns of the
matrix.

3) Mutation three: exchange any two elements of the
matrix.

4) Mutation four: exchange any two elements on the
diagonal of the matrix.

5) Mutation five: randomly select two elements on the
diagonal of the matrix and reverse the diagonal intercepted
by the two elements.

6) Mutation six: randomly select an element whose value
1s greater than 0.5 in the diagonal of the matrix and halve it.

7) Mutation seven: randomly select an element whose
value is less than 0.5 in the diagonal of a matrix and double
its value.

The above seven methods can change the distribution
of the selected Hub location node and the demand node in
different ways. By combining Metropolis criterion with
mutation operator, it can jump out when the PSO
algorithm falls into local optimum and continue to find
global optimum.

(2) Improved PSO Algorithm Based on Different Inertia
Weights

Although the PSO algorithm has the characteristics of less
parameters, simple implementation and high operation
efficiency, it is easy to fall into local optimum and cannot
find the global optimum due to the premature convergence.
Therefore, many scholars have conducted in-depth
discussions on how to balance the local and global
optimization performance of the algorithm. It 1s found that
the strategy change of inertia weight can effectively solve
this problem. In the PSO algorithm, the inertia weight is one
of the key factors affecting the particle flight speed
maintenance. When @ increases, the global search ability of
particles will increase, and when @ decreases, the local
search ability of particles will increase. This paper adopts
the five strategies of inertia weight.

1) Linear decreasing strategy

The decreasing inertia weight with the increase of
iteration times can enhance the self-learning ability of the
particles in the early iteration. While the iteration enters the
later stage, @ becomes smaller and smaller, and the social
learming ability of the particles will gradually be enhanced,
which makes the local search optimization ability and global
search optimization ability of PSO algorithm be balanced to
a certain extent. In a linear decreasing inertia weight, set its
nitial @pae =1, @y = 0.2 at the end of iteration, & is the
number of current iterations, and the maximum number of
iterations is Gy .

@ =y~ 5 (15)

2) Parabolic strategy

The linear decreasing inertia weight is relatively easy to
realize. Some scholars have proposed a nonlinear decreasing
strategy based on the linear decreasing strategy. Chatterjee
and Siarry have proposed a @ adjusting strategy to solve
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practical problems, and this inertia weight is a form of
curve[21]. Its mathematical expression can be described as:

k I
@By = (mmax ~ Opyin 1- G_ + Dyin
4

(16)

where, 7 1ssetto2, @y 1ssetto 1, and @y, 18 set to 0.2.
When # 1ssetto 2, @ decreases with iteration in the form of
parabola.

3) Sinusoidal function strategy

In Ref. [22], the inertia weight by using sine function is
introduced. When this strategy 1s adopted, the @ value
increases first and then decreases. The particle first searches
locally based on its own experience, and then searches
globally according to social learning, and finally searches
locally. In this paper, the initial inertia weight @neg is set to

0.3.
ﬁ*k}
Gy

The random inertia weight 1s based on a certain range of
random values at the end of each iteration. This strategy can
avoid the weak local search ability to a certain extent in the
early iteration, and can make up for the poor global search
ability in the later iteration. A random inertia weight for
tracking dynamic systems proposed in Ref. [23] is shown in

Eq. (18).

(a7

o = Wpo +0.6*sin[

4) Random inertia weight

w= 0547290

(18)

5) Adaptive inertia weight

The adaptive inertia weight connects the inertia weight
with the performance of the algorithm, and adjusts the
inertia weight in real time through the feedback information
provided by the PSO algorithm. Due to the characteristics of
its intelligent control, this strategy can be well applied in
complex environments. At the same time, it can avoid the
premature convergence of the algorithm and accelerate the
late optimization efficiency. An adaptive inertia weight was
proposed with the parameter optimization of adaptive fuzzy
inference system. On this basis, the mathematical expression
adjusted according to the actual situation 1s defined as
follows.

(@~ i W )

Doz~ F< g
e g Jre (19)
e F2 S
where, @ =08 | oy, =03 | f is the objective

function value found by particles, fmn is the optimal
value of the objective function found by all particles in
the iteration, Jav is the average objective function value of
all particles in the previous iteration, and Jave is initialized
before the first iteration. This strategy strengthens the global
search ability when the objective function value of particles
1s higher than all averages. When the target value of particles
is lower than the average value of all particles, the local
optimization ability is adjusted according to this value. The

smaller the target value, the greater the improvement of the
local search ability.

IV. SIMULATION EXPERIMENTS AND RESULT ANALYSIS

A. Description of Simulation Cases

In the first three sections of this paper, the research
background and current situation of p-Hub allocation
problem are expounded, and the mathematical model is
established. The basic PSO algorithm 1s improved and their
basic parameters are given. Based on the previous three
sections, this section uses MATLAB simulation software for
program debugging, optimizes three different P-Hub cases,
and selects the best improved PSO algorithim to be compared
with the simulation results of other classical algorithms to
verify the feasibility of the improved PSO algorithm. This
paper selects the following three p-Hub allocation models
for carrying out the simulation experiments.

(1Y Model one. The location problem with 20 nodes is
selected as shown in Fig. 2, and the up to 3 points are
selected as Hub points, and the non-Hub points are assigned
to Hub points. Give the unit transmission cost C between
any two points, the transmission amount ¥ between any two
points, the discount factor ¢ of the cost generated by the
connection between Hubs, and the cost / required for the
establishment of Hubs in different nodes.

(2) Model two. The location problem with 30 nodes 1s
selected as shown in Fig. 3, and the up to 6 points are
selected as Hub points, and the non-Hub points are assigned
to Hub points. Give the unit transmission cost C between
any two points, the transmission amount # between any two
points, the discount factor & of the cost generated by the
connection between Hubs, and the cost f rtequired for the
establishment of Hubs in different nodes.

(3) Model three. The location problem with 40 nodes 1s
selected as shown in Fig. 4, and the up to 7 points are
selected as Hub points, and the non-Hub points are assigned
to Hub points. Give the unit transmission cost C between
any two points, the transmission amount # between any two
points, the discount factor & of the cost generated by the
connection between Hubs, and the cost f rtequired for the
establishment of Hubs in different nodes.

In view of the above three models, according to the
algorithm parameters and the five inertia weight strategies,
the basic PSO algorithm are simulated ten times respectively.
The optimal values are recorded, and the mean and variance
are calculated. The distribution diagram of the optimal
solution, the curve of different inertia weight with iteration
and the curve of global optimal solution with different
nertia weight with iteration times are obtained.

B.  Simulation Results and Analysis
(1) Simulation Results and Analysis (Model One)

The simulation results of model one 1s shown in Table 1.
The convergence curves under different PSO algorithms of
model one are shown in Fig. 5. The vanable curves of
different inertia weights of model one with the number of
iterations are shown in Fig. 6. For model one, the optimal
solution is obtained after ten simulations with the each
inertia weight and the corresponding optimal Hub location
allocation is shown in Fig. 7. Based on the analysis of the
simulation results listed in Table 1, the parabolic strategy,
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adaptive strategy and random strategy all have smaller
optimal solutions than other strategies, and the mean value
of these three strategies is significantly less than that of other
strategies. It can be seen from the standard deviation of each
strategy that the stability of the adaptive inertia weight
strategy is the strongest. The comprehensive analysis of the
data shows that other strategies except sin-type strategy have
achieved better results than the basic PSO algorithm.
Analysis on the curves shown in Fig. 5 shows that the early
convergence speed of basic PSO algorithm is too fast and the
late optimization ability is insufficient, while the early
convergence speed of other strategies is lower than that of
basic PSO, and it still has good optimization effect in the
middle of iteration.
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Fig. 2 Distribution map of nodes to be located (model one).
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TABLE 1. SIMULATION RESULTS UNDER DIFFERENT METHODS (MODEL ONE)

Algorithm Parameters Optlmal M Star}da}rd
Solution value deviation
BusicPSO  N=20Pu, =3 54143520 3664 4431679
PSO with
linear _ _ 546789 435383.5
decreasing N=20Pn =3 54143520 T 0c p
0]
PSO with
. 545528  485848.4
parabolic N=20,P,, =3 53942415
P @ 84.35 6
PSO with _ _ 548237  410201.0
sin @ N =20,P =3 54143520 62.15 5
PSO with
stochastic N =20,P =3 53942415 545147 489315.4
P 94.4 1
PSO with _ _ 545842 4097229
adaptive @ N =20, Poax =3 53942415 34.9 9
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(2) Simulation Results and Analysis (Model Two)

The simulation results of model two are shown in Table 2.
The convergence curves under different PSO algorithms of
model two are shown in Fig. 8. The variable curves of
different inertia weights of model two with the number of
iterations are shown in Fig. 9. For model two, the optimal
solution is obtained after ten simulations with the each
inertia weight and the corresponding optimal Hub location
allocation is shown in Fig. 10.

Through the analysis of the ten simulation results of
model two shown in Table 2, it can be seen that the parabolic
inertia weight, the linear decreasing inertia weight and the
adaptive inertia weight have smaller optimal solutions than
other strategies. In addition, on the data of the mean value of
simulation solutions, these three strategies are also
significantly lower than other strategies. It can be seen that
the use of these three strategies for model two has good
results.

By observing the standard deviation of the simulation
solution, it can be seen that the adaptive inertia weight still
has strong stability for the solution of model two, but the
parabolic strategy has a large standard deviation. By
analyzing the change rule of this strategy and the curves in
Fig. 8, the linear graph with the increase of the number of
iterations shows the shape of a downward interval of an open
upward parabola, and the decrease speed is relatively fast at
the beginning of the iteration.

This situation may lead to the insufficient search of the
particles in the spatial domain, resulting in a large standard
deviation of the solution. By comparing the data, it can be
concluded that the simulation results of these five strategies
for model two are better than those of the basic PSO
algorithm, but the effect of sin-type inertia weight strategy is
not obvious.

(3) Simulation Results and Analysis (Model Three)

The simulation results of model three is shown in Table 3.
The convergence curves under different PSO algorithms of
model three are shown in Fig. 11. The variable curves of
different inertia weights of model three with the number of
iterations are shown in Fig. 12.
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Fig. 8 Convergence curves under different algorithms (model two).
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Fig. 9 Variable curves of different inertia weights (model two).
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801 §
,. P . Optimal Standard
i L Algorithm Parameters ; Mean value i
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60 e i N=30,P,,. =6
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40t ol " linear — _30p =6
= _ _
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For model three, the optimal solution is obtained after ten
simulations with the each inertia weight and the
corresponding optimal Hub location allocation is shown in
Fig. 13. Through the analysis of the ten simulation results of
the model three shown in Table 3, it can be seen that the
parabolic inertia weight obtains the minimum optimal value.
In the mean value of simulation solution, the parabolic
inertia weight and adaptive inertia weight are significantly
better than other strategies, and the other three strategies are
also better than the solution of the basic PSO algorithm.

Compared with the standard deviation of the simulation

Volume 52, Issue 4: December 2022



TAENG International Journal of Applied Mathematics, 52:4, [JAM 52 4 31

data, it can be seen that the adaptive strategy still has strong
stability. It can be seen from Fig. 11 that with the increase of
the solution model, the particle convergence rate with each
strategy decreases in the early stage, and the late
optimization ability of the basic PSO algorithm is not strong.
The optimization ability of the stochastic inertia weight for
model three is lower than that of model one and model two.
The analysis of the change rule of this strategy may be the
result of the increase of the solving model, which cannot
make the particles fully search in the early iteration and
cannot make all the particles accelerate the convergence in
the late iteration.

C. Analysis and Summary of Inertia Weight Strategy
(1) Linear decreasing strategy

In the early iteration, the linear decreasing inertia weight
strategy has good global search performance, and also has
good local optimization performance in the late iteration.
Observing the line graph of the simulation, it can also be
found that the particle swarm can make full global search in
the early stage so as to fully search the spatial domain, and
improve the convergence speed in the later stage to search
for the optimal solution near the global optimum. The
simulation results of three groups of models show that the
optimization effect of this strategy on the basic PSO
algorithm is obvious.
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TABLE 3. SIMULATION RESULTS UNDER DIFFERENT METHODS (MODEL

THREE)
Algorithm Parameters Optlrpal Mean value Stapdg_:rd
Solution deviation

BasicPSO N=40F =7 198918107 207876583 653579430

PSO with
linear
decreasing
@
PSO with
parabolic N=40F =7 189168516  199648731.6 690634739
@
PSO with
sin g
PSO with
stochastic N=40,P =7 195330954  203766826.3 5523963 .14
@
PSO with
adaptive N=40F =7 1943933305 1997576985 3409794.72
@®

N=40F =7 154518440 202328519 8264634 .13

N=40,P . =7 196635248 204819431 6130585.60

Xfkm
{d) PSO with sin strategy

O
0

o

(e) PSO with stochastic strategy

(2) Parabolic strategy

The parabolic inertia weight strategy is similar to the
linear decreasing strategy. The comparison of the
relationship between two inertia weight strategies and the
number of iterations is shown in Fig. 14. The parabolic
strategy reduces faster in the early stage, resulting in faster
convergence of particles to the vicinity of the global
optimum. Through the comparison of three groups of
simulation data, the simulation effect of this strategy is
better than that of the linear decreasing strategy. However,
due to the fast convergence speed in the early stage, the
search in the spatial domain may be insufficient, resulting in
large fluctuation of the solution value.

(3) Sin strategy

Based on the analysis of the simulation results of the three
groups of models, this strategy has a certain effect on the
optimization of the basic particle swarm, but the effect is not
obvious, and there is no advantage over other strategies. By
analyzing the variation curves of the value with iteration
shown in Fig. 15, it can be seen that the particle swarm is
doing local search before and after the iteration, and this
optimization mode starts to conduct global search in the
medium term so as to make the particle swarm converge,
which leads to poor local optimization effect in the large
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range in the early stage of the particle swarm, and thus the
overall optimization effect is not ideal.
(4) Stochastic strategy

Random inertia weight randomly selects a value greater
than 0.5 and less than 1 at the end of each iteration, which
can consider the global search and the local search. The
comprehensive analysis of three groups of simulation results
shows that it has better optimization effect, but with the
increase of the solution model, the optimization effect
decreases.

(5) Adaptive strategy

Comprehensive analysis of above three groups of
simulation results shows that the adaptive inertia weight has
obvious advantages over other strategies. By comparing the
standard deviation of solution, it can also be seen that this
strategy has strong solution stability. This strategy is to
adjust the inertia weight of each particle in the particle
swarm according to the particle feedback information. This
mechanism is more targeted, more intelligent and better
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Fig. 15 Relation between sin inertia weight and iterative number.
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(b) Model two
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TABLE 4. SIMULATION RESULTS UNDER DIFFERENT ALGORITHMS

Algorithm Parameters Opt1rpal Mean value Sta[.rld?rd
Solution deviation
PSOwith
adaptive =~ N=20,F _ =3 53942415 54584234.9 409722.99
@
CSO N=20F =3 54143520 550742114 576368.93
HS N=20F, . =3 54143520 54790820.8 385685.04
PSOwith
adaptive =~ N=30,F,.. =6 1127613265 1167795654 269061352
@
CS0O N=30,F,.=6 118776421 1832468.82 1217950447
HS N=30,F,,.=6 120106623.5 124755603.3  2989492.92
PSOwith
adaptive N=40,FP =7 1943933305 1997576985 3409794.72
@
CSO N=40,P . =7 2029796685 2107988433 545965561
HS N=40,F .. =7 2024804405 2109504352 446458432

It can be seen from the three sets of convergence curves
in Fig. 16 that the improved PSO has stronger ability to
optimize in the later stage of iteration than the two classical
algorithms. By comparison, it can be concluded that the
improved PSO has higher efficiency.

V. CONCLUSION

The PSO algorithm has a wide range of applications in
various fields of real life. Solving p-Hub allocation problem
1s also a hot topic in its application. This paper briefly
introduces the research background and current situation of
p-Hub allocation problem, and gives its mathematical model.
This paper expounds the principle and procedure of PSO
algorithm, and gives several improved strategies. By
comparing the simulation results of different inertia weights,
and the simulation results of three groups of models, it is
concluded that five inertia weight strategies are better than
the basic PSO algorithm. The adaptive mertia weight has
obvious advantages 1n the optimization results and
optimization stability. The parabolic mertia weight 1s similar
to the linear decreasing inertia weight, but the simulation
effect is better than the linear decreasing strategy. Both of

them have good optimization effect on the PSO algorithm.
The random inertia weight has a certain effect on the
algorithm optimization. However, because of its random
characteristics, the smmulation effect decreases with the
increase of the solution model. The sin strategy starts to
improve its global search ability in the medium term, which
leads to the poor optimization effect in the early iteration and
affects the overall optimization effect. The feasibility and
effectiveness of the p-Hub assignment problem based on
PSO algorithm are verified by comparing it with other
optimization algorithm.
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