
Dynamic Behaviour of Multi-Stage Epidemic
Model with Imperfect Vaccine

Yuan Wang, Shidong Zhai, Ming Du and Penglei Zhao

Abstract—This paper introduces a general multi-stage epi-
demiological model with imperfect vaccine, which allows for
possible deterioration and improvement between any two stages
of infection. The proposed model can describe disease progres-
sion through multiple latent or infectious stages. We conduct
a detailed theoretical analysis of the proposed model and find
that the basic reproduction number <0 is very important for
the demise of the disease. When <0 is less than or equal to one,
the disease will eventually die out. When <0 is greater than one,
the disease will eventually become pandemic, and we propose
a new Lyapunov function to prove this fact. Moreover, we
obtain a relationship between <0 and vaccination ratio, which
indicates that <0 decreases as the vaccination ratio increases.
This property can be used to control the disease epidemic by
adjusting the vaccination ratio. Finally, we use two numerical
examples to illustrate the effectiveness of the obtained results.

Index Terms—Multi-stage, vaccination ratio, pandemic, basic
reproduction number.

I. INTRODUCTION

In nature, there are a wide variety of infectious diseases,
many of which the hosts go through multiple distinct stages,
such as HIV, viral hepatitis, bacterial tuberculosis and cholera
which are transmitted virally, Plague, Typhoid Bacillus,
Diphtheria Bacillus, etc. which are all transmitted by bac-
teria. Although there were many infectious diseases have
been effectively controlled, such as Smallpox which has been
eliminated worldwide, plague and cholera which have been
effectively controlled. The pandemic of COVID-19 has made
people pay more attention to the spread of the virus [1]–
[6]. COVID-19 is a highly contagious multi-host infectious
disease. Its pathogen can not only survive in wild animals for
a long time and cause transmission among animals, but also
can be transmitted to humans through wild animals. It is of
great significance to predict the epidemic trend of diseases
by using mathematical models for evaluating public health
status and formulating prevention and control strategies [7]–
[13].

In order to describe the multiple stages of virus devel-
opment, various models have been proposed, such as the
Markovchain model or the staged progression (SP) model
which can describe the temporal variability of infection
[14]–[18], and multistage transmission models which have

Manuscript received June 25, 2022; revised October 15, 2022.
Yuan Wang is a Postgraduate of School of Automation, Chongqing

University of Posts and Telecommunications, Chongqing, 400065, China
(e-mail: 3274730633@qq.com).

Shidong Zhai is an Associate Professor of School of Automation,
Chongqing University of Posts and Telecommunications, Chongqing,
400065, China (corresponding author e-mail: zhaisd@cqupt.edu.cn).

Ming Du is a Postgraduate of School of Automation, Chongqing Univer-
sity of Posts and Telecommunications, Chongqing, 400065, China (e-mail:
amu2035@163.com).

Penglei Zhao is a Postgraduate of School of Automation, Chongqing
University of Posts and Telecommunications, Chongqing, 400065, China
(e-mail: 1262625644@qq.com).

been established in the literature for long-delayed disease
development [19]. In [20], a system of differential and
integral equations was used to build a multi-stage model
with a general distribution function for the infection stages.
If the distributions are of Gamma type, the resulting models
are described as larger systems of ODEs using the “linear
chain trick” [21]. In [15], the SP model was derived directly
from ordinary differential equations (ODEs). In [18], disease
amelioration was added to the SP model of HIV for the first
time. In [22], an infectious disease model was proposed in
which susceptible individuals can be transferred to any stage
of infection. When individuals in a susceptible population
come into contact with infected individuals, these newly
infected patients may skip the initial stages of the disease
and go directly to any stage of infection. In [23], the authors
analyzed the global dynamics of a general n-stage phase
progression model with bilinear incidence. The reference
[24] used graph theory to study the global dynamics of the
staged development model for the first time.

While vaccination is the most effective way to completely
control the spread of various viruses, many people have
reduced immunity over time after vaccination [25]–[28].
Therefore, although vaccines can reduce the rate of infection,
they do not completely prevent infection. For multistage virus
models, there is no literature on partial immunity, which is
common in real life. To this end, this paper proposes a multi-
stage virus transmission model with partial immunity. This
model allows for possible deterioration and improvement
between any two stages of infection. The total population
is divided into a susceptible compartment, a vaccinated
compartment, a recovered compartment, and some infective
compartments.

For the proposed model, we conduct a detailed theoretical
analysis, and find that the basic reproduction number <0

is very important for the demise of the disease. If <0 is
less than or equal to one, the disease will eventually die
out. We propose a new Lyapunov function to prove that if
<0 is greater than one, the disease will eventually become
pandemic. The relationship between <0 and vaccination ratio
shows that <0 decreases as the vaccination ratio increases.
This property can be used to control the disease epidemic by
adjusting the vaccination ratio.

The structure of this paper is as follows. We present the
multi-stage epidemiological model in Section 2. In Section
3, we give a mathematical definition of <0 and explain
what it represents in biology. In Sections 4 and 5, we
carry out mathematical analysis of the global dynamics of
the model for the case y(N) ≡ 1. In Section 6, we give
two numerical examples to illustrate the effectiveness of the
obtained results.
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II. FORMULATION OF THE MODEL

We divide the host of the infection stage into n states
according to the severity of the disease, where n is a
finite number. Let Ii(t) represents the number of infected
individuals in stage i at time t, where 1 ≤ i ≤ n. S(t)
represents the number of susceptible people at time t, V (t)
represents the number of individuals vaccinated at time t,
and R(t) represents the number of patients who recovered
to health at time t. If an individual in a compartment dies, the
individual will be removed from the entire transport network.
N(t) = S(t)+V (t)+I1(t)+I2(t)+· · ·+In(t) represents the
number of people transmitted throughout the network. When
all Ii(t) = 0, it means that there is no virus transmission,
and the population dynamics in the entire network can be
described by the differential equation: Ṡ = ω(S), where
ω(S) = Λ − dS − pS. Using the function φij(Ij) denotes
the rate at which individuals transition from the jth stage to
the ith stage, where 1 ≤ i, j ≤ n. φij(Ij) expresses the rate
at which the disease progresses towards worsening, where
i > j. When i < j, it indicates the rate of improvement.
We assume that φii ≡ 0. φn+1,i represents the probability of
recovery from the ith state of infection, where 1 ≤ i, j ≤ n.
Alternatively, the infected individuals were moved to the
recovered compartment R.

Viral infection can occur when a susceptible indi-
vidual comes into contact with any infected individual
in stage i. The incidence term usually uses the form:
Σni=1y(N)hi(S, Ii). We take y(N) as the density depen-
dence. Infection can also happen when a vaccinated individ-
ual comes into contact with any infected individual in stage
i when the vaccine is ineffective. The incidence term usually
uses the following general form: Σni=1y(N)gi(V, Ii). The
function y takes the classical form: y(N) = N−t, 0 ≤ t ≤ 1.
hi represents the incidence of infection between S and Ii in
the stage i. If a person is vaccinated, the infection rate will be
drastically reduced compared to an unvaccinated susceptible
population. gi represents the incidence of infection from
contact between V and Ii in the stage i. p denotes the
vaccination rate. Let ζi(Ii) represents the removal rate from
Ii, including those who died naturally, those who died after
being infected by the virus, and those who left the virus
transmission network for other reasons. It’s common form is
exponential removal: ζi(Ii) = diIi. According to the above
assumptions and changes in the number of R are not taken
into account. Our model can be described by the following
system of ordinary differential equations(ODEs):

Ṡ = ω(S)− y(N)
n∑
j=1

hj(S, Ij),

V̇ = pS − d0V − y(N)
n∑
j=1

gj(V, Ij),

İ1 = y(N)
n∑
j=1

hj(S, Ij) + y(N)
n∑
j=1

gj(V, Ij)

+
n∑
j=1

φ1j(Ij)−
n+1∑
j=1

φj1(I1)− ζ1(I1),

İi =
n∑
j=1

φij(Ij)−
n+1∑
j=1

φji(Ii)− ζi(Ii),

(1)

where i = 2, 3, . . . , n.
The transfer network in Fig. 1 depicts the way in which

the population is transferred across the compartments in this
network.
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Fig. 1. The transfer diagram for model (1). Forward arrows between Ij
compartments indicate disease progression and backward arrows indicate
disease amelioration.

The general form of the functions in model (1): y(N), hj ,
gj , φij(Ij), and ζi(Ii) are assumed to be smooth enough to
satisfy the existence and uniqueness of the solution. Based
on biological principles, we make the following assumptions:

(A1) There exists S̄ > 0 such that ω(S̄) = 0 and ω(S)(S−
S̄) < 0 for all S ≥ 0 and S 6= S̄.

(A2) For all N > 0, y(N) > 0 and y(N) is nonincre-
menting.

(A3) For 1 ≤ i ≤ n, hi(S, Ii) ≥ 0 for all S(t) ≥ 0,
Ii(t) ≥ 0; gi(V, Ii) ≥ 0, for all V (t) ≥ 0, Ii(t) ≥ 0 and
gi(0, Ii) = hi(S, 0) = hi(0, Ii) = gi(V, 0) = 0.

(A4) For 1 ≤ i, j ≤ n, φij ≥ 0 for all Ij ≥ 0;∑n
j=1 φji(Ii) = 0 only when Ii = 0.
(A5) For 1 ≤ j ≤ n, ζj(0) = 0, the constant dj > 0 makes

ζj(Ij) ≥ djIj hold, where all Ij ≥ 0 and j = 1, 2, 3, . . . , n.
The Assumption (A1) ensures S̄ > 0 when the disease is

absent. A common form of ω is ω(S) = Λ− dS − pS = 0,
and S̄ is a positive root of the equation. Consider the practical
implications, we only consider solutions in the non-negative
and bounded range. This can be verified that for all t ≥ 0,
if the initial conditions of system (1) are non-negative, then
the solutions of system (1) are all non-negative. Moreover,
from the first differential equation of system (1) we get that
Ṡ(t) ≤ ω(S). Hence, according to (A1), lim sup

t→∞
S(t) ≤ S̄.

The Assumption (A5) guarantees that the total population
in the network remains bounded. If we add all the differential
equations of system (1), then we can get the derivative with
respect to the total number of people Ṅ = Λ − dS −
d0V − ζ1(I1) − · · · − ζn(In) ≤ Λ − d∗N , where d∗ =
min{d, d0, d1, . . . , dn}. This leads to lim sup

t→∞
N(t) ≤ Λ

d∗ .

Similarly, from the second differential equation of (1), we
know that V̇ ≤ pS − d0V , and thus, lim sup

t→∞
V (t) ≤ p

d0
S̄.

Rn stands for n-dimensional real vector space. Therefore, all
solutions of model (1) are bounded and its feasible region can
be written as: Γ = {(S, V, I1, I2, . . . , In) ∈ Rn+2 : 0 ≤ S ≤
S̄, 0 ≤ V ≤ pS̄

d0
= V̄ , 0 ≤ S+V + I1 + I2 + · · ·+ In ≤ Λ

d∗ }.
This set is positive and invariant to system (1), and this
conclusion can be proved.

The Assumption (A2) is satisfied by the class of functions
y(N) = N−t, 0 ≤ t ≤ 1. The Assumption (A3) allows
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the possibility of gi ≡ 0 and hi ≡ 0 for some stages
while requiring that overall transmission is nonzero. In this
way, we can consider certain stages of infection as latent or
quarantined. The Assumption (A4) implies that transfers out
of a stage i is nonzero while transfers into the stage may be
zero. This ensures the disease progresses through all the Ij
stages and the only terminal stage is R.

For notational convenience, we set:

Ki(Ii) =
n+1∑
j=1

φji(Ii) + ζi(Ii), 1 ≤ i ≤ n. (2)

Then, the Assumption (A4) implies that Ki(Ii) = 0 if and
only if Ii = 0, for i = 1, . . . , n. We can rewrite model (1)
in the following form:

Ṡ = ω(S)− y(N)
n∑
j=1

hj(S, Ij),

V̇ = pS − d0V − y(N)
n∑
j=1

gj(V, Ij),

İ1 = y(N)
n∑
j=1

hj(S, Ij) + y(N)
n∑
j=1

gj(V, Ij)

+
n∑
j=1

φ1j(Ij)−K1(I1),

İi =

n∑
j=1

φij(Ij)−Ki(Ii), i = 2, 3, . . . , n.

(3)

III. EQUILIBRIA AND THE BASIC REPRODUCTION
NUMBER <0

The basic reproduction number <0 can be represented by
the spectral radius of the next generation matrix [29]. The
unique positive solution S̄ can be obtained from the equation
ω(S) = 0. Different values of <0 have different biological
meanings. When <0 ≤ 1, the disease-free equilibrium is
globally asymptotically stable. Regardless of the scale of
the outbreak, the disease will eventually become extinct.
When Ij = 0, hj(S, Ij) = 0, gj(V, Ij) = 0, φij(Ij) = 0,
Ki(Ii) =

∑n+1
j=1 φji(Ii) + ζi(Ii) = 0. The system (3) has

a unique disease-free equilibrium P0 =
(
S̄, V̄ , 0, . . . , 0

)
.

When <0 > 1, the disease-free equilibrium is unstable, and if
the state transition graph of the system is strongly connected,
then the system has a unique epidemic equilibrium at this
time. Then the disease will always exist and will not go
extinct. A positive equilibrium of (3) is called an endemic
equilibrium, and denoted by P ∗ = (S∗, V ∗, I∗1 , . . . , I

∗
n),

where S∗, V ∗, I∗1 , . . . , I
∗
n > 0 satisfies the following equi-

librium equations:

ω(S∗) = y(N∗)
n∑
j=1

hj(S
∗, I∗j ),

d0V
∗ = pS∗ − y(N∗)

n∑
j=1

gj(V
∗, I∗j ),

K1(I∗1 ) = y(N∗)
n∑
j=1

hj(S
∗, I∗j )

+ y(N∗)
n∑
j=1

gj(V
∗, I∗j ) +

n∑
j=1

φ1j(I
∗
j ),

Ki(I
∗
i ) =

n∑
j=1

φij(I
∗
j ), i = 2, 3, . . . , n,

N∗ = S∗ + V ∗ +
n∑
j=1

I∗i .

(4)

In order to derive the basic reproduction number <0, we
make the following assumptions:

(A6) There exist constants 0 ≤ µj ≤ ∞, 1 ≤ j ≤ n, and
maxj{µj} > 0 such that limIj→0+

hj(S̄,Ij)+gj(V̄ ,Ij)
Kj(Ij) = µj .

(A7) For 1 ≤ i, j ≤ n, these constants bij make
limIj→0+

φij(Ij)
Kj(Ij) = bij hold, where 0 ≤ bij <∞.

(A8) For 1 ≤ j ≤ n, lim infIj→0+
Ij

Kj(Ij) > 0. Let

E =


y(S̄ + V̄ )µ1 y(S̄ + V̄ )µ2 . . . y(S̄ + V̄ )µn

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


and

F =


1 −b12 . . . −b1n
−b21 1 . . . −b2n

...
...

. . .
...

−bn1 −bn2 . . . 1


Since Ki(Ii) ≥

∑n+1
j=1 φji(Ii)+diIi, for each i, by assump-

tion (A8) we have
∑n
i=1 bij < 1, thereupon, F is diagonally

dominant in rows. Consequently, F is a nonsingular M-
matrix whose inverse F−1 is nonnegative [30]. According
to [31], [32], <0 of our given model (3) is as follows:

<0 = ρ(EF−1). (5)

We proceed to formulate the following assumptions:
(A9) For 1 ≤ j ≤ n, hj(S, Ij) + gj(V, Ij) ≤ hj(S̄, Ij) +

gj(V̄ , Ij) holds for all 0 ≤ S ≤ S̄, 0 ≤ V ≤ V̄ , Ij ≥ 0;
If hj(S, Ij) = hj(S̄, Ij) 6≡ 0, then S = S̄; If gi(V, Ii) =

gi(V̄ , Ii) 6≡ 0, then V = V̄ , for Ii > 0, hi(S̄,Ii)+gi(V̄ ,Ii)
Ki(Ii)

≤
µi. If hi(S, Ii) + gi(V, Ii) = hi(S̄, Ii) + gi(V̄ , Ii) 6≡ 0, then
S = S̄, V = V̄ .

(A10) For all Ij > 0, 1 ≤ i, j ≤ n, supIj>0
φij(Ij)
Kj(Ij) = bij .

(A11) We consider that hi(S, Ii) = αiSIi, gi(V, Ii) =
βiV Ii, φn+1,i = γiIi and φij = δijIj . αi ≥ βi, then 0 ≤
βi

αi
≤ 1.

Theorem 1: Assume that assumptions (A1) − (A9) hold.
Let

(ν1, ν2, . . . , νn) = y(S̄ + V̄ )(µ1, µ2, . . . , µn)F−1. (6)
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Then νj ≥ 0, 1 ≤ j ≤ n, and max1≤j≤n{νj} > 0 .
Additionally, we can draw the following conclusions

(1) Nonnegative matrix EF−1 has a unique positive
eigenvalue ρ(EF−1) .

(2) <0 = ρ(EF−1) = ν1.
Proof: Using (6) to rewrite the expression of matrix E

can get

E = (1, 0, . . . , 0)T (y(S̄ + V̄ )µ1, . . . , y(S̄ + V̄ )µn). (7)

By (6) and (7), we have EF−1 =
(1, 0, . . . , 0)T (ν1, ν2, . . . , νn). Then the rank of the matrix
EF−1 is one. Therefore, ν1 is the only positive eigenvalue
of matrix EF−1, leading to <0 = ρ(EF−1) = ν1.

Theorem 2: Suppose that assumptions (A1)-(A11) hold.
According to Theorem 3.1, <0 decreases with the increase of
the vaccination rate p, and <0 is a monotonically decreasing
function with respect to the vaccination rate p.

Proof: ε is an n-dimensional column vector, which is the
first column of the inverse matrix of matrix F . Furthermore,
equation S̄ = d0

p V̄ holds.

<0 = ν1

= y(S̄ + V̄ )(ν1, ν2, . . . , νn)ε

= y(
d0 + p

p
V̄ )

∑n
i=1(αid0

p )V̄∑n
i=1

∑n
j=1(δji + γi + di)

= V̄ 1−t

∑n
i=1(d0p αi + βi)

(d0p + 1)t
εi∑n

i=1

∑n
j=1(δji + γi + di)

.

(8)

Let l(p) be a function of p: l(p) =
∑n

i=1(
d0
p αi+βi)

(
d0
p +1)t

.

l̇ =
d0

p2

(
−

n∑
i=1

αi + t
n∑
i=1

(
d0

p
αi + βi)(

d0

p
+ 1)−1

)
. (9)

Because of d0
p2 > 0, let c(p) = −αi + t(d0p αi + βi)(

d0
p +

1)−1, 0 ≤ t ≤ 1, 0 ≤ βi

αi
≤ 1. When c(p) < 0, function

<0 decreases monotonically with respect to p. Solving the
inequality c(p), p > 0. Therefore, the size of <0 can be
controlled by the vaccination rate p.

IV. GLOBAL DYNAMICS WHEN <0 ≤ 1

This section will show that the disease-free equilibrium
P0 is globally asymptotically stable (unstable) when <0 ≤ 1
(<0 > 1).

Theorem 3: Assume that Assumptions (A1)−(A10) hold.
If <0 ≤ 1, then the disease-free equilibrium P0 is globally
asymptotically stable in Γ; If <0 > 1, then the disease-free
equilibrium P0 is unstable. Moreover, if the network graph of
model (3) is strongly connected, then the system is uniformly
persistent in the interior Γ̊ of the scope of the feasible region
Γ.

Proof: Let y(N) ≡ 1 and (ν1, ν2, . . . , νn) =
(µ1, µ2, . . . , µn)F−1 ≥ 0, then by Theorem 3.1, <0 = ν1 ≤
1. Define a Lyapunov function:

H(I1, I2, . . . , In) = (ν1, ν2, . . . , νn)(I1, I2, . . . , In)T . (10)

Taking the derivative of H , and using the ordinary dif-
ferential equations for S, I , V in model (3) to simplify the
derivative of H , we get

Ḣ = (ν1, ν2, . . . , νn)(I ′1, I
′
2, . . . , I

′
n)T

= ν1

n∑
j=1

(hj(S, Ij) + gj(V, Ij))

+
n∑
i=1

ν1

 n∑
j=1

φij(Ij)−Ki(Ii)


= ν1NP − (ν1, ν2, . . . , νn)MP. (11)

where

M =


1 −φ12(I2)

K2(I2) · · · −φ1n(In)
Kn(In)

−φ21(I1)
K1(I1) 1 · · · −φ2n(In)

Kn(In)

...
...

. . .
...

−φn1(I1)
K1(I1) −φn2(I2)

K2(I2) · · · 1

 ,

N =
[
h1(S,I1)+g1(V,I1)

K1(I1) , . . . , hn(S,In)+gn(V,In)
Kn(In)

]
, P =

[K1(I1),K2(I2), · · · ,Kn(In)]
T .

In the following, for two vectors l = (l1, l2, . . . , ln), s =
(s1, s2, . . . , sn) ∈ Rn, relation l ≤ s holds if and only if
li ≤ si for i = 1, 2, . . . , n. Using the Assumptions (A9) and
(A10), we obtain that

Ḣ ≤ ν1(µ1, µ2, . . . , µn)P − (ν1, ν2, . . . , νn)FP
= (ν1 − 1)(µ1, µ2, . . . , µn)P
= (<0 − 1)(µ1, µ2, . . . , µn)P
≤ 0.

(12)

Ḣ ≤ (<0−1)
∑n
i=1 µiKi(Ii), for all (S, V, I1, . . . , In) ∈ Γ.

K is the largest invariant subset of G = {(S, V, I1, . . . , In) ∈
Γ | L̇ = 0}. Then, P0 ∈ K. Let (S, V, I1, . . . , In) be a
solution in K.

If <0 < 1, Ḣ = 0 implies that
∑n
i=1 µiKi(Ii) = 0. Using

assumption (A9), this implies that
∑n
j=1 hj(S, Ij) = 0 and∑n

j=1 gj(V, Ij) = 0 hold along solutions in K. By the first
differential equation in system (3), we get that S = S̄ in K,
and using the second differential equation in system (3), we
get V = V̄ in K. From the differential equation of system
(3) about the infected compartment, we can get:

n∑
i=1

İi = −
n∑
i=1

ζi(Ii)−
n∑
j=1

φn+1,jIj ≤ −d∗
n∑
j=1

Ii. (13)

Therefore, along any solution in K, we have S = S̄ , V =
V̄ and I1 = · · · = In = 0. As a consequence, K = {P0}, if
<0 < 1.

If <0 = 1, then Ḣ = 0 indicates hi(S, Ii) + gi(V, Ii) =
hi(S̄, Ii) + gi(V̄ , Ii) 6≡ 0, for all Ii > 0 and we can obtain
S = S̄, V = V̄ by assumption (A9). From the first and
second differential equations in system (3), we can know
that

∑n
j=1 hj(S, Ij) = 0 and

∑n
j=1 gj(V, Ij) = 0 hold

along any solution in K. This means that K = {P0}. If
<0 ≤ 1, by LaSalle’s invariance principle [33], P0 is globally
asymptotically stable in Γ.

If <0 > 1, then, by continuity, Ḣ > 0 in a neighborhood of
P0 in Γ̊. Solutions in Rn+2 enough close to P0 move away
from P0, except those on the invariant S-axis [34]. So P0
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is an unstable state. We use the uniform persistence result
from [35] and an argument similar to that in the proof of
Proposition 3.3 in [36], we can certify that the instability
of P0 indicates consistent persistence of (3). Theorem 3
is proved. The uniform persistence of system (3) and the
positive invariance of compact set Γ show that there is an
equilibrium state of system (3) in Γ̊ [37], [38].

V. GLOBAL DYNAMICS WHEN <0 > 1

In this section, assume that y(N) ≡ 1. We prove that if
the state transition graph of the system is strongly connected,
then the system has a unique epidemic equilibrium state at
this time.

Assume that there exists two functions Φ1 and Φ2: R+ →
R+ such that the following assumptions hold. The function
Φ0 > 0. Let χ = S + V − P

∫ t
0
S(ω)dω + do

∫ t
0
V (ω)dω +

t
∑n
j=1 gj(V

∗, I∗j ), χ∗ = S∗ + V ∗ − P
∫ t∗1

0
S(ω)dω +

do
∫ t∗2

0
V (ω)dω+ t∗2

∑n
j=1 gj(V

∗, I∗j ). Here t1 and t2 are the
time when S and V reach S∗ and V ∗ respectively.

(H1) For S 6= S∗, χ 6= χ∗,

(ω(S)− ω(S∗)) (Φ0(χ)− Φ0(χ∗)) < 0.

(H2) For S 6= S∗,

(ω(S)− ω(S∗)) (Φ1(S)− Φ1(S∗)) < 0.

(H3) Let S = kV , then e(V ) = (kp−d0)V . For V 6= V ∗,

(e(V )− e(V ∗)) (Φ2(V )− Φ2(V ∗)) < 0.

(H4) For 0 ≤ S ≤ S̄, 0 ≤ V ≤ V̄ , Ii > 0, 1 ≤ i ≤ n,(
hi(S, Ii) + gi(V, Ii)

Φ0(χ)
− hi(S

∗, I∗i ) + gi(V
∗, I∗i )

Φ0(χ∗)

)
×(

hi(S, Ii) + gi(V, Ii)

Φ0(χ)Ki(Ii)
− hi(S

∗, I∗i ) + gi(V
∗, I∗i )

Φ0(χ∗)Ki(I∗i )

)
≤ 0.

When Ij > 0, 1 ≤ i, j ≤ n,

(
φij(Ij)− φij(I∗j )

)(φij(Ij)
Kj(Ij)

−
φij(I

∗
j )

Kj(I∗j )

)
≤ 0.

(H5) For 1 ≤ i ≤ n, one of the functions hi(S∗, Ii),
gi(V

∗, Ii),
∑n
j=1 φij(Ij), Ki(Ii) is strictly monotone in Ii.

Let matrix D = (mij), then give the definition of mij ,

mij =

{
φ1j(I

∗
j ) + hj(S

∗, I∗j ) + gj(V
∗, I∗j ) if i = 1,

φij(I
∗
j ) if i ≥ 2.

As shown in Fig. 2, we regard matrix D as a weight matrix
for the infection-transfer graph G . In the weighted graph
G , solid arrows indicate transfers of individuals between
compartments, and dashed arrows indicate infection. For our
next result, we will require that D be an irreducible matrix.
In graph-theoretic terms, irreducibility of D is equivalent to
weighted graph (G , D) being strongly connected [30].

Theorem 4: Assume that Assumptions (A1) − (A8) hold
and y(N) ≡ 1. Suppose that D is an irreducible matrix,
and Assumptions (H1)(H4) hold. Then, when <0 > 1, there
exists a unique endemic equilibrium P ∗ and it is globally
asymptotically stable in Γ̊.

S V I1 I2 In
. . .

Fig. 2. The infection-transfer graph G at the endemic equilibrium
P ∗ of model (1). Solid arrows indicate transfers of individuals between
compartments, and dashed arrows indicate infection.

Proof: For system (3), we consider the following Lya-
punov function:

Ψ =T1

∫ χ

χ∗

(
Φ0(ξ)− Φ0(χ∗)

Φ0(ξ)

)
dξ

+
n∑
i=1

Ti

∫ Ii

I∗i

(
Ki(ξ)−Ki(I

∗
i )

Ki(ξ)

)
dξ

+

∫ t

0

(o(S)− q(V )) dξ. (14)

where o(S) = (ω(S)− ω(S∗))
(

1− Φ1(S∗)
Φ1(S)

)
, q(V ) =

(e(V )− e(V ∗))
(

1− Φ2(V ∗)
Φ2(V )

)
. We define specific constants

Tj > 0, j = 1, . . . , n. For convenience of expression,
we define Φ∗0 = Φ0(χ∗)

Φ0(χ) , Φ∗1 = Φ1(S∗)
Φ1(S) , Φ∗2 = Φ2(V ∗)

Φ2(V ) ,

Ki =
Ki(I

∗
i )

Ki(Ii)
, i = 1, 2, . . . , n, h∗j = hj(S

∗, I∗j ), hj =

hj(S, Ij), gj = gj(V, Ij), g∗j = gj(V
∗, I∗j ), G = hj + gj ,

G∗ = h∗j + g∗j . Differentiating Ψ along solutions of (3) and
using equilibrium equations (4) to simplify, we obtain

Ψ̇ = T1

ω(S)− ω(S∗)Φ∗0 +

n∑
j=1

Φ∗0G +K1(I∗1 )


+ T1

 n∑
j=1

(1−K1)φ1j(Ij) +
n∑
j=1

(1− Φ∗0) g∗j


− T1

 n∑
j=1

K1G +K1(I1)

+ o(S) + q(V )

+
n∑
i=2

Ti

 n∑
j=1

(1−Ki)φij(Ij)−Ki(Ii) +Ki(I
∗
i )


= T1 (ω(S)− ω(S∗)) (1− Φ∗0)− T1

n∑
j=1

G∗

K1
+ o(S)

+ T1

n∑
j=1

G
(

2 +
G
G∗

(Φ∗0 −K1)− Φ∗0

)
+ q(V )

+
n∑
i=1

Ti

n∑
j=1

φij(I
∗
j )

(
1 +

φij(Ij)

φij(I∗j )
− 1

Ki

− φij(Ij)

φij(I∗j )Ki

)
.

(15)

Using assumption (H1), (H2) and (H3), we have

(ω(S)− ω(S∗)) (1− Φ∗0) ≤ 0, (16)
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o(S) ≤ 0, q(V ) ≤ 0. (17)

We consider a function ϕ(x) = 1− x+ lnx. We analyze
the maximum value of this function, monotonicity, and find
that when x > 0, all values of this function are non-positive
numbers. And ϕ(x) = 0 if and only if x = 1. And by
Assumption (H4), we obtain

∆ = 2 +
G
G∗

(Φ∗0 −K1)− Φ∗0 −
1

K1

=

(
GΦ∗0
G∗
− 1

)(
1− G

∗

G

)
+ (1− Φ∗0 + ln Φ∗0)

+

(
1− GK1

G∗
+ ln

GK1

G∗

)
+

(
1− GK1

G∗Φ∗0
+ ln

GK1

G∗Φ∗0

)
+

1

Kj
− ln

1

Kj
− 1

K1
+ ln

1

K1

≤ (1− Φ∗0 + ln Φ∗0))

+

(
1− GK1

G∗
+ ln

GK1

G∗

)
+

(
1− GK1

G∗Φ∗0
+ ln

GK1

G∗Φ∗0

)
+

1

Kj
− ln

1

Kj
− 1

K1
+ ln

1

K1
.

(18)

Combining the function ϕ(x) = 1− x+ lnx, we obtain

∆ ≤ 1

Kj
− ln

1

Kj
− 1

K1
+ ln

1

K1
. (19)

Similarly, using inequality (H4), we obtain

Ξ = 1 +
φij(Ij)

φij(I∗j )
− 1

Ki
− φij(Ij)Ki

φij(I∗j )

=

(
φij(Ij)

φij(I∗j )
− 1

)(
1−

φij(I
∗
j )

φij(Ij)Kj

)

+

(
1− φij(Ij)Ki

φij(I∗j )
+ ln

φij(Ij)Ki

φij(I∗j )

)

+

(
1−

φij(I
∗
j )

φij(Ij)Kj
+ ln

φij(I
∗
j )

φij(Ij)Kj

)
+

(
1

Kj
− ln

1

Kj
− 1

K1
+ ln

1

K1

)
≤

(
1− φij(Ij)Ki

φij(I∗j )
+ ln

φij(Ij)Ki

φij(I∗j )

)

+

(
1− φij(Ij)

φij(Ij)Kj
+ ln

φij(I
∗
j )

φij(Ij)Kj

)
+

1

Kj
− ln

1

Kj
− 1

Ki
+ ln

1

Ki

≤ 1

Kj
− ln

1

Kj
− 1

Ki
+ ln

1

Ki
.

(20)

Then, following (15)-(20) and using the definition of mij

, we obtain

Ψ̇ ≤T1

n∑
j=1

G∗
(

1

Kj
− ln

1

Kj
− 1

K1
+ ln

1

K1

)

+
n∑
i=1

Ti

n∑
j=1

φij(I
∗
j )

(
1

Kj
− ln

1

Kj
− 1

Ki
+ ln

1

Ki

)

≤
n∑
i=1

Ti

n∑
j=1

φij(I
∗
j )

(
1− φij(Ij)Ki

φij(I∗j )
+ ln

φij(Ij)Ki

φij(I∗j )

)

+
n∑
i=1

Ti

n∑
j=1

φij(I
∗
j )

(
1−

φij(I
∗
j )

φij(Ij)Ki
+ ln

φij(I
∗
j )

φij(Ij)Ki

)

+ T1

n∑
j=1

G∗ (1− Φ∗0 + ln Φ∗0)

+ T1

n∑
j=1

G∗
(

1− GK1

G∗
+ ln

GK1

G∗

)

+ T1

n∑
j=1

G∗
(

1− G∗

GKjΦ∗0
+ ln

G∗

GKjΦ∗0

)

+
n∑
i=1

Ti

n∑
j=1

mij

(
1

Kj
− ln

1

Kj
− 1

Ki
+ ln

1

Ki

)
(21)

In order to prove that Ψ̇ is negative definite, we choose
constants Ti > 0 such that the last expression in (21) is equal
to 0.

L(D) = diag

 n∑
j=1

m1j ,
n∑
j=1

m2j , . . . ,
n∑
j=1

mnj

−D.
(22)

L(D) is the algebraic Laplacian matrix. We choose Ti as the
co-factor of the ith diagonal entry of L(D). Since D is an
irreducible matrix, using Kirchhoffs matrix tree theorem (see
the appendix in [38]), we get that Ti > 0. Furthermore, using
the tree cycle identity, we obtain the following identity:

n∑
i=1

Ti

n∑
j=1

mij

(
1

Kj
− ln

1

Kj
− 1

Ki
+ ln

1

Ki

)
≡ 0. (23)

Therefore, we conclude that Ψ̇ ≤ 0 for all
(S, V, I1, . . . , In) ∈ Γ̊. And Ψ̇ = 0 indicates that

(ω(S)− ω(S∗))

(
1− Φ1(S∗)

Φ1(S)

)
= 0. (24)

(e(V )− e(V ∗))
(

1− Φ2(V ∗)

Φ2(V )

)
= 0. (25)

By (17), we obtain S = S∗ and V = V ∗. Furthermore,
since the weight graph has strong connectivity and the
function ϕ(t) = 1− t+ lnt takes the global maximum value
one if and only when t = 1, we obtain that

G
G∗

=
Kj(Ij)

Kj(I∗j )
=
φij(Ij)

φij(I∗j )
= τ. (26)

for all Ij > 0, 1 ≤ j ≤ n. Along any solution that stays in
the set where Ψ̇ = 0 , we must have S = S∗ and V = V ∗,

G = τG∗, i = 1, . . . , n. (27)
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Substituting these results into the first and second differential
equation of model (3), we get

ω(S∗) + e(V ∗) = τG∗. (28)

Since the right-hand side of equation (28) is linear in τ , the
equation holds only at τ = 1, namely at P ∗. Letting τ = 1
in (28) we obtain that hj(S, Ij) = hj(S

∗, I∗j ), gj(V, Ij) =
gj(V

∗, I∗j ), φij(Ij) = φij(I
∗
j ), Kj(Ij) = Kj(I

∗
j ). And it

follows from monotonicity assumption (H5) that Ii = I∗i ,
i = 1, . . . , n. Therefore, the only invariant set in the set
{Ψ̇ = 0} is the singleton {P ∗}. By LaSalle’s invariance
principle [33], P ∗ is globally asymptotically stable in Γ̊. As
a consequence, P ∗ is also unique.

VI. NUMERICAL EXAMPLES

This section provides two numerical examples to demon-
strate the effectiveness of the obtained theoretical results. To
focus our research on the state structure, we will simplify
the model (3) using the simple form functions f , g, h, φ and
K. We only consider a limited number of infection stages.
Let n = 4, y(N) ≡ 1, hi(S, Ii) = αiSIi, gi(V, Ii) = βiV Ii,
φn+1,j = γjIj and φij = δijIj . We simplify model (3) into
the following differential equations:

Ṡ = Λ− dS − pS −
4∑
j=1

αjSIj ,

V̇ = pS − d0V −
4∑
j=1

βjV Ij ,

İ1 =
4∑
j=1

αjSIj +
4∑
j=1

βjV Ij + δ12I2 + δ13I3 + δ14I4

− (δ21 + δ31 + δ41 + γ1 + d1)I1,

İ2 = δ21I1 + δ23I3 − (δ12 + δ32 + δ42 + γ2 + d2)I2

+ δ24I4,

İ3 = δ31I1 + δ32I2 − (δ13 + δ23 + δ43 + γ3 + d3)I3

+ δ34I4,

İ4 = δ41I1 + δ42I2 − (δ14 + δ24 + δ34 + γ4 + d4)I4

+ δ43I3,
(29)

Example 1: Let Λ = 1000, p = 0.1, d = d0 = 0.015,
d1 = d2 = d3 = d4 = 0.03, γ1 = 0.31, γ2 = 0.29, γ3 =
0.29, γ4 = 0.33. δ12 = 0.31, δ13 = 0.34, δ14 = 0.32, δ21 =
0.27, δ23 = 0.21, δ24 = 0.29, δ31 = 033, δ32 = 0.31, δ34 =
0.29, δ41 = 0.31, δ42 = 0.29, δ43 = 0.26. If one chooses the
set of transfer coefficients as

α1 = 0.1274× 10−5, α2 = 0.1253× 10−5,

α3 = 0.1579× 10−5, α4 = 0.2175× 10−5,

β1 = 0.1329× 10−6, β2 = 0.1577× 10−6,

β3 = 0.1867× 10−6, β4 = 0.2119× 10−6,

then the basic reproduction number <0 = 0.0673 < 1.
Based on Theorem 3, the disease-free equilibrium P0 is
globally asymptotically stable. Fig. 3 depicts time-dependent
trajectories of susceptible S and vaccinated V populations
when <0 = 0.0673. Fig. 4 depicts time-dependent trajecto-
ries of the population in different infection stages Ii when

<0 = 0.0673. If one chooses the set of transfer coefficients
as

α1 = 0.2178× 10−4, α2 = 0.3589× 10−4,

α3 = 0.4516× 10−4, α4 = 0.5125× 10−4,

β1 = 0.1217× 10−5, β2 = 0.2867× 10−5,

β3 = 0.3633× 10−5, β4 = 0.4566× 10−5,

then one can get the basic reproduction number <0 =
1.3625 > 1. According to Theorem 4, there exists a unique
P ∗ which is globally stable. Fig. 5 depicts time-dependent
trajectories of susceptible S and vaccinated V populations
when <0 = 1.3625. Fig. 6 depicts time-dependent trajecto-
ries of the population in different infection stages Ii when
<0 = 1.3625.
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Fig. 3. When <0 < 1, time-dependent trajectories of susceptible S and
vaccinated V populations.
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Fig. 4. When <0 < 1, time-dependent trajectories of the population in
different infection stages Ii.
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Fig. 5. When <0 > 1, time-dependent trajectories of susceptible S and
vaccinated V populations.
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Fig. 6. When <0 > 1, time-dependent trajectories of the population in
different infection stages Ii.

Example 2: In this example, we use the real COVID-
19 data of the Principality of Liechtenstein for numerical
analysis. Parameter values are given in Table I. From the
data in Table I, we can calculate the basic reproduction
number <0 = 17.8487 > 1. Fig. 7 shows the time-
dependent trajectories of susceptible S and vaccinated V
populations. Fig. 8 shows the time-dependent trajectories of
the population in different infection stages Ii.

TABLE I
DETAILS OF MODEL PARAMETERS IN EXAMPLE 2.

Symbol Value Source
S 38747 [39]
V 0 Assumed
Ii 300, 400 Assumed
Λ 1000 Assumed
p 0.535 [39]
d,d0 0.001 Estimated
d1,d2 0.2522× 10−2 [40]
γ1,γ2 0.5253, 0.3222 Estimated
δij 0.3, 0.5 Assumed
α1,α2 0.2839× 10−4, 0.5355× 10−4 [41]
β1,β2 0.775× 10−5 Estimated
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Fig. 7. Time-dependent trajectories of susceptible S and vaccinated V
populations.
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Fig. 8. Time-dependent trajectories of the population in different infection
stages Ii.

VII. CONCLUDING REMARKS

We builded a multistage virus transmission model with
partial immunity, which is described by ordinary differential
equations. We used the Lyapunov method to analyze the
stability of the disease-free equilibrium point. When <0 ≤ 1,
the disease-free equilibrium is globally asymptotically stable.
This means that no matter how large the virus spreads,
eventually the disease will die out in nature. When the basic
regeneration number is greater than one, the system is un-
stable. At this time, the system has an equilibrium state P ∗,
indicating that the disease will not disappear and will always
exist. We got the relationship between <0 and vaccination
rate, which shows that <0 decreases as vaccination rate
increases. This property can be used to control epidemics
by adjusting vaccination rates. Future studies will consider
a multistage virus transmission model with immunity under
early warning measures.
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