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Abstract—This work proposes a multivariable decoupled
adaptive control of a microgrid based on a sliding plane
approach. The proposed method is designed by considering
a discrete-time reaching law and the dead-beat sliding plane
where the controller and a state-space model use plant
parameters given by an online digital identifier. In addition,
a digital integrator is used to reduce the tracking error. It
is worth noting that the dead-beat control is obtained by
forcing the system dynamics in the sliding plane. The proposed
approach is applied over a multivariable microgrid described
by a transfer matrix. The proposed method is evaluated over
a simulated microgrid using a digital implementation of the
proposed adaptive controller under noiseless and additive noise
conditions. The proposed approach is also evaluated in real-time
by considering a Hardware-In-the-Loop structure. To this end,
a Texas Instruments C2000 Delfino processor is used. The
performance of the proposed approach is evaluated in terms
of tracking error, settling-time, and robustness to external
disturbances. In addition, the proposed approach is compared
to polynomial controllers by using a pole-placement approach.

Index Terms—Dead-beat, sliding mode control, real-time,
microgrid.

I. INTRODUCTION

THE sliding mode control approach for multivariable
systems has been used for many years as a

successful technique to obtain stability and fast-tracking
response, especially for systems with high frequency
switching capabilities [1], [2], [3], [4], [5]. This control
approach has been applied for multivariable systems,
especially by considering a state-space sliding mode observer
for sensorless-based control [6], [7], [8]. Multivariable
controllers are usually designed to evaluate some range
in parameter variations. When these are out of range, the
control behaves poorly, yielding undesirable responses [6].
Therefore, parameter identification is needed to improve the
system’s behavior, resulting in a robust control approach [9].

Microgrids are the current standard description used to
refer to many systems that involve interconnected subsystems
that includes but are not limited to DC-DC converters and
renewable energy resources such as photo-voltaic panels
and wind energy generators, among others [10]. In [11], a
HIL structure for evaluation of control systems is proposed
based on C2000 microcontrollers [12]. In [13], a decoupled
multivariable control for a large-scale microgrid is proposed
based on an embedded control where the evaluation is
performed in a Hardware-In-the-Loop (HIL) structure.
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A dead-beat controller is a common technique to obtain
fast-tracking reference responses. In [14], a higher-order
sliding dead-beat control is proposed to get a fast-tracking
reaction for multivariable linear systems. In [15], an adaptive
digital controller based on a dead-beat approach is designed
for a linear third-order plant and validated over an analog
simulation using an analog computer. In [16], a dead-beat
observer is proposed for flux and torque control. It is
noticeable that sliding mode control methods with dead beat
dynamics result in a reliable and robustness control strategy
compared to the standard pole-placement approach.

In this work, an adaptive multivariable decoupled control
technique based on a sliding mode control is proposed. The
proposed controller uses some incremental state variables,
which tend to zero as the origin of the sliding plane is
approached. An online digital parameter identifier provides
the plant parameters to the controller and a state model. The
controller uses a digital reaching law representing the sliding
plane’s reaching dynamics. The sliding plane, calculated
online using the identified plant parameters, is designed in
such a way that the closed-loop poles of the system are
placed in the Z-plane origin to obtain dead-beat control
in sliding mode [17]. In addition, a digital integrator is
included in the system to reduce the steady-state tracking
error. The proposed approach is evaluated in simulation
under noiseless and additive noise conditions. Moreover, the
proposed approach is evaluated over a real time environment
by using a HIL structure. It is worth mentioning that the
proposed approach is compared to state-of-the-art methods
that considers state feedback by using eigen structure
assignment. The real-time evaluation is performed over a
Texas Instruments C2000 F28379D Delfino processor. The
comparison of the methods is developed in terms of tracking
error, settling time and robustness to external disturbances.
The paper is organized as follows: in section II are presented
the standardized microgrid model in discrete transfer matrix
form, the adaptive decoupled control for each microgrid
subsection, and the dead-beat approach for closed-loop
dynamics. In section III is presented the identification and
closed-loop control results for tracking reference over a
simulated and a HIL real-time implementation, and in
section IV are presented the conclusions and final remarks.

II. THEORETICAL FRAMEWORK

A. Microgrid model

In this work is proposed a microgrid system described by
a transfer matrix defined as

Y (z) = H(z)U(z) (1)
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being

Y (z) =

Y1(z)
...

Yp(z)

 (2)

and

U(z) =

U1(z)
...

Uq(z)

 (3)

and

H(z) =

H11(z) · · · H1q(z)
...

Hp1(z) · · · Hpq(z)

 (4)

the microgrid transfer matrix model in discrete time.
In this work, a decoupled controller is proposed based on

a linear third-order approximated plant defined by

Yi(z)

Uj(z)
=

z−1(p6 + p5z
−1 + p4z

−2)

1− p1z−1−p2z−2−p3z−3 (5)

where p1, p2, . . . , p6 are plant parameters, Yi(z) and Uj(z
are the output and the control variable, respectively.

The corresponding DARMA model of the microgrid [17]
of (5) is:

yi[k] =p1yi[k − 1] + p2yi[k − 2] + p3yi[k − 3]

+ p4uj [k − 3] + p5uj [k − 2] + p6uj [k − 3]
(6)

where the actual output variable, yi[k], is expressed in terms
of the past values of yi and uj .

B. Adaptive Sliding Mode Controller

The parameters of (6) are the unknown parameters model
and are the ones the identifier should estimate in real-time.
It is worth noting that the controller has computed in the
function of the (6) parameters, resulting in an adaptive sliding
mode controller.

The DARMA model of (6) can be expressed in the
following way:

yi[k] = ϕi[k − 1]T θ0 (7)

where

ϕi[k − 1] =


yi[k − 1]
yi[k − 2]
yi[k − 3]
uj [k − 3]
uj [k − 2]
uj [k − 1]

 (8)

is a vector which contains the past values of yi and uj , and

θ0 =


p1
p2
p3
p4
p5
p6

 (9)

is the unknown parameter vector that can be identified in real
time by considering the least-square algorithm for parameter
identification proposed in [9].

By using the identified parameters, an observer type state
model is implemented:x1[k + 1]

x2[k + 1]
x3[k + 1]

 =

p1 1 0
p2 0 1
p3 0 0

x1[k]
x2[k]
x3[k]

+

p6p5
p4

u[k] (10)

where x1[k] = yi[k] is the output directly measured.
The adaptive controller uses the identified parameter

vector θ at sample k, and the state variables, as follows:

x̂1[k] = r[k]− x1[k]

∆x2[k] = x2[k]− x2[k − 1]

∆x3[k] = x3[k]− x3[k − 1]

∆x4[k] = x4[k]− x4[k − 1]

(11)

These variables are zero when the system reaches a
steady-state. A digital integrator is used to measure that the
error x̂1 approaches zero in a regulator system, which adds
a new state equation.

x4[k + 1] = x4[k] + T x̂1[k] (12)

where T is the discretization or sample time.
In this way the sliding plane:

s[k] = x̂1[k] + c2∆x2[k] + c3∆x3[k] + c4∆x4[k] (13)

is zero in the equilibrium state.
A necessary and sufficient condition to assure both

sliding motion and convergence onto the sliding plane for
discrete-time systems, as proposed in [18], [19], [20], is
described as follows:

|s[k + 1]| = |s[k]| (14)

where the reaching conditions are defined when s[k] > 0 as

−s[k] < s[k + 1] < s[k] (15)

and when s[k] < 0 as

s[k] < s[k + 1] < −s[k] (16)

Therefore, the control variable can be chosen such that:

s[k + 1] = Kss[k] (17)

with −1 < Ks < 1.
Equation (17) can be considered a reaching law for digital

systems, representing the reaching dynamics to the sliding
plane. By transforming (17) into the Z domain, the following
equation is obtained:

S(z) =
z

z −Ks
s(0) (18)

From the Z transform theory is is shown that if 0 ≤ Ks <
1 then the reaching dynamics is damped, and when −1 <
Ks ≤ 0 is under-damped. Therefore, a good choice for Ks

is:

0 ≤ Ks < 1 (19)

In this way, out of the sliding plane, u[k] can be chosen
in such a way that (17) and (19) be satisfied.

As:

x1[k] = r[k]− x̂1[k] (20)
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from (10) and (12) the following equations are obtained:

x2[k + 1] = p2r[k]− p2x̂1[k] + x3[k] + p5u[k] (21)
x3[k + 1] = p3r[k]− p3x̂1[k] + p4u[k] (22)

x4[k + 1] = x4[k] + Tx1[k] (23)

from where:

∆x2[k + 1] = p2∆r[k]− p2∆x̂1[k] + ∆x3[k] + p5∆u[k]
(24)

∆x3[k + 1] = p3∆r[k]− p3∆x̂1[k] + p4∆u[k]
(25)

∆x4[k + 1] = ∆x4[k] + T∆x̂1[k]
(26)

From (12), it can be seen that

x̂1[k − 1] =
∆x4[k]

T
(27)

and replacing (27) in (24), and considering that ∆r[k] = 0
for a regulator system, the following equations are obtained:

∆x2[k + 1] = −p2x̂1[k] + ∆x3[k] +
p2
T
∆x4[k] + p5∆u[k]

(28)

∆x3[k + 1] = −p3x̂1[k] +
p3
T
∆x4[k] + p4∆u[k]

(29)
∆x4[k + 1] = T x̂1[k]

(30)

From (10):

∆x1[k + 1] = p1∆x1[k] + ∆x2[k] + p6∆u[k] (31)

and replacing (31) in

x̂1[k + 1]− x̂1[k] = ∆r[k + 1]−∆x1[k + 1] (32)

the following equation is obtained

x̂1[k + 1]− x̂1[k] =∆r[k + 1]− p1∆x1[k]

−∆x2[k]− p6∆u[k]
(33)

As:

∆x1[k] = ∆r[k]− [x̂1[k]− x̂1[k − 1]] (34)

using (34), with ∆r[k + 1] = ∆r[k] = 0 for a regulator
system and (20), then:

x̂1[k + 1]− x̂1[k] = p1x̂1[k]−∆x2[k]

− p1
T
∆x4[k]− p6∆u[k]

(35)

As:

s[k + 1] =x̂1[k + 1] + c2∆x2[k + 1]

+ c3∆x3[k + 1] + c4∆x4[k + 1]
(36)

Replacing (35) and (28) in (36):

s[k + 1] =(Q+ 1)x̂1[k]−∆x2[k]

+ c2∆x3[k] +

(
c4 −

Q

T

)
∆x4[k] +Ku∆u[k]

(37)

where

Q = p1 − c2p2 − c3p3 + c4T (38)
Ku = −p6 + c2p5 + c3p4 (39)

Selecting

∆u[k] = −(F1x̂1[k] + F2∆x2[k] + F3∆x3[k] + F4∆x4[k])
(40)

and with (40) and (37) and using (17):

s[k + 1]−Kss[k] =(Q+ 1−Ks −KuF1)x̂1[k]

− (1 +Ksc2 +KuF2)∆x2[k]

+ (c2 −Ksc3 −KuF3)∆x3[k]

−
(
Q

T
− c4 +Ksc4 +KuF4

)
= 0

(41)

Thus the following control gains are obtained [15]:

F1 =
Q+ 1−Ks

Ku
(42)

F2 = −1 +Ksc2
Ku

(43)

F3 =
c2 −Ksc3

Ku
(44)

F4 =
1

Ku

[
−Q

T
+ (1−Ks)c4

]
(45)

C. Dead-beat approach

The coefficients c2, c3 and c4, which are functions of the
identified plant parameters, are calculated in real-time using
a dead-beat approach. for the system to be stable when the
s[k] = 0 plane is reached. Dead-beat dynamics in the sliding
plane guarantee stability

With s[k] = 0, and from (13):

x̂1[k] = −c2∆x2[k]− c3∆x3[k]− c4∆x4[k] (46)

Replacing (46) in (37) and with s[k+1] = 0, in the sliding
plane, the effective value of the control variable is found:

∆u∗[k] = Kx2∆x2[k] +Kx3∆x3[k] +Kx4∆x4[k] (47)

where

Kx2 =
c2(Q+ 1) + 1

Ku

Kx3
=

c3(Q+ 1)− c2
Ku

Kx4
=

Q(c4 +
1
T )

Ku

(48)

By defining:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,∆x̄[k] =

∆x2[k]
∆x3[k]
∆x4[k]

 (49)

With (46) and (47) in (28):

∆x̄[k + 1] = A∆x̄[k] (50)
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where

a11 = p2c2 + p5Kx2

a12 = 1 + p2c3 + p5Kx3

a13 = p2

(
c4 +

1

T

)
+ p5Kx4

a21 = p3c2 + p4Kx2

a22 = p3c3 + p4Kx3

a23 = p3

(
c4 +

1

T

)
+ p4Kx4

a31 = −c2T

a32 = −c3T

a33 = −c4T

(51)

The eigenvalues of A govern the system stability in the
sliding plane. Therefore, if the closed-loop poles are placed
in the Z plane origin, excellent stability is assured, as
described in [15]. Therefore:

det(zI −A) = z3 (52)

Then b11 b12 b13
b21 b22 b23
b31 b32 b33

 =

c2c3
c4

 =

p5p4
0

 (53)

where

b11 = p2p6 − p1p5 − p5 + p4

b21 = p3p6 − p2p6 − p1p4 − p4 + p1p5

b31 = p1p4 − p3p6

b12 = p3p6 − p1p4 − p4

b22 = −p3p6 + p3p5 − p2p4 + p1p4

b32 = p2p4 − p3p5

b13 = −p6T

b23 = −p5T

b33 = −p4T

(54)

By solving (53) the sliding plane coefficients are obtained,
and thus, global stability is assured with a dead-beat approach
dynamics [15].

III. RESULTS

The proposed adaptive control approach based on
identification and dead-beat stability design, is evaluated over
a microgrid with 3 inputs and 3 outputs, as defined in [13]
with a sampling time T = 0.5 milliseconds. The system
is evaluated in simulation and in a HIL structure for real
time results. Three segments of the microgrid are analyzed
according to [13], being the output vector Y (z) defined as

Y (z) =

V1(z)
V2(z)
V3(z)

 (55)

being Vj(z) for j = 1, 2, 3 the voltage output at the coupling
nodes, and the input vector U(z) defined as

U(z) =

Vd1(z)
Vd2(z)
Vd3(z)

 (56)

being Vdj with j = 1, 2, 3 the inputs of the microgrid which
are the voltage output of the DC-DC converters. In addition,
the transfer matrix H(z) related to Y (z) = H(z)U(z) is
obtained in discrete-time, where the corresponding discrete
transfer function are defined as follows:

H11(z) =
−2.5

(z + 48.95)(z − 0.8999)
(57)

H21(z) = 0 (58)
H31(z) = 0 (59)

H12(z) =
−6.25

(z + 48.95)2(z2 − 1.8z + 0.8098)
(60)

H22(z) =
−2.5

(z + 48.95)(z − 0.8999)
(61)

H32(z) = 0 (62)

H13(z) =
−15.625

(z + 48.95)3(z − 0.8999)2(z − 0.95)
(63)

H23(z) =
−6.25

(z + 48.95)2(z − 0.95)(z − 0.8999)
(64)

H33(z) =
−2.5

(z + 49)(z − 0.95)
(65)

In Fig. 1 is depicted the simulation of the microgrid system.

Fig. 1. Schematic diagram of the microgird simulation based on (57)

It is worth noting that the transfer functions Hii(z) for
i = 1, 2, 3 are defined as second-order transfer functions.
However, in order to include into the identified model the
dynamics related to the coupling of the Hii(z) transfer
function with the other microgrid subsystems, a higher-order
system for (6) is assumed for system identification (in this
case, a third-order system).

The closed loop diagram by including the proposed
adaptive control approach is shown in Fig. 2. It is worth
mentioning that the identification stage is used to design the
controller coefficients according to (54).
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Fig. 2. Schematic diagram of the proposed adaptive control approach

A comparison analysis of the performance of the proposed
approach is performed by using a pole placement technique
with a dead beat closed-loop dynamics for a classical
polynomial controller. In Fig. 3 is presented the output
response v1 for reference tracking by using a pole placement
technique with dead beat closed loop dynamics.

Fig. 3. Output v1 considering reference tracking in the microgrid for a
closed loop dead beat polynomial controller

In Fig. 4 is presented the control signal for reference
tracking response shown in Fig. 3.

Fig. 4. Control signal for transfer function H11 of the microgrid

In Fig. 5 is presented the output response v2 for reference
tracking by using a pole placement technique with dead beat
closed loop dynamics.

Fig. 5. Output v2 considering reference tracking in the microgrid for a
closed loop dead beat polynomial controller

In Fig. 6 is presented the control signal for reference
tracking response shown in Fig. 5.

Fig. 6. Control signal for transfer function H22 of the microgrid

In Fig. 7 is presented the output response v3 for reference
tracking by using a pole placement technique with dead beat
closed loop dynamics.

Fig. 7. Output v3 considering reference tracking in the microgrid for a
closed loop dead beat polynomial controller

In Fig. 8 is presented the control signal for reference
tracking response shown in Fig. 7.
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Fig. 8. Control signal for transfer function H33 of the microgrid

A similar evaluation is performed under noise conditions.
In Fig. 9 is presented the tracking response of the first
segment of the microgrid under noise conditions.

Fig. 9. Output v1 tracking response of the first segment of the microgrid
under noise conditions

In Fig. 10 is presented the tracking response of the second
segment of the microgrid under noise conditions.

Fig. 10. Output v2 tracking response of the second segment of the
microgrid under noise conditions

In Fig. 11 is presented the tracking response of the third
segment of the microgrid under noise conditions.

Fig. 11. Output v3 tracking response of the third segment of the microgrid
under noise conditions

A similar evaluation is performed by considering the
proposed approach with dead beat closed loop dynamics. In
Fig. 12 is presented the output response v1 for reference
tracking by using the proposed approach with dead beat
closed loop dynamics.

Fig. 12. Output v1 considering reference tracking in the microgrid for the
proposed approach closed loop dead beat dynamics

In Fig. 13 is presented the control signal for reference
tracking response shown in Fig. 12.

Fig. 13. Control signal for transfer function H11 of the microgrid
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In Fig. 14 is presented the output response v2 for reference
tracking by using the proposed approach with dead beat
closed loop dynamics.

Fig. 14. Output v2 considering reference tracking in the microgrid for the
proposed approach closed loop dead beat dynamics

In Fig. 15 is presented the control signal for reference
tracking response shown in Fig. 14.

Fig. 15. Control signal for transfer function H22 of the microgrid

In Fig. 16 is presented the output response v3 for reference
tracking by using the proposed approach with dead beat
closed loop dynamics.

Fig. 16. Output v3 considering reference tracking in the microgrid for the
proposed approach closed loop dead beat dynamics

In Fig. 17 is presented the control signal for reference
tracking response shown in Fig. 16.

Fig. 17. Control signal for transfer function H33 of the microgrid

A similar evaluation is performed for a simulation of the
microgrid under 10% additive output noise environment. In
Fig. 18 is presented the output v1 for the first segment of the
microgrid.

Fig. 18. Tracking response for the first segment of the microgrid with
additive noise

In Fig. 19 is presented the corresponding control signal
of tracking response presented for the first segment of the
microgrid in Fig. 18.

Fig. 19. Control signal for the first segment of the microgrid with additive
noise
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In Fig. 20 is presented the output v2 for the second
segment of the microgrid.

Fig. 20. Tracking response for the second segment of the microgrid with
additive noise

In Fig. 21 is presented the corresponding control signal of
tracking response presented for the second segment of the
microgrid in Fig. 20.

Fig. 21. Control signal for the second segment of the microgrid with
additive noise

In Fig. 22 is presented the output v3 for the third segment
of the microgrid.

Fig. 22. Tracking response for the third segment of the microgrid with
additive noise

In Fig. 23 is presented the corresponding control signal
of tracking response presented for the third segment of the
microgrid in Fig. 22.

Fig. 23. Control signal for the third segment of the microgrid with additive
noise

In Fig. 24 is presented the comparison for output y1 for
the proposed approach and a polynomial approach.

Fig. 24. Tracking response comparison of the proposed dead-beat approach
y1db for output y1 and the polynomial pole-placement approach y1pp

In Fig. 25 is presented the comparison for output y2 for
the proposed approach and a polynomial approach.

Fig. 25. Tracking response comparison of the proposed dead-beat approach
y2db for output y2 and the polynomial pole-placement approach y2pp
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A comparison analysis with a polynomial pole-placement
technique ykpp is performed in comparison with the proposed
adaptive sliding mode approach with dead-beat dynamics
ykdb with k = 1, 2, 3. In Fig. 26 is presented the comparison
for output y3 for the proposed approach and a polynomial
approach.

Fig. 26. Tracking response comparison of the proposed dead-beat approach
y3db for output y3 and the polynomial pole-placement approach y3pp

Finally, a evaluation of the proposed approach is
performed by using the real time implementation based
on a HIL structure. In Fig. 27 are shown the results of
the evaluation of the proposed approach over the HIL
implementation for each of the subsystems.

Fig. 27. Real time evaluation of the microgrid for outputs v1, v2 and v3
corresponding to each subsystem

In Fig. 28, Fig. 29 and Fig. 30 are shown the results of
the evaluation of the HIL implementation for each of the
subsystems.

Fig. 28. Real time evaluation of the microgrid for input Vd1

Fig. 29. Real time evaluation of the microgrid for input Vd2

Fig. 30. Real time evaluation of the microgrid for input Vd3

IV. CONCLUSIONS

This work presents an adaptive control approach for
sliding mode dynamics based on dead-beat criteria for
stability in closed-loop. The proposed method is evaluated
under simulation and real-time for a 3 inputs and 3 outputs
microgrid. It is worth noting that the proposed approach
adapts to the structure of the plant. Also, it can be seen that
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the tracking performance is adequate for reference tracking
even when the system parameters are identified during the
tracking procedure. It is worth mentioning that the system
is evaluated in simulation and in real-time by using a HIL
structure. The proposed approach shows that the dead-beat
stability in a closed-loop is guaranteed and validated under
external disturbances corresponding to 10% additive noise.
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