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Abstract—A nontrivial connected graph T which one of the
vertex is v, v is said to distinguish two vertex u, t if the distance
between v and u is different from v to t, where u, t ∈ V (T ).
Metric dimension is one topic in graph theory that uses the
concept of distance. Combining the definition of the local metric
dimension and dominating set, there is a new term, we called it
dominant local metric dimension and symbolized as Ddiml(T ).
An ordered subset Wl = {w1, w2, . . . , wn} ⊆ V (T ) is called a
dominant local resolving set of T if Wl is a local resolving
set as well as a dominating set of T . The goal of this paper’s
research is to determine precise values of dominant local metric
dimension for the corona product graphs. n copies of the graphs
P1, P2, ..., Pn of P are made to constructed the corona of any
two graph T and P . After that, we link the i-th vertex of T to
the vertices of Pi, where n is an order of graph T . T corona
P is symbolized by T � P .

Index Terms—dominating set, metric dimension, local resolv-
ing set, local metric dimension.

I. INTRODUCTION

GRAPH theory is one of the theory in mathematics. In
general, a graph can be described as a non-empty set

with members referred to as vertices and an empty set with
elements referred to as edges, which are an unordered pair
of two different vertices. If an edge connects two vertices
in a graph, they are said to be neighbors. The number of
graph theory research topics keeps expanding. Dominating
set and dominating number, graph coloring, graph labeling,
and metric dimension are a few of the issues that have grown
in popularity in the field of graph theory.

As early as 1850, the dominating set and dominating
number were invented. Since European chess players are
obsessed with finding solutions to the ”dominating” problem
queens, this hypothesis first emerged. On that game, the
number of queens is determined by the ”dominating set,”
which allows each queen to attack or dominate every position
with a single move. In graph theory, queens are represented
as vertices, and the paths queens take to travel between the
chessboard’s boxes are referred to as edges. Early in the
1960s, dominating set was introduced as formal theory. After
that it was extensive use of both the dominating set and
the dominating number. In a variety of applications, such as
figuring out where to put how many cameras position of the
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supervisor in a building’s hallway as well as the quantity of
traffic police officers stationed at city corners to ensure that
every street can be thoroughly monitored. Dominating set of
a graph H usually symbolized as S. In formal definition, it
is a subset of V (H) which connected all vertices V (H)\S
to S. We can write that if j is any vertex of V (H)\S then
d(j, x) = 1, where x ∈ S. Minimum number of j is called
the dominating number of graph H and symbolized γ(H).
As a result, the dominating set and the dominant number are
tightly related.

Some researchers can develop the topics in real life like the
benefit of metric dimension in real life, one of them is written
by Khuller, et al., which was inspired by the movement
of robots in two-dimensional Euclid space (R2), Khuller,
et al. attempted to relate the metric dimension concept to
the navigation of a robot, they refer to a motion field as a
graph. The vertex in the graph is the place where the robot
stops or does activities, while the edges are the paths where
the robot walks [1]. Another application of this topic in the
graph is dominating set which can be used to determine the
placement of ATM in some locations [2]. Several researchers
have studied and developed metric dimensions in the last
decades. They developed the concept of metric dimensions.
For example, the fractional metric dimension [3] and also
the characterization written by Arumugam and Varughese
[4], and a few writers combined the combination of the
notions of group in algebra and metric dimension, such as
research conducted by Bazak which focuses on finding the
Zero-Divisor Graph for the Ring Zn [5]. We refer to [6], [7],
[8], and [9] for more information related to metric dimension
and local metric dimension.

Some research in dominating set and metric dimensions
conducted by Foucaud, et al. generated the formulas and
metric dimension complexity and location domination on
intervals and permutations graphs [10], and Susilowati, et al.
figured out the dominant metric dimension of some specific
graphs [11]. Then, the dominant local metric dimension is
formulatted by Umilasari, et al. They mention if Wl is a local
resolving set and a dominating set of T , then it is referred
to as a dominant local resolving set, where T is connected
graph and an ordered set Wl = w1, w2, . . . , wnV (T ). The
dominant local basis is the dominant local resolving set with
the smallest cardinality. The dominant local metric dimen-
sion, also known as the number of vertices in the dominant
local basis of G, is denoted by Ddiml(G) [12]. Certain
characteristics of the dominant local resolving set, lower and
upper bound of the dominant local metric dimension, and
the major finding of the paper give some exact value of
the dominant local metric dimension for certain classes of
graphs. In this paper, we look deeper into the concept by
observing the value of the dominant local metric dimension
of product graphs, especially in corona product of graphs.
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n copies of the graphs P1, P2, ..., Pn of P are made to
constructed the corona of any two graph T and P . After
that, we link the i-th vertex of T to the vertices of Pi, where
n is an order of graph T . T corona P is symbolized by
T �P [13]. Throughout this part, we speak of Pi as an i-th
copy of P connected to i-th vertex of P in T �P for every
i ∈ 1, 2, . . . , n. Before presenting the main result of this
research, we give some theorems about γ(T ) and dim(T )
Theorem 1.1 [14] The dominating number of some graphs
are given below:

a. Let T = Pm or R = Cn with m ≥ 2 and n ≥ 3, then
γ(T ) = d |V (G)|

3 e
b. Let T = Km or T = K1,n−1. If m,≥ 1, n ≥ 2 →

γ(T ) = 1.
c. Let T = Km,n with m,n ≥ 3, then γ(T ) = 2.

Theorem 1.2 [15] Let H be a nontrivial connected graph
with |V (H)| = n.
• diml(H) = n− 1⇔ H = Kn

• diml(H) = n⇔ H is bipartite

II. THE CHARACTERISTIC OF Ddiml(G) AND THE
EXCAT VALUE FOR SPECIAL GRAPHS

This section shows some results relating to the character-
istic of the local resolving set and Ddiml of some graphs in
which results have been presented by Umilasari et al. [16].
Lemma 2.1 Given a connected graph H . If there is S ⊆
V (H), then for every set H containing a local resolving set
is a local resolving set.
Lemma 2.2 Given a connected graph H . If there is Wl ⊆
V (H), ∀vi, vj ∈Wl ⇒ r(vi|Wl) 6= r(vj |Wl).
Lemma 2.3 Given a connected graph H with the order j,
then max{γ(H), diml(H)} ≤ Ddiml(H) ≤ min{γ(H) +
diml(H), j − 1}.
Theorem 2.4

a. If k ≥ 2, then Ddiml(Pk) = γ(Pk).
b. If k ≥ 4, then Ddiml(Ck) = γ(Ck).
c. Ddiml(H) = 1⇔ H ∼= Sk.
d. Ddiml(H) = k − 1⇔ H ∼= Kj , j ≥ 2.
e. If p ≥ 2, q ≥ 2, then Ddiml(Kp,q) = γ(Kp,q).

III. MAIN RESULT

This section presents the value of Ddiml(G�H) where
G is any graphs and H is special graph. First of all, we
show a Lemma as the property of a local resolving set,
then we describe the proof of Ddiml(G�Pm), Ddiml(G�
Cn), Ddiml(G � Kn), Ddiml(G � Sn) and Ddiml(G �
Km,n).
Lemma 3.1 Given a connected graph G. If there is no local
dominant resolving set with cardinality p, then ∀S ⊆ V (G)
and |S| < p is not a local dominant resolving set.
Proof Suppose that there is S ⊆ V (G) with |S| < p as a
local dominant resolving set, so for every uv ∈ E(G) we get
r(u|S) 6= r(v|S). Then, we can find a set T ⊆ V (G)−S, in
case |S∪T | = p, such that S∪T is a local dominant resolving
set too. Consequently, there is a contradiction between the
first and the final statement. �

The next lemma shows that Ddiml(K1+Pn) has relation
with the Ddiml(Pn).
Lemma 3.2 If Pn is a path graph, with |V (Pn)| = n ≥ 5,
then

Ddiml(K1 + Pn) = Ddiml(Pn).

Proof. Let V (K1) = {u} and V (Pn) = {vi|1 ≤ i ≤ n}
with E(Pn) = {vivi+1|1 ≤ i ≤ n − 1}. We give labels
of K1 + Pn is V (K1 + Pn) = {u, vi|1 ≤ i ≤ n}, while
for the edge we write E(K1 + Pn) = {uvi, |1 ≤ i ≤ n}
∪{vivi+1|1 ≤ i ≤ n− 1}. Based on Theorem 2.4, we know
that Ddiml(Pn) = dn3 e. To determine Ddiml(K1 + Pn), it
divides into two cases as follows.

a. n ≡ 0(mod 3)
Put Wl = {v2, v5, v8, v11, . . . , v3i−1} so that |Wl| =
dn3 e = Ddiml(Pn). Based on Lemma 2.2 ∀vi, vj ∈Wl

we get r(vi|Wl) 6= r(vj |Wl) with i 6= j. Since ∀u, vi ∈
V (K1 + Pn)\Wl we have gotten:

r(u|Wl) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
dn3 e−tuple

)

r(vi|Wl) =



(1, 2, 2, 2, . . . , 2, 2, 2),
for i = 1, 3
(2, 2, 2, 1︸︷︷︸

d i
3 eth

, 2, 2, . . . , 2, 2, 2),

for i ≡ 0, 1(mod 3), 3 < i < n− 2
(2, 2, 2, . . . , 2, 2, 2, 1),
for i = n− 2, n

Furthermore, every two adjacent vertices have different
representations toward Wl. Since Pn is a path with
E(Pn) = {vivi+1|1 ≤ i ≤ n − 1}, then every v3i−1
is adjacent to v3i−2 and v3i is adjacent to v3(i+1)−2.
Beside that, u1 is adjacent to every vertex in Wl.
Therefore, Wl is a local dominant resolving set with
lowest cardinality. Choose any S ⊆ V (K1 + Pn) with
|S| < |Wl|, |S| = |Wl| − 1. Then it will be shown 2
cases for S.

i. S does not contain u, then S ⊆ V (Pn). Based on
Theorem 1.1, γ(Pn) = dn3 e. Since S < dn3 e, then
S is not a dominating set of K1 + Pn.

ii. S contains u, then the vertex set of Pn which
are also the elements of S consist of dn3 e −
2 elements. Hence, there exists vf , vf+5 ∈
S, and vf+1, vf+2, vf+3, vf+4 /∈ S. Therefore,
r(vf+2|S) = r(vf+3|S). Consequently, S is not
a local resolving set of K1 + Pn.

Considering the two scenarios described above, S is not
a local dominant resolving set of K1 +Pn. By Lemma
3.1, it means Wl is a local dominant basis of K1 + Pn

for n ≡ 0(mod 3).
b. n � 0(mod 3)

Put Wl = {v2, v5, v8, v11, . . . , v3i−1} so that |Wl| =
dn3 e = Ddiml(Pn). Based on Lemma 2.2 ∀vi, vj ∈Wl

we get are r(vi|Wl) 6= r(vj |Wl) with i 6= j. Then,
∀u, vi ∈ V (K1 + Pn) we get:

r(u|Wl) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
dn3 e−tuple

)
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Fig. 1. K1 + P6 has dominant local metric dimension equals two.

r(vi|Wl) =



(1, 2, 2, 2, . . . , 2, 2, 2),
for i = 1, 3
(2, 2, 2, 1︸︷︷︸

d i
3 eth

, 2, 2, . . . , 2, 2, 2),

for i ≡ 1, 2(mod 3), 3 < i < n− 2
(2, 2, 2, . . . , 2, 2, 2, 1),
for i ≡ 2(mod 3), i = n− 1
(2, 2, 2, . . . , 2, 2, 1, 1),
for i ≡ 1(mod 3), i = n− 1

Furthermore, every two adjacent vertices have different
representations toward Wl. Since Pn is a path graph
with E(Pn) = {vivi+1|1 ≤ i ≤ n−1}, then every v3i−1
is adjacent to v3i−2 and v3i is adjacent to v3(i+1)−2. Be-
side that, u1 is adjacent to every vertex in Wl. Therefore,
Wl is a dominating set of K1+Pn. Thus, Wl is a local
dominant resolving set with lowest cardinality. Take any
S ⊆ V (K1+Pn) with |S| < |Wl|, |S| = |Wl|−1. Then
there are two cases for S.

i. S does not contain u, then S ⊆ V (Pn). Based on
Theorem 1.1, γ(Pn) = dn3 e. Since S < dn3 e, then
S is not a dominating set of K1 + Pn.

ii. S contains u, then the vertex set of Pn which
are also the elements of S consist of dn3 e −
2 elements. Hence, there exists vf , vf+5 ∈
S, and vf+1, vf+2, vf+3, vf+4 /∈ S. Therefore,
r(vf+2|S) = r(vf+3|S). Consequently, S is not
a local resolving set of K1 + Pn.

Considering the two scenarios described above,, S is not
a local dominant resolving set of K1 +Pn. By Lemma
3.1, it can be said that Wl is a local dominant basis of
K1 + Pn, n � 0(mod 3).

From the 2 conditions above, it has been proven that Wl =
dn3 e = Ddiml(Pn) is a local dominant basis of K1+Pn, for
n ≥ 5. Then, it can be concluded that Ddiml(K1 + Pn) =
Ddiml(Pn) for n ≥ 5. �

Figure 1 shows that the bigger vertices form the dominant
local basis of K1 + P6. Next, the Ddiml of a connected
graph operated by corona product to path graph is presented
below.
Theorem 3.3 Given a connected graph G, |V (G)| = m ≥
2.If Pn is a path, with n ≥ 4, then

Ddiml(G� Pn) = |V (G)| ×Ddiml(Pn).

Proof. Let V (G) = {ui|1 ≤ i ≤ m}, V (Pn) = {vj |1 ≤
j ≤ n} and E(Pn) = {vjvj+1|1 ≤ j ≤ n − 1}. The
i-th copy of Pn with 1 ≤ i ≤ m is called (Pn)i with
V ((Pn)i) = {vij |1 ≤ j ≤ n}. We give the vertex label
of G � Pn is V (G � Pn) = {v0i|1 ≤ i ≤ m,ui ∈ V (G)}

∪{vij |1 ≤ i ≤ m, 1 ≤ j ≤ n, vi ∈ V (Pn)}, and E(G �
Pn) = {v0iv0j |uiuj ∈ E(Pm)} ∪ {vijvi(j+1)|vjv(j+1) ∈
E(Pn)} ∪ {v0ivij |ui ∈ V (G), vj ∈ V (Pn)}. To show the
Ddiml(Pn), we divided the number of n into 2 cases.

1. For n = 4
We can demonstrate that Bi = {vi2, vi3} is a dominant
local resolving set of K1 + (P4)i. ∀1 ≤ i ≤ m, |Bi| =
|B| = 2. Choose Wl = ∪mi=1Bi so |Wl| = |V (G)| × 2.
Without remove of generality, it can be observed that
the representation of every vertex V (P4)i\Bi to Bi is
different.

r(vi1|Bi) = (1, 2)

r(vi4|Bi) = (2, 1)

r(v0i|Bi) = (1, 1)

Because every two adjacent vertices in V (P4)i have
a distinct representation with regard to Bi then it is
established that Bi is a local resolving set of (P4)i.
Here, since Wl ⊆ V (G�P4) and Bi ⊆Wl, by Lemma
2.1 then Wl is a local resolving set of G�P4. Because
ui and vi1 is adjacent with vi2 and vi4 is adjacent with
vi3 so that Wl is a dominating set of G � P4. Thus,
Wl is a dominant local metric dimension of G � P4.
Next, we choose any S ⊆ V (G� P4) with |S| < |Wl|.
Let |S| = |Wl| − 1, then there exists i such that S
consist of maximally |Bi| − 1 elements of V (P4)i.
Since Bi is a dominant local basis of (P4)i then there
exist two vertex elements of V ((P4)i) which have the
same representation to S or there exists a vertex of
V ((P4)i) which is not adjacent with any vertex in S,
so that S is not a local resolving set or S is not a
dominating set of G � P4. Look at Lemma 3.1 then
Wl = ∪mi=1Bi is the dominant local basis of G � P4.
Hence, Ddiml(G � P4) = |V (G)| × Ddiml(P4) for
n = 4.

2. For n ≥ 5
Let B be a local dominant basis of Pn, Bi is a
local dominant basis of (Pn)i, hence for every i =
1, 2, 3, . . . ,m, |Bi| = |B|. Choose Wl = ∪mi=1Bi,
by Lemma 3.2 since Bi is a local dominant basis of
K1 + (Pn)i then Wl is a local dominant resolving set
of G � Pn. Then, it will be demonstrated that Wl is
a local dominant resolving set with lowest cardinality.
Take any S ⊆ V (G � Pn) with |S| < |Wl|. Let
|S| = |Wl|−1, then there exists i such that S comprise
maximally |Bi| − 1 elements of K1 + (Pn)i. Since
Bi is a local dominant basis of K1 + (Pn)i then
there exist two vertices in K1 + (Pn)i have the same
representation, so that S is neither a local resolving set
nor dominating set of G � Pn. Based on Lemma 3.1
then Wl = ∪mi=1Bi is a local dominant basis of G�Pn.
Since |Bi| = Ddiml(K1+(Pn)i) and by Lemma 3.2 we
know that Ddiml(K1 +Pn) = Ddiml(Pn). Therefore,
it has been proven that for n ≥ 5 Ddiml(G � Pn) =
|V (G)| ×Ddiml(Pn).

From the explanation above in poin (1) and (2), it is proven
that for n ≥ 4, Ddiml(G�Pn) = |V (G)|×Ddiml(Pn). �

Figure 2 shows the example of C3 � P6 has dominant
local metric dimension equals six. The dominant local basis
is shown by bigger vertices. Following that, we demonstrate
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Fig. 2. C3 � P6 has dominant local metric dimension equals six.

the dominant local metric dimension of G� Cm. Before it,
we would show a Lemma related to the proof.
Lemma 3.4 If Cm is a cycle and |V (Cm)| = m ≥ 6, then

Ddiml(K1 + Cm) = Ddiml(Cm).

Proof. Let V (K1) = {u1}, V (Cm) = {vi|i =
1, 2, 3, . . . ,m} and E(Cm) = {vivi+1|i = 1, 2, 3, . . . ,m −
1} ∪ {v1vm}.We give the vertex labels of K1 + Cm, that is
V (K1 +Cm) = {u1, vi|1 ≤ i ≤ m}, while E(K1 +Cm) =
{u1vi, |1 ≤ i ≤ m}∪{vivi+1|1 ≤ i ≤ m− 1}∪{v1vm}. To
ascertain Ddiml(K1 + Cm, it divides into 2 parts.

a For m ≡ 0(mod 3)
Put Wl = {v1, v4, v7, v10, . . . , v3i−2}, then |Wl| =
dm3 e = Ddiml(Cm). Based on Lemma 2.2 for every
vi, vj ∈ Wl we get r(vi|Wl) 6= r(vj |Wl) for i 6= j.
Next, since for every u1 and vi ∈ V (K1+Cm)\Wl we
get:

r(u1|Wl) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
dm3 e−tuple

)

r(vi|Wl) =



(1, 2, 2, 2, . . . , 2, 2, 2),
for i = 2,m
(2, 2, 2, 1︸︷︷︸

b i
3 cth

, 2, 2, . . . , 2, 2, 2),

for 2 < i < m− 3
(2, 2, 2, . . . , 2, 2, 2, 1),
for i = m− 1,m− 3

Furthermore, every two adjacent vertices have a dif-
ferent representation to Wl then Wl is a local re-
solving set of K1 + Cm. Since Cm is a cycle with
E(Cm) = {vivi+1|i = 1, 2, 3, . . . ,m − 1} ∪ {v1vm},
then for every vertex v3i−1 is adjacent to v3i−2 and
v3i is adjacent to v3(i+1)−2. Besides that, the vertex
u1 is adjacent to the elements of Wl. Therefore, Wl

is dominant local resolving set of K1 + Cm. Next, we

choose any S ⊆ V (K1 + Cm) with |S| < |Wl|, let
|S| = |Wl| − 1. Then, there are 2 conditions of S.

i S does not contain u1, then S ⊆ V (Cm). Based
on Theorem 1.1, γ(Cm) = dm3 e. Because of S <
dm3 e, then S is not dominating set of K1 + Cm.

ii S contains u1, then the elements of V (Cm) which
are also the element of S consist of dm3 e −
2 elements. Hence, there exists vf , vf+5 ∈ S
and vf+1, vf+2, vf+3, vf+4 /∈ S. Consequently,
r(vf+2|S) = r(vf+3|S). Therefore, S is not a local
resolving set of K1 + Cm.

Considering the two scenarios described above, S is not
a dominant local resolving set of K1+Cm. By Lemma
3.1, it can be concluded that Wl is a local dominant
basis of K1 + Cm,m ≡ 0(mod 3).

b For m � 0(mod 3)
Put Wl = {v1, v4, v7, v10, . . . , v3i−2, vm} then |Wl| =
dm3 e = Ddiml(Cm). Based on Lemma 2.2 for every
vi, vj ∈ Wl we get r(vi|Wl)r(vj |Wl) for i 6= j. Next,
since for every u1 and vi ∈ V (K1 + Cm)\Wl we get:

r(u1|Wl) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
dm3 e−tuple

)

r(vi|Wl) =



(1, 2, 2, 2, . . . , 2, 2, 2),
for i = 2
(2, 2, 2, 1︸︷︷︸

b i
3 cth

, 2, 2, . . . , 2, 2, 2),

for 2 < i < m− 2
(2, 2, 2, . . . , 2, 2, 2, 1),
for i = m− 1

Furthermore, every two adjacent vertices have a differ-
ent representation to Wl then Wl is a local resolving
set of K1 + Cm. Since Cm is a cycle with E(Cm) =
{vivi+1|i = 1, 2, 3, ,̇m − 1} ∪{v1vm}, then for every
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Fig. 3. K1 � C6 has dominant local metric dimension equals two.

vertex v3i−1 is adjacent to v3i−2 and v3i is adjacent
to v3(i+1)−2. Besides that, the vertex u1 is adjacent to
the elements of Wl. Therefore, Wl is dominating set
of K1 + Cm and Wl is dominant local resolving set
of K1 + Cm. Next, it is shown that Wl is a dominant
local resolving set with minimum cardinality. Choose
any S ⊆ V (K1+Cm) with |S| < |Wl|, |S| = |Wl|−1.
Then, there are two cases of S.

i. S does not contain u1, then S ⊆ V (Cm). Based
on Theorem 1.1, γ(Cm) = dm3 e. Because of S <
dm3 e, then S is not dominating set of K1 + Cm.

ii. S contains u1, then the elements of V (Cm) which
are also the element of S consist of dm3 e −
2 elements. Hence, there exists vx, vx+5 ∈ S
and vx+1, vx+2, vx+3, vx+4 /∈ S. Consequently,
r(vx+2|S) = r(vx+3|S). Therefore, S is not a local
resolving set of K1 + Cm.

Considering the two scenarios described above, S is not
a dominant local dominant resolving set of K1 + Cm.
By Lemma 3.1, it can be concluded that Wl is a local
dominant basis of K1 + Cm,m ≡ 0(mod 3).

From the two possibilities in poin (a) and (b), it has been
proven that Wl = dm3 e is a local dominant basis of
K1 + Cm, for m ≥ 6. Based on Theorem 2.4, we know
that Ddiml(Cm) = dm3 e. Then, it can be concluded that for
m ≥ 6, Ddiml(K1 + Cm) = Ddiml(Cm). �

Figure 3 gives the example that Ddiml(K1 + C6) =
Ddiml(C6) = 2. While Figure 4 shows that Ddiml(S4 �
C6) = 8.
Theorem 3.5 Given a connected graph G, |V (G)| = n ≥ 2.
If Cm is a cycle with m ≥ 6, then

Ddiml(G� Cm) = |V (G)| ×Ddiml(Cm).

Proof. Let V (G) = {ui|1 ≤ i ≤ n}, V (Cm) = {vj |1 ≤ j ≤
m} and E(Cm) = {vjvj+1|1 ≤ j ≤ m − 1} ∪ {vmv1}.
The i-th copy of Cm with 1 ≤ i ≤ n is called (Cm)i
with V (Cm)i) = {vij |1 ≤ j ≤ m}. We give the labels
of G� Cm by V (G� Cm) = {v0i|1 ≤ i ≤ n, ui ∈ V (G)}
∪{vij |1 ≤ i ≤ n, 1 ≤ j ≤ m, vi ∈ V (Cm)}, and
E(G�Cm) = E(G)∪ni=1E(Cm)i∪{uivij |ui ∈ V (G), vij ∈
V (Cm)i}. Let B as a local dominant basis of K1 + Cm,
Bi is a local dominant basis of K1 + (Cm)i so that for
every i = 1, 2, 3, . . . , n, |Bi| = |B|. Select Wl = ∪ni=1Bi

, based on Lemma 3.2 since Bi is a local dominant basis

Fig. 4. S4 � C6 has dominant local metric dimension equals eight.

of K1 + (Cm)i then Wl is a local dominant resolving set of
G�Cm. Next, we take any S ⊆ V (G�Cm) with |S| < |Wl|.
Let |S| = |Wl| − 1, then ∃i 3 |S| ≤ |Bi| − 1. Since Bi

is a local dominant basis of K1 + (Cm)i then there exist
two vertices in K1 + (Cm)i have the same representation
or there exists a vertex in K1 + (Cm)i that is not adjacent
to any vertex in S, so that S is not a local resolving
set or S is not a dominating set of G � Cm. Based on
Lemma 3.1 then Wl = ∪mi=1Bi is a local dominant basis of
G�Cm. Since Bi is a local dominant basis of K1 + (Cm)i
with |Bi| = Ddiml(K1 + (Cm)i) and by Lemma 3.3 we
know that Ddiml(K1 + Cm) = Ddiml(Cm). Therefore,
it has been proven that for m ≥ 6 Ddiml(G � Cm) =
|V (G)| ×Ddiml(Cm). �

The following theorems explain Ddiml(G �
Kn), Ddiml(G� Sn), Ddiml(G�Km,n).
Theorem 3.6 Given a connected graph G, |V (G)| = m ≥ 2.
If Kn is a complete graph with n ≥ 2, then

Ddiml(G�Kn) = |V (G)| ×Ddiml(Kn)

Proof. Let V (G) = {ui|1 ≤ i ≤ m}, V (Kn) = {vj |1 ≤
j ≤ n} and E(Kn) = {vjvk|1 ≤ j, k ≤ n, j 6= k}. The
i-th copy of Kn with 1 ≤ i ≤ m is called (Kn)i whose the
vertex and edge label are V ((Kn)i) = {vij |1 ≤ j ≤ n} and
E(Kn)i) = {vijvik|vjvk ∈ E(Kn)} for every 1 ≤ i ≤ m.
While G�Kn has V (G�Kn) = {v0i|1 ≤ i ≤ m}∪{vij |1 ≤
i ≤ m, 1 ≤ j ≤ n} and E(G � Kn) = {v0iv0j |uiuj ∈
E(G)}∪{vijvik|vjvk ∈ E(Kn)} ∪{v0ivij |ui ∈ V (G), vj ∈
V (Kn)}. Suppose B be a local dominant basis of Kn, Bi

for (Kn)i, thus ∀1 ≤ i ≤ m, |Bi| = |B|. Put Wl = ∪mi=Bi

, with Bi = {vij |1 ≤ j ≤ n − 1} for every 1 ≤ i ≤ m,
then |Wl| = m(n− 1). Derived from Lemma 2.2, select two
adjacent vertices in V (G � Kn)\Wl. In every case, every
two adjacent vertices have different representations toward
Wl.

Take any x, y ∈ V (G�Kn) with xy ∈ E(G�Kn), then
there exist three cases:

i. For x, y = v0i, v0j ∈ V (G � Kn)\Wl with i 6= j.
Since G is a connected graph, d(v0j , v) = d(v0j , v0i)+
d(v0i, v) for every v ∈ Bi so that d(v, v0i) 6= d(v, v0j)
caused r(v0i|Bi) 6= r(v0j |Bi). Since of Bi ⊆ Wl then
r(v0i|Wl) 6= r(v0j |Wl).

ii. For x, y = vij , vik ∈ V (G � Kn)\Wl with j 6= k,
vijvik ∈ E(Kn)i for i = 1, 2, . . . ,m. Since Bi is a local
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Fig. 5. P5 �K4 has dominant local metric dimension equals fifteen.

basis of (Kn)i and r(vij |Bi) 6= r(vik|Bi). Because
Bi ⊆Wl, then r(vij |Wl) 6= r(vik|Wl).

iii. For x, y = v0ivij ∈ V (G � Kn)\Wl. There exist two
possibilities.

1) v0i with vij /∈ Bi.
If i 6= k,d(v0i, v0k) 6= d(vij , v0k) → ∀v ∈ Bi

causes d(v, v0i) 6= d(v, vij). So, Bi ⊆ Wl make
r(v0i|Wl) 6= r(vij |Wl).

2) v0i with vij ∈ Bi.
Since vij ∈ Bi then there exists a zero element in
r(vij |Bi). Besides that, d(v0i, vij) = 1 and v0i /∈
Bi so, there are no zero elements in r(v0i|Bi).
Consequently, r(vij |Bi) /∈ r(v0i|Bi). Then, Bi ⊆
Wl implies r(v0i|Wl) 6= r(vij |Wl).

Considering the two scenarios described above, Wl =
∪mi=1Bi is a local resolving set of G � Kn. Then, ∀v0i ∈
V (G), 1 ≤ i ≤ m d(v0i, vij = 1 where vij ∈ Wl and
∀vin ∈ V ((Kn)i), 1 ≤ i ≤ m d(vin, vij = 1 where vij ∈
Wl. Then, Wl is a dominating set. So that, Wl = ∪mi=1Bi

is a local dominant resolving set of G � Kn. Then, that
Wl = ∪mi=1Bi is a local dominant resolving set with smallest
cardinality. Put any S ⊆ V (G �Kn) with |S| < |Wl|. Let
|S| = |Wl| − 1, then ∃i 3 |S| ≤ |Bi| − 1 elements of
(Kn)i. Since Bi is a local dominant basis of (Kn)i then
there exist 2 vertices in (Kn)i have same representation
toward S, it means S is not a local dominant resolving
set of G � Kn. Looking back to the Lemma 3.1 is known
that Wl = ∪mi=1Bi is a local dominant basis of G � Kn

with |Bi| = Ddiml((Kn)i), hence it has been proven that
Ddiml(G�Kn) = |Wl| = |V (G)| ×Ddiml(Kn). �

Figure 5 gives an example of G�Kn. It is P5�K4 whose
has dominant local metric dimension equals fifteen. The
vertices that are printed larger are elements of the dominant
local basis of P5 �K4.

We can demonstrate the following theorems by using
similar techniques to demonstrate that Ddiml of a connected
graph G with a star and a complete bipartite graph is as
stated.
Theorem 3.7 Given a connected graph G, |V (G)| = m ≥ 2.
If Sn is a star with n ≥ 3, then

Ddiml(G� Sn) = |V (G)| ×Ddiml(Sn).

Proof. Since the steps are similar to the Theorem 3.5, we

Fig. 6. C3 � S5 has dominant local metric dimension equals three.

Fig. 7. C3 �K3,2 has dominant local metric dimension equals six.

only show the dominant local basis of G�Sn. Let V (G) =
{ui1 ≤ i ≤ m}, the vertex set of star is V (Sn) = {v} ∪
{vi|1 ≤ i ≤ n − 1}, E(Sn) = {vvi|1 ≤ i ≤ n − 1}. For
G�Sn, V (G�Sn) = {u0i|ui ∈ V (G), 1 ≤ i ≤ m}∪{vi|v ∈
V (Sn), 1 ≤ i ≤ m}∪{vij |vj ∈ V (Sn), 1 ≤ i ≤ m, 1 ≤ j ≤
n− 1} and E(G�Sn) = {u0iu0k|uiuk ∈ E(G); 1 ≤ i, k ≤
m, i 6= k}∪{u0ivi|1 ≤ i ≤ m}∪{vivij |1 ≤ i ≤ m, 1 ≤
j ≤ n − 1}. Select Wl = ∪mi=1Bi, with Bi = {vi} for
every 1 ≤ i ≤ m. Therefore, Ddiml(G � Sn) = |Wl| =
m×Ddiml(Sn) = |V (G)| ×Ddiml(Sn) for n ≤ 2. �
Theorem 3.8 Given a connected graph G, |V (G)| = p ≥ 2.
If K(m,n) is a complete bipartite graph with m,n ≥ 2, then

Ddiml(G�K(m,n)) = |V (G)| ×Ddiml(Km,n)

Proof. It can be proven similarly to the two theorems before.
Let V (G) = {uk|1 ≤ k ≤ p}, V (Km,n) = {ai|1 ≤ i ≤ m}
∪{bj |1 ≤ j ≤ n}, and E(Km,n) = {aibj |1 ≤ i ≤
m; 1 ≤ j ≤ n}. We give the vertex label of G � Km,n is
V (G�Km,n) = V (G)∪pk=1V ((Km,n)k) for the edge E(G�
Km,n) = E(G) ∪pk=1 E((Km,n)k) ∪{ukaki, ukbkj |uk ∈
V (G); aki, bkj ∈ V ((Km,n)k)}. Choose Wl = ∪pk=1Bk,
with Bk = {ak1, bk1} for every 1 ≤ k ≤ p, then we get
Ddiml(G�Km,n) = |Wl| = |V (G)| ×Ddiml(Km,n). �

IV. CONCLUSION

In this study, we identified a local resolving property
as well as Ddiml(G � Pm), Ddiml(G � Cn), Ddiml(G �
Kn), Ddiml(G�Sn) and Ddiml(G�Km,n). The presented
results still lead to several open questions, such as how about
Ddiml(G�H) for G and H are any two connected graphs.
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This research can also be expanded to another operation of
graphs.
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