
 

  

Abstract—Multi-objective reactive power optimization 

(MORPO) is a high-dimensional, nonlinear, multi-constraint 

problem. To solve this problem, an improved multi-objective 

honey badger algorithm (MOIHBA) is proposed. To address the 

shortcomings of the original algorithm, such as easy falling into 

local optimum and insufficient population diversity, the 

improved algorithm introduces a sine chaotic mapping strategy 

to expand the population diversity, a backward learning 

mechanism to narrow the range of high-quality solution sets, 

and a cross-learning mechanism to improve the precision of the 

algorithm optimization process. In addition, in order to obtain 

the pareto optimal set (POS), a method based on calculating 

individual rank and crowding distance is proposed to sort the 

non-inferior solution, and the best compromise solution (BCS) 

is obtained by using a fuzzy theory strategy. By introducing 

three objective functions of active power loss, voltage stability 

index, and voltage deviation, the multi-objective reactive power 

optimization is established. To investigate the robustness of the 

introduced improved algorithm and its ability to solve the 

MORPO problem, this paper uses IEEE30, IEEE57, and 

IEEE118 as test systems that optimize the dual objective and 

triple objective simultaneously. In order to study the 

comprehensive performance of the improved algorithm, the 

algorithm time complexity, GD index, and HV index are 

adopted for evaluation. The simulation results and performance 

index results show that compared with other algorithms, 

MOIHBA has better BCS and pareto fronts (PFs) with the best 

uniformity and convergence. Therefore, the MOIHBA 

algorithm has a greater competitive advantage in solving the 

MORPO problem. 

 
Index Terms—Honey badger algorithm, multi-objective, 

reactive power optimization, sine chaotic mapping strategy, 

cross-learning mechanism 
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I.  INTRODUCTION 

VER the decades, with climate change and the 

development of power generation technology, the 

economy and security of the grid have encountered many 

challenges, including the grid's reactive power optimization 

(RPO) [1]. Reactive power optimization in the power system 

is a sub-problem of the optimal power flow (OPF) problem. 

From the perspective of voltage quality, the rational 

regulation of reactive power resources plays a great role in 

the power system's safety, economy, and stable operation. 

Therefore, it has received increasing attention from scholars. 

The main purpose of reactive power optimization is to 

achieve the goal of reducing active power losses, reducing 

voltage deviations, and enhancing voltage stability by 

coordinating and optimizing control variables, such as the 

voltage value of generators, the setting of transformer tap 

ratios, and the switching of reactive power compensation 

devices while satisfying equation constraints and inequality 

constraints [2]. Among them, the equivalence constraint 

refers to the power flow equation and the inequivalence 

constraint refers to the limits of operation and control 

parameters in the power system [3]. 

With the increase in the operational requirements of power 

systems and the increased objectives considered by 

decision-makers over recent years, the optimization problem 

has gradually evolved from a single-objective optimization 

problem to a multi-objective optimization problem in the 

field of reactive power optimization, which is of great 

significance for solving practical power system problems. 

The multi-objective reactive optimization problem includes 

continuous and discrete control variables, so it is again a 

multi-constrained, multi-variable, multi-objective mixed- 

integer nonlinear optimization problem [4,5]. To solve this 

problem, many scholars have proposed different solutions, 

which are mainly divided into two categories, one is a classic 

optimization technique and the other is an artificial 

intelligence technique. Traditional optimization methods 

include gradient method [6], interior point method [7], linear 

programming method and nonlinear programming method 

[8]. In solving multi-objective problems, traditional methods 

are used to convert multi-objective optimization problems 

into single-objective optimization problems by using 

weighting method [9], ε-constraint method, and fuzzy 

decision method [10]. On the one hand, these traditional 

methods can only be optimized for some specific goal 

functions and they have limitations in solving functions that 

are non-linear, non-convex, and discontinuous with 

constraints [11]. And on the other hand, the traditional 
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methods use a single-path optimization model, when the 

algorithm searches for the optimal value, it tends to converge 

to the local optimum rather than the global optimum [12]. On 

this basis, artificial intelligence algorithms have gradually 

emerged, and numerous scholars have attempted to solve the 

MORPO problem using such new intelligence algorithms. 

The representative algorithms are particle swarm algorithm 

(PSO) [13], sine cosine algorithm (SCA) [14], gravitational 

search algorithm (GSA) [15], imperialist competition 

algorithm (ICA) [16], differential evolution algorithm (DE) 

[17,18], cuckoo search algorithm (CS) [19-21], genetic 

algorithm (GA) [22], beetle antennae search algorithm (BAS) 

[23], NSGA-II algorithm [24], gray wolf optimization 

algorithm (GWO) [25,26] and bacterial foraging 

optimization algorithm (BFO) [27]. The results of this related 

literature show that the meta-heuristic algorithm is superior 

and more reliable than traditional methods in solving 

MORPO problems. 

The honey badger algorithm (HBA) is a new intelligent 

algorithm proposed by Fatma A. Hashim in 2021 [28]. The 

HBA is characterized by fewer parameters, strong optimality 

finding ability and fast convergence. However, there are still 

some shortcomings in this algorithm, such as easy falling into 

local optimum, insufficient population diversity, and low 

convergence accuracy. In view of the above shortcomings, 

this paper introduced an improved multi-objective honey 

badger algorithm to solve the MOPRO problem based on sine 

chaotic mapping strategy, backward learning mechanism, 

and cross-learning mechanism. For all I know, the original 

algorithm and the proposed method in this paper are applied 

for the first time in the MORPO problem. To validate the 

comprehensive ability of the proposed method, MOIHBA, 

MOPSO, NGSA-II, and MODE are tested in IEEE30, 

IEEE57, and IEEE118 standard test systems, respectively, 

the GD index and HV index are chosen as two 

multi-objective evaluation indexes to further evaluate the 

improved algorithm. 

The remaining components of this paper are structured as 

follows. Section II mainly introduces the MORPO problem in 

detail. Section III focuses on the original honey badger 

algorithm (HBA) and gives the steps of three improvement 

strategies. Section IV is the algorithm's simulation 

experiment and the analysis of the evaluation indexes. The 

conclusion section is shown in Section V. 

II.    MATHEMATICAL MODEL OF MORPO 

The general representation of multi-objective reactive 

power optimization aims to optimize the pre-defined system 

objectives by finding suitable control variables, optimizing 

the nonlinear fitness function, and realizing the conditions of 

equality constraints and inequality constraints of the system 

at the same time [29]. The mathematical model for MORPO 

problem consists of two main components: objective and 

constraint. The MORPO problem can be defined by the 

following formulas: 

 ( ) { ( ), ( ) ( )}1 2 nmin  F x,u = f x,u f x,u ...f x,u  (1) 

 ( )i iG x,u = 0,        i = 1,2,...m  (2) 

 ( )j jH x,u 0,        j =1,2,...m  (3) 

where f1, f2, and fn are different objective functions; n is the 

amount of objective functions; Gi(x,u) is expressed as the ith 

equality constraint. Hj(x,u) is expressed as the jth inequality 

constraint; mi represents the number of equality constraints, 

mj represents the number of inequality constraints. 

 
1 2 1 21 2[ , ,... , , ,... , , ,... ]

N Q NV E

T

G G G N L L Lx Q Q Q V V V S S S=  (4) 

where xT stands for the state variable vector, QG represents the 

reactive power output at the PV node, NV represents the total 

amount of PV nodes; V represents the voltage at the PQ node, 

NQ indicates the number of PQ nodes; SL indicates the 

apparent power on a branch, NE represents the total number of 

branches. 

 
1 2 1 21 2[ , ,... , , ,... , , ,... ]

N T NV C

T

G G G N C C Cu V V V T T T Q Q Q=  (5) 

where uT represents the vector of control variables, VG 

represents the terminal voltage constraint of the generator; T 

represents the constraint of transformer tap ratio, NT indicates 

the number of transformers; QC indicates the reactive power 

output constraint of the reactive power compensation device, 

and NC represents the number of reactive power 

compensation devices. 

A. Objective Functions 

1) Active power losses minimization 

Minimizing active power loss is the primary objective of 

reactive power optimization problem research, and it is also 

an important index to assess the economy of the power grid. 

The formula of its objective function is as follows: 

 2 2

1

1

min min[ 2 cos ]
iN

loss k i j i j ij

k

f P g V V VV 
=

= = + − （ ） (6) 

where Vi is the voltage magnitude at bus i; Vj represents the 

voltage magnitude at bus j; Ni indicates the number of buses; 

gk indicates conductance; θij indicates the voltage phase 

angle. 

2) Voltage stability index 

In solving the MORPO problem, the voltage stability 

index is also taken into account. The voltage stability index is 

defined as maintaining the voltage amplitude at each load bus 

within an acceptable range under rated conditions. Improving 

voltage stability can be achieved by minimizing a voltage 

stability criterion called Lindex at each network bus [30]. Its 

objective function is defined as follows: 

 
2 min min =max ),      Lindex j Qf f Lindex L j N= = （ ） （  (7) 

 
1

1
VN

i

j ji

i j

V
L K

V=

= −   (8) 

 
1

1 2[ ] [ ]jiK Y Y−= −  (9) 

where fLindex represents the objective function of the voltage 

stability indicator; The symbol Lindex indicates the whole 

system voltage stability indicator; Lj is an indicator of local 

voltage stability; NV indicates the number of PV nodes; Vi and 

Vj denote the complex voltage at the ith PV node as well as 

the jth PQ node respectively; Y1 and Y2 are sub-matrix of the 

grid derivative matrix determined by separating the PQ and 

PV node parameters. 

3) Voltage deviation minimization 

In power systems, voltage is one of the most significant 

parameters for measuring power quality, and in addition to 

the economics of the grid, the stability of the power grid also 

needs to be considered. Therefore, in the MORPO problem, 

voltage deviation should also be considered as one objective 

besides the above two objectives. Thus, this function is 
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presented as follows: 

 3

QN

Vd i REF

i=1

f = minf = min V -V
  
 

 
  (10) 

where fVd stands for the objective function of the voltage 

deviation; NQ represents the total amount of PQ nodes. Vi 

indicates the voltage at PQ node; VREF denotes the ideal 

voltage with a per-unit value of 1. 

B. Problem Constraints 

In a MORPO problem, all objective functions are bounded 

by constraints. All constraints should be kept within their 

acceptable physical limits. These constraints are divided into 

two categories, one with equation constraints and the other 

with inequality constraints. 

1) Equality constraints 

The equality constraint equation is also called the power 

flow constraint equation [31]. This equation needs to satisfy 

the active and reactive power balance. The equality constraint 

equation is as follows: 

 ( )cos sin 0,   
i

Gi Li i j ij ij ij ij

j N

P P V V g b i N 


− − + =   (11) 

 ( )cos sin 0,  
i

Gi Li i j ij ij ij ij P

j N

Q Q V V g b i N 


− − − =  (12) 

where PGi and QGi indicate the active and reactive power 

injected at the ith node; PLi, QLi represents the active and 

reactive power consumed by the load at the ith node; Vi, Vj 

indicate the voltage magnitude at nodes i, j respectively; gij 

represents the conductance between nodes i, j; bij represents 

the susceptance between nodes i and j; Ni represents the 

number of nodes connected between node i and node j. 

2) Inequality constraints 

According to different types of variables, inequality 

constraints can be divided into two categories [32]. One is the 

state variable inequality constraint, and the other is the 

control variable inequality constraint. 

a) State variable inequality constraints 

When solving the MORPO problem, the state variables 

need to be controlled within the allowed range, such as the 

voltage at the PQ node, the reactive power output at the PV 

node, and the apparent power of the branch. 

1: Voltage constraints at PQ nodes 

 
min max ,i i i QV V V i N    (13) 

2: Reactive power constraints at PV nodes 

 min max ,i i i VQ Q Q i N  G G G
 (14) 

3: Branch apparent power constraint 

 max ,i i ES S i N L L
 (15) 

b) Control variable inequality constraints 

To guarantee the reliability and sustainability of the 

electrical system, the voltage of each generator in the system, 

the transformer tap ratio, and the reactive power output of the 

reactive power compensator are all constrained [33]. 

1: Terminal voltage constraint of generator 

 min max ,i i i VV V V i N  G G G
 (16) 

2: Tap ratio constraint of transformer 

 min max ,i i i TT T T i N    (17) 

3: Reactive power output limitation of reactive power 

compensator 

 min max ,i i i CQ Q Q i N  C C C
 (18) 

C. Multi-objective Constraint Processing Strategy 

When solving the MORPO problem, the processing of 

constraints is a significant point. It will affect the result of 

algorithm optimization whether the constraints are handled 

well or not. 

1) Handling strategies for constraint 

For equality constraints, the power flow calculation can be 

used to verify whether the equality constraints meet the 

conditions. For the inequality constraints of control variables, 

it will be dealt with as follows: 

 

(min) (min)

(min) (max)

(max) (max)

    

         

   

k k k

k k k k k

k k k

u if u u

u u if u u u

u if u u

 


=  
 

 (19) 

The state variable is generated by the power flow 

calculation. For the constraint processing of the state variable, 

the traditional method is to add the penalty coefficient 

method. This method has two disadvantages. One is that 

different penalty coefficient values should be adopted in 

different scenes. Secondly, in the same scene, it is difficult to 

determine the appropriate penalty coefficient value, and its 

too large or too small value will affect the optimization result. 

In this paper, a constraint-dominant hierarchical mechanism 

is proposed for the constraint processing of state variables. 

The concrete steps are listed below. 

Step 1: Record the state variables that violate the 

constraints after the power flow calculation. If the state 

variable violates the constraints, the total constraints of the 

individual are calculated according to (20). The formula is 

shown below: 

 
1

_ ( ) max(0, ( , ))
jm

i j i

j

T vio u H x u
=

=   (20) 

where, T_vio(ui) represents the total number of individual 

violation of constraints, and mj represents the number of 

inequality constraints. 

Step 2: Comparing the sum of any two individuals' 

violation of constraints, there will be three situations. 

1: Individual i dominates individual j. 

 _ ( ) _ ( )i jT vio u T vio u  (21) 

2: Individual j dominates individual i. 

 _ ( ) _ ( )i jT vio u T vio u  (22) 

3: When any two individuals violate the same total 

constraint values, the objective function values are 

compared: 

 
 {1,2,... }   ( , ) ( , )

   
  {1,2,... }   ( , ) ( , )

k i k j

l i l j

k n f x u f x u

l n f x u f x u

  


  
 (23) 

where, for any k belonging to 1 to n, fk(x,ui) is not greater than 

fk(x,uj), and there is at least one l that makes fl(x,ui) less than 

fl(x,uj), and l belongs to 1 to n. Thereby, individual i pareto 

dominates individual j. 

2) Multi-objective sorting methods 

A fast non-dominant sorting method with an elite strategy 

is used in this paper to obtain the POS [33]. This method 

calculates individuals' rank and crowding distance for 

stratification and ranking. 

a) Hierarchical ranking of non-inferior solutions 

Hierarchical ranking of non-inferior solutions is the 

process of dividing the solution set into different levels of 

pareto front. The specific steps are listed below: 
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Step 1: Assign two parameters, N(i) and S(i), to each 

solution in the population. N(i) represents the total amount of 

individuals that dominate individual i in the population, and 

S(i) represents the set of solutions dominated by individual i. 

Step 2: Locate all individuals in the population for which 

N(i)=0, that is, all individuals i in the group that are not 

dominated by other individuals, and store these individuals in 

the set F(1), and record the total number of the set as j, and 

record their rank as Rank0. Rank0 is the initial level, and is set 

to 1. 

Step 3: For each individual l in F(1), find out the set 

dominated by individual l, namely S(l), and subtract 1 from 

the N(l) corresponding to each individual l in the set S(l), that 

is, the number of dominating individual l minus 1. And let its 

rank be Rank=Rank0+1. 

Step 4: Then repeat the above steps, and record the ranking 

of each individual until all individuals are stored in a certain 

set F(i). 

b) Crowding distance 

When two individuals have different levels, the individual 

with the smaller Rank value is selected. If two individuals are 

in the same hierarchy, to facilitate sorting, a crowding 

distance operator is introduced for sorting. For two 

individuals with the same Rank value, calculate the crowding 

distance of the individuals, sort them by crowding distance at 

the same level from largest to smallest, and select solution 

with the larger crowding distance first. The process of 

execution is as follows: 

Step 1: Select the kth target, calculate the distance between 

individual i and its adjacent individuals on the target, that is, 

the difference between the target values of individual i+1 and 

individual i-1, and finally, normalize the value. 

Step 2: Traverse all objectives and add the normalized 

crowding distance values for each objective. The crowding 

distance formula is defined by the following equations: 

 
1

max min

( ) ( )

( 1) ( 1)
( )

M

k

k

k k

k

k k

cd i cd i

f i f i
cd i

f f

=

=

+ − −
=

−


 (24) 

where cdk(i) represents the crowding distance of the ith 

individual. M represents the number of objective functions in 

MORPO. fmax and fmin represent the lowest and highest 

values of the kth objective function respectively. 

c) Best compromise solution 

After optimization of the algorithm, the obtained Pareto 

optimal sets are mutually exclusive. The previous processing 

method is to assign weight coefficients to different objective 

functions, and artificially judge which objective is more 

important. However, the disadvantage of this method is that it 

is difficult to find a suitable weight coefficient, and it is 

difficult to say which objective value is more important in 

some engineering applications, therefore, the conventional 

methods often produce suboptimal solutions. This paper 

adopts fuzzy theory to choose the best compromise solution 

(BCS) [34], and we consider the BCS as the most appropriate 

solution. The implementation process is as follows: 

Step 1: In the pareto optimal set, find out the maximum 

value max[fk(i)] and the minimum value min[fk(i)] of the kth 

objective function. 

Step 2: Calculate the fuzzy membership degree Fmk(i) of 

the kth objective function of the ith solution. The elementary 

procedures are as follows: 

1: When the target value fk(i) is less than or equal to 

min[fk(i)], Fmk(i)=1; 

2: When the target value fk(i) is greater than or equal to 

max[fk(i)], Fmk(i)=0; 

3: When the target value fk(i) belongs to the interval 

(min[fk(i)], max[fk(i)]); 

 
max[ ( )] ( )

( )
max[ ( )] min[ ( )]

k k

k

k k

f i f i
Fm i

f i f i

−
=

−
 (25) 

Step 3: Combined with all objectives and calculate the 

satisfaction value st(i) for each solution. The formula is as 

follows: 

 1

1 1

( )

( )

( )

M

k

k

n M

k

i k

Fm i

st i

Fm i

=

= =

=



 (26) 

Step 4: Find the solution corresponding to the maximum 

satisfaction value max[st(i)], and select this solution as the 

best compromise solution. 

III. RESEARCH ON HBA FOR MORPO PROBLEM 

The initial honey badger algorithm is characterized by 

fewer parameters, better searchability and faster convergence, 

and this algorithm is used for the first time in the field of 

MORPO problem. However, this algorithm still has some 

disadvantages, such as poor search ability, inadequate initial 

population diversity, and low convergence accuracy. For this 

reason, three different improvements have been proposed for 

this algorithm. 

A.  The Basic Honey Badger Algorithm 

The HBA is a new group intelligence optimization 

algorithm proposed by Fatma A. Hashim in 2021, which is 

inspired by honey badger predation. The optimization 

strategy of HBA is divided into two stages, one is the 

exploration stage, and the other is the exploitation stage, 

 which can also be defined as global optimization stage and 

local optimization stage, respectively. The HBA can choose 

to execute the global search process or the local search 

process through a random number. The mathematical 

formula for the global search phase is as follows (rand<0.5): 

 
1new prey prey ix x F I x F r a d A= +    +      (27) 

 2 3cos(2 ) [1 cos(2 )]A r r =    −    (28) 

where xnew stands for the updated positio; xprey stands for the 

global optimal position and β indicates the potential of the 

honey badger to obtain food with a value greater than or equal 

to 1. Ii stands for the odor intensity of the prey, if the value is 

large, the speed will be fast; di represents the distance 

between the current honey badger individual and xprey, the 

detailed formula is as follows. 

 
2

1

4 2

( )
( )
4 ( )

i i

i

i

x x
I r

d
+−

= 
 

 (29) 

 
i prey id x x= −  (30) 

In the above formulas, F represents the function that alters 

the search direction; a represents the density factor, which is 

used to ensure the smooth shift of the algorithm from global 

to local search. The formula is as follows: 
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1    ( 0.5)

-1     

if rand
F

otherwise


= 


 (31) 

 
max

exp( )
t

a C
t

−
=   (32) 

The mathematical formula of the local search stage is as 

follows (rand>0.5): 

 
5new prey ix x F r a d= +     (33) 

where r1, r2, r3, r4 and r5 represent the random numbers 

between 0 and 1. rand is also a random number between 0 

and 1. 

B. Proposed MOIHBA 

1) Sine chaotic mapping strategy 

In the HBA algorithm, the initialization of the population is 

randomly distributed. This method is likely to cause the 

location of the population to be concentrated in a certain 

feasible region, so the algorithm has poor diversity and 

ergodicity in the early search, which further affects the 

algorithm's search accuracy and convergence speed [35]. The 

sine chaotic model is a chaotic model with infinite number of 

mapping folds, which has good ergodicity and randomness. 

Therefore, this method will be used to improve the diversity 

of the population. Its expression is as follows: 

 
1

2
sin( )    i 0,1,...,

1 1      R 0

i

i

i i

R N
R

R

+


= =


 −   

 (34) 

 1 1 ( )i iX R ub lb lb+ +=  − +  (35) 

where Ri is a random number between -1 and 1, and it is not 0; 

Xi+1 represents the position of the individual; ub, lb represent 

the maximum and minimum position constraint limits. 

2) Backward learning mechanism 

After adopting the sine chaotic mapping strategy, the 

ergodicity and diversity of the population are improved, but 

the problem is that in the process of algorithm optimization, 

the search range of the solution set is too large, and the 

optimization time is too long. In response to this problem, a 

backward learning mechanism will be introduced, which can 

improve the quality of the solution set of the initial 

population and narrow the search range. After the generated 

population is initialized, its reverse population is calculated, 

the fitness of the initial population and the reverse population 

is merged, and the calculation results are sorted 

non-inferiorly. Finally, the top individuals are taken as the 

initial population. It can be described as below: 

 i iconverseX ub lb X= + −  (36) 

where Xi represents the position of the initial individual; 

converseXi represents the reverse position of the initial 

individual. ub and lb represent the maximum and minimum 

position constraint limits. 

3) Cross-learning mechanism 

As the optimization accuracy of the original HBA 

algorithm is not high, a cross-learning mechanism will be 

introduced. The selection intersection strategy of DE 

algorithm can better enable the algorithm to traverse the 

entire search domain so that it is easier to find potential 

optimal solutions. Therefore, in order to improve the 

optimization accuracy of HBA and expand the diversity of 

the population, the crossover process of the DE algorithm is 

introduced into the mining stage of the honey badger 

algorithm (The global search stage). Its mathematical form is 

defined as follows: 

 
1 2 3( ) ( ) ( ( ) ( ))

1 2 3 [1 ]

R R RF i f i f i f i

R R R N

= +  −

、 、 ，
 (37) 

where F(i) represents the newly generated individuals after 

crossover, R1, R2, and R3 represent three random numbers 

with different values between 1 and N, respectively; η 

represents the step size operator which is used to control the 

degree of individual variation. fR1(i), fR2(i) and fR3(i) 

respectively represent three different individuals from the 

population. The specific crossover process is as follows: 

 
( )      

=      

i c

i i

X F i if R VC

X X else

= 



 (38) 

where Xi represents the individual position; Rc represents a 

random number; VC represents a cross constant, which is 0.3. 

The pseudo-code of MOIHBA is as follows. 

 
TABLE I  

PSEUDO-CODE OF MOIHBA 

Start 

Set initial values for variables like N, D, β, C, tmax, VC, η. 

Generate the initial population using (34,35,36). 

Count the target and constraint values for each individual and rank the 

2N individuals; 
Take the first N individuals; 
Select the best individual as xprey and record it fitness value to fprey; 
t=0; 
while t < tmax 

Update the factor α using (32); 

for i = 1 to N 
Calculate the intensity Ii using (29); 

Generate a vector F(i) using (37); 

for j=1 to D 
if rand<0.5 

Execute the crossover strategy for Xi according to (38); 

Update the position Xnew using (27) (global search); 
else 

Update the position Xnew using (33) (local search); 

end 

end 

end 
Obtain a new population and record each fitness value; 
if fnew≤ fi 

Xi = Xnew  and  fi = fnew; ; 

end 

if fnew≤ fprey 

Select the best individual as xprey and record it fitness value to fprey; 

end 

t=t+1; 

end while 

IV. SIMULATION RESULTS AND COMPARISONS 

To test the effectiveness and practicability of MOIHBA, 

nine multi-objective cases were tested under three different 

sized test systems, they are IEEE30, IEEE57, and IEEE118, 

while MOPSO/NSGA-II and MODE are chosen as the 

comparison algorithms. The simulation experiments are 

completed on a PC with i5-7500 CPU @ 3.40GHz with 16G 

memory. To further describe the MOIHBA algorithm, the 

detailed process is shown in Fig. 1. 

A. Test Systems 

The IEEE30 standard test system is shown in Fig. 2, and 

the specific data parameters of the system are shown in 

literature [36-38]. This test system has 19 control variables, 

including six generator variables, four transformer variables 

and nine reactive power compensator variables. In this 
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system, the upper limit of the generator bus voltage is set to 

1.1 (p.u), and the lower limit is 0.95 (p.u). Transformer taps 

have an upper limit of 1.1 (p.u) and a lower limit of 0.9 (p.u). 

The IEEE57 standard test system is shown in Fig. 3, and 

the specific data parameters of the system can be found in 

literature [39]. The vector of control variables in this system 

is a 27-dimensional vector, including 7 generators, 17 

transformers and 3 reactive power compensation devices. Set 

the upper limit of the generator bus voltage to 1.1 (p.u) and 

the lower limit to 0.9 (p.u). Transformer taps have an upper 

limit of 1.1 (p.u) and a lower limit of 0.9 (p.u). 

The IEEE118 standard test system is shown in Fig. 4, and 

the detailed data parameters of this system are presented in 

literature [39]. This test system is larger and more complex 

than the IEEE30 and IEEE57 test systems. The system has 75 

control variables, including 54 generators variables, 9 

transformers variables, and 12 reactive power compensator 

variables. 

Start

Read test system data and set initial values for variables 

Use sine chaotic mapping strategy and backward learning mechanism to generate the initial 

population and its inverse population

Record the individual's target values and constraints through power flow calculation

Sort the merged population by a non-dominated sorting method  and take the top N individuals in external file

Set iteration number t=1

Whether the condition t=tmax is satisfied?

Rand <VC? Perform a local search using (33)
No

Perform a global search using (27)

Yes

All individual locations have been updated

Record the individual's target values and constraints

Merge the updated population with the population in the external file

Sort the merged population  by a non-dominated sorting method  and take the top N individuals in external file

t=t+1

NO

Output the data result optimized by the MOIHBA algorithm

Yes

End
 

Fig. 1.  The flow chart of MORPO method 
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Fig. 2.  IEEE30 standard test system 

G GG

G

G

G G

5

17

30

25

5429 5352

27

28

26 24

21

23 22

201918

5110

7

8 9

1234

6

35

34

33

3231

38

37

36

14 13 12

15

16

46

44

45

49

48

47

50

40

5739

55

41

42

56 11

43

 
Fig. 3.  IEEE57 standard test system 
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B. Algorithm Parameters Settings 

Setting the appropriate parameters of the algorithm is a 

very important step. To determine the magnitude of the 

population and the total amount of iterations of MOIHBA 

algorithm, experiments will be conducted on the IEEE30 

standard test system for a two-objective mathematical model 

consisting of fPloss and fLindex. 

When the population size is 100, and the number of 

iterations is from 50 to 400, the simulation results in Fig. 5. 

The best PFs are obtained when the number of iterations is 

300 and 400, in order to shorten the experiment time, the 

number of iterations is set to 300. When setting the 

population size to 30, 60, 100 and 150 and the number of 

iterations to 300, from Fig. 6, it is clear that the optimal PFs 

are gained when the population size is 100 and 150. By 

comprehensive consideration, the initial group size N is set to 

100. TABLE II sets specific values for the variables of the 

MOIHBA algorithm. Apart from the specific parameters 

mentioned in the table, the detailed parameter settings of 

MOPSO and NSGA-II are described in references [38] and 

[36]. Set the variable F to 0.5 and CR to 0.3 in the MODE 

algorithm. In the following experiments, the reference 

capacity is set to 100MVA. 
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Fig. 4.  IEEE118 standard test system 

 
Fig. 5.  Pareto fronts in different iterations 

C.  IEEE30 Standard Test System 

1) Case 1 

In this case, two main objective functions are optimized. It 

clearly shows the PFs obtained by three different algorithms 

in Fig. 7, and the pareto front of MOIHBA is closer to the real 

solution. Fig. 8 shows the location of the BCS of MOIHBA. 

TABLE III gives the optimization results of several 

algorithms' BCS. TABLE IV demonstrated the comparative 

data of the best compromise solutions obtained by several 

algorithms, which is solved by using a fuzzy theory method. 

The active power loss value of MOIHBA is 5.1202 MW, and 

the voltage stability index is 0.1332, and the results are better 

than MOPSO and NSGA-II. When comparing with reference 

[15], although the voltage stability index of MOIHBA is 

slightly higher than that of MOCIPSO, the active power loss 

value is significantly lower than that of MOCIPSO, 

 
Fig. 6.  Pareto fronts in different populations 

 
Fig. 7.  PFs obtained by three algorithms in Case 1 

 
Fig. 8.  The BCS of MOIHBA in Case 1 
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which indicates that the proposed MOIHBA can solve the 

MORPO problem well and the introduced strategies have 

been effectively incorporated in original algorithm. 

2) Case 2 

The active power losses and voltage deviation are 

optimized in this case. Fig. 9 demonstrates the PFs obtained 

by MOIHBA algorithm, MOPSO algorithm, and NSGA-II 

algorithm, and it can be observed that the pareto front of 

MOIHBA are better. Fig. 10 shows the location of the best 

compromise solution of MOIHBA. TABLE V lists the values 

of the adjusted control variables for obtaining the best 

compromise through several algorithms. TABLE VI displays 

the comparison of the best compromise solutions acquired by 

several algorithms and references [40]. The active power loss 

of MOIHBA is 5.1368 MW, and the voltage deviation is 

0.2471. By comparing with several other algorithms and 

references, obviously, it demonstrates that the MOIHBA 

algorithm outperforms several other algorithms, and it shows 

the effectiveness and competitiveness of the proposed 

method. 

 
TABLE II  

PARAMETER SETTING OF MOIHBA ALGORITHM 

Algorithms Parameters Case1~9 

 

 

 
MOIHBA 

Population 

Maximum Iteration 

External file size 
C 

β 

VC 
η 

100 

300 

100 
2 

6 

0.3 
0.5 

 
TABLE III  

BCS OPTIMIZATION RESULTS IN CASE 1 

Control 

variables 
MOPSO NSGA-II MOIHBA 

VG1(p.u.) 1.1000 1.1000 1.0315 
VG2(p.u.) 1.0077 0.9517 1.0972 
VG5(p.u.) 1.1000 0.9755 1.0999 
VG8(p.u.) 1.1000 1.0038 1.0987 
VG11(p.u.) 1.1000 1.0151 1.1000 
VG13(p.u.) 0.9500 0.9664 0.9906 

T6-9 0.9784 0.9690 0.9827 
T6-10 0.9000 0.9239 0.9000 
T4-12 0.9419 0.9689 0.9443 
T28-27 0.9260 0.9166 0.9166 

C10(p.u.) 0.0500 0.0346 0.0500 
C12(p.u.) 0.0500 0.0392 0.0500 
C15(p.u.) 0.0500 0.0446 0.0500 
C17(p.u.) 0.0500 0.0480 0.0500 
C20(p.u.) 0.0500 0.0402 0.0500 
C21(p.u.) 0.0500 0.0408 0.0500 
C23(p.u.) 0.0399 0.0479 0.0423 
C24(p.u.) 0.0500 0.0445 0.0500 
C29(p.u.) 0.0500 0.0279 0.0287 

fPloss (MW) 5.1297 5.1494 5.1202 
fL index 0.1334 0.1342 0.1332 

 
TABLE IV  

COMPARISON OF BEST COMPROMISE SOLUTIONS IN CASE 1 

comparison fPloss (MW) fL index 

MOIHBA 

MOPSO 

5.1202 

5.1297 

0.1332 

0.1334 

NSGA-II 5.1494 0.1342 

MOCIPSO[38] 5.2320 0.1182 

 

3) Case 3 

In order to make the system operate stably in the MORPO 

problem, the two single objectives of voltage stability index 

and voltage deviation are combined into a double objective 

mathematical model. As can be seen in Fig. 11, although the 

PFs of the three algorithms are similar, the distributivity and  

uniformity of the pareto front of MOIHBA are somewhat 

preferable over the other algorithms. Fig. 12 gives the 

location of the BCS of MOIHBA. TABLE VII and TABLE 

VIII summarize the BCS obtained by several algorithms, and 

the BCS of MOIHBA includes voltage deviation and voltage 

stability index, which are 0.4117 and 0.1343, respectively. 

The comparison shows that MOIHBA is preferable to several 

other algorithms. Although the numerical gap in the obtained 

optimization data is not significant, considering the large 

scale of the test system, the optimization advantage of 

MOIHBA cannot be ignored. 

 

 
Fig. 9.  PFs obtained by three algorithms in Case 2 

 
Fig. 10.  The BCS of MOIHBA in Case 2 

D.  IEEE57 Standard Test System 

4) Case 4 

The optimization of active power loss and voltage stability 

index within IEEE57 standard test system is a further test for 

the proposed algorithm. As can be seen in Fig. 13, the 

distributivity and uniformity of the PFs obtained by several 

algorithms are slightly inferior to those of case 1, which may 

be due to the increase in the scale of the test system. However, 

the PF of MOIHBA is better than MOPSO and MODE 

according to the picture display. Fig. 14 shows the location of 

the BCS of MOIHBA. TABLE IX and TABLE X show the 

optimization results of BCS and the comparison with 

references. As can be seen that the BCS of MOIHBA includes 

the active power loss and voltage stability indexes, which are  
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TABLE V  
BCS OPTIMIZATION RESULTS IN CASE 2 

Control 

variables 
MOPSO NSGA-II MOIHBA 

VG1(p.u.) 1.1000 1.0595 1.0785 

VG2(p.u.) 1.0687 0.9862 1.0904 

VG5(p.u.) 1.0974 1.0871 1.0928 
VG8(p.u.) 1.1000 0.9608 1.0931 

VG11(p.u.) 1.0236 1.0776 0.9587 

VG13(p.u.) 1.1000 1.0019 1.0983 
T6-9 1.0776 1.0780 1.0755 

T6-10 0.9000 0.9008 0.9001 

T4-12 1.0260 1.0214 1.0248 
T28-27 0.9789 0.9748 0.9774 

C10(p.u.) 0 0.0412 0.0024 

C12(p.u.) 0 0.0018 0.0008 
C15(p.u.) 0.0500 0.0255 0.0363 

C17(p.u.) 0.0500 0.0470 0.0489 

C20(p.u.) 0.0500 0.0351 0.0390 
C21(p.u.) 0.0500 0.0253 0.0500 

C23(p.u.) 0.0196 0.0321 0.0272 

C24(p.u.) 0.0500 0.0475 0.0500 
C29(p.u.) 0.0219 0.0246 0.0222 

fPloss (MW) 5.1374 5.1482 5.1368 

fVd (p.u.) 0.2581 0.2516 0.2471 

 
TABLE VI  

COMPARISON OF BEST COMPROMISE SOLUTIONS IN CASE 2 

comparison fPloss (MW) fVd (p.u.) 

MOIHBA 5.1368 0.2471 

MOPSO 5.1374 0.2581 

NSGA-II 5.1482 0.2516 

MOICA[40] 

MOGBICA[40] 

5.1483 

5.1383 

0.2623 

0.2483 

 

 
Fig. 11.  PFs obtained by three algorithms in Case 3 

 
Fig. 12.  The BCS of MOIHBA in Case 3 

26.7923 MW and 0.2639, respectively, with better 

performance compared with other algorithms. In comparison 

with references, the active power losses are significantly 

lower than in MOCIPSO, although the voltage stability index 

is not as good as in MOCIPSO. 

 
TABLE VII  

BCS OPTIMIZATION RESULTS IN CASE 3 

Control 
variables 

MOPSO NSGA-II MOIHBA 

VG1(p.u.) 1.0926 0.9722 1.0200 

VG2(p.u.) 1.0862 0.9520 1.0137 
VG5(p.u.) 1.1000 1.0936 1.0773 

VG8(p.u.) 1.1000 1.0338 1.0542 

VG11(p.u.) 1.1000 0.9500 1.0864 
VG13(p.u.) 1.0071 1.0969 0.9880 

T6-9 1.1000 1.0169 1.0730 

T6-10 0.9000 0.9661 0.9000 
T4-12 1.1000 1.0676 1.0783 

T28-27 0.9000 0.9004 0.9000 

C10(p.u.) 0.0500 0.0174 0 

C12(p.u.) 0.0277 0.0143 0 

C15(p.u.) 0.0500 0.0220 0.0500 

C17(p.u.) 0.0026 0.0247 0 
C20(p.u.) 0.0500 0.0485 0.0500 

C21(p.u.) 0.0361 0.0129 0.0130 

C23(p.u.) 0.0258 0.0107 0.0179 
C24(p.u.) 0 0.0265 0.0270 

C29(p.u.) 0.0500 0.0499 0.0500 
fVd (p.u.) 0.4165 0.4335 0.4117 

fL index 0.1344 0.1345 0.1343 

 
TABLE VIII  

COMPARISON OF BEST COMPROMISE SOLUTIONS IN CASE 3 

comparison fVd (p.u.) fL index 

MOIHBA 

MOPSO 

0.4117 

0.4165 

0.1343 

0.1344 

NSGA-II 0.4335 0.1345 

 

5) Case 5 

In case 5, the selection of the objective function is the same 

as in case2. Fig. 15 demonstrates the pareto front of 

MOIHBA outperforms than MOPSO and MODE. Fig. 16 

clearly shows the location of the BCS for MOIHBA. TABLE 

XI shows the optimal control variables for several algorithms 

to obtain the best compromise solution. From TABLE XII, it 

can be seen that the BCS of MOIHBA is 26.9287 (MW), 

1.1586 (p.u.), and its values are significantly better than 

MOPSO and MODE, respectively. Therefore, it can be 

further verified that MOIHBA can perform well in 

medium-sized test systems. 

 
Fig. 13.  PFs obtained by three algorithms in Case 4 
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Fig. 14.  The BCS of MOIHBA in Case 4 

 
Fig. 15.  PFs obtained by three algorithms in Case 5 

 
Fig. 16.  The BCS of MOIHBA in Case 5 

 

6) Case 6 

In case 6, MOIHBA, MOPSO, and MODE are used for the 

optimization of the voltage deviation and voltage stability 

index, and from Fig. 17, it can be seen clearly that the 

distribution and uniformity of the pareto front obtained by 

MOIHBA are better and closer to the true front than MOPSO 

and MODE. Fig. 18 shows the BCS location of MOIHBA. 

From TABLE XIII and TABLE XIV, it can be seen that the 

values of BCS of MOIHBA are 1.1798 (p.u.) and 0.2734, 

respectively. This data set reflects that MOIHBA is superior 

to MOPSO and MODE. 

 
Fig. 17.  PFs obtained by three algorithms in Case 6 

 
Fig. 18.  The BCS of MOIHBA in Case 6 

 
TABLE IX  

BCS OPTIMIZATION RESULTS IN CASE 4 

Control 

variables 
MOPSO MODE MOIHBA 

VG1(p.u.) 1.1000 1.1000 0.9005 
VG2(p.u.) 0.9000 1.0878 0.9074 
VG3(p.u.) 0.9000 1.0061 0.9274 
VG6(p.u.) 0.9000 0.9623 0.9270 
VG8(p.u.) 0.9000 1.1000 0.9200 
VG9(p.u.) 1.1000 0.9579 1.0081 
VG12(p.u.) 1.1000 0.9297 0.9491 

T4-18 0.9000 0.9011 0.9043 
T4-18 0.9000 0.9030 0.9065 
T21-20 1.0386 1.0036 1.0043 
T24-25 0.9000 1.0114 0.9530 
T24-25 0..9000 0.9204 0.9756 
T24-26 1.0176 1.0041 0.9941 
T7-29 0.9000 0.9163 0.9000 
T34-32 0.9000 0.9000 0.9004 
T11-41 0.9000 0.9002 0.9014 
T15-45 0.9000 0.9000 0.9001 
T14-46 0.9000 0.9000 0.9003 
T10-51 0.9000 0.9000 0.9000 
T13-49 0.9000 0.9001 0.9001 
T11-43 0.9000 0.9001 0.9008 
T40-56 1.0794 1.0611 1.0666 
T39-57 0.9000 1.0162 1.0230 
T9-55 0.9000 0.9038 0.9006 

C18(p.u.) 0 0.1372 0.1243 
C25(p.u.) 0 0.0902 0.0853 
C53(p.u.) 0.1097 0.1199 0.0956 

fPloss (MW) 27.2249 26.8182 26.7923 
fL index 0.2641 0.2650 0.2639 
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TABLE X  
COMPARISON OF BEST COMPROMISE SOLUTIONS IN CASE 4 

comparison fPloss (MW) fL index 

MOIHBA 

MOPSO 

26.7923 

27.2249 

0.2639 

0.2641 

MODE 

MOCIPSO[38] 

26.8182 

27.1220 

0.2650 

0.2370 

E.  IEEE118 Standard Test System 

7) Case 7 

IEEE118 is a much larger scale standard test system, 

which is used in this case to verify MOIHBA, MOPSO, 

MODE, and NSGA-II for the dual objective of active power 

loss and voltage deviation combination. In Fig. 19, the PFs of 

the four algorithms can be obtained, and it can be clearly seen 

that the pareto front of the MOIHBA algorithm outperforms 

the other three algorithms. The position of the BCS of 

MOIHBA is given in Fig. 20. TABLE XV obtains the values 

of the adjusted control variables for each algorithm. 

TABLE XVI gives the values of the BCS of MOIHBA, 

which are 131.6729 (MW) and 1.2774 (p.u.), and their values 

are better than the other three algorithms and MOICA-III [41]. 

This reflects that the performance of MOIHBA when applied 

to large-scale test systems is competitive and efficient. 

 
TABLE XI  

BCS OPTIMIZATION RESULTS IN CASE 5 

Control 

variables 
MOPSO MODE MOIHBA 

VG1(p.u.) 1.1000 1.0137 0.9889 
VG2(p.u.) 1.1000 1.0250 1.0694 
VG3(p.u.) 1.1000 0.9411 0.9727 
VG6(p.u.) 1.0829 1.0400 0.9440 
VG8(p.u.) 0.9207 1.0128 0.9639 
VG9(p.u.) 1.1000 1.0048 1.0738 
VG12(p.u.) 1.1000 0.9273 1.0916 

T4-18 0.9781 0.9393 0.9583 
T4-18 0.9000 0.9871 0.9155 
T21-20 1.0260 1.0275 1.0185 
T24-25 0.9000 0.9406 0.9432 
T24-25 1.1000 1.0760 1.0740 
T24-26 1.0225 1.0064 1.0089 
T7-29 0.9512 0.9324 0.9359 
T34-32 0.9000 0.9599 0.9613 
T11-41 0.9000 0.9065 0.9057 
T15-45 0.9000 0.9242 0.9187 
T14-46 0.9000 0.9194 0.9204 
T10-51 0.9340 0.9304 0.9335 
T13-49 0.9000 0.9000 0.9010 
T11-43 0.9000 0.9054 0.9059 
T40-56 1.1000 1.0371 1.0095 
T39-57 0.9000 0.9674 0.9721 
T9-55 0.9455 0.9227 0.9239 

C18(p.u.) 0 0.1243 0.0502 
C25(p.u.) 0.0979 0.1315 0.1301 
C53(p.u.) 0.1178 0.1107 0.1041 

fPloss (MW) 27.2115 26.9294 26.9287 
fVd (p.u.) 1.3227 1.1968 1.1586 

 
TABLE XII  

COMPARISON OF BEST COMPROMISE SOLUTIONS IN CASE 5 

comparison fPloss (MW) fVd (p.u.) 

MOIHBA 

MOPSO 

26.9287 

27.2115 

1.1586 

1.3227 

MODE 26.9294 1.1968 

 

8) Case 8 

In case 8, the voltage deviation and voltage stability index 

are selected as the optimization objectives. The pareto fronts 

of the three algorithms are given in Fig. 21, and by processing 

the graphs, it can be observed that the pareto front obtained 

by the MOIHBA algorithm is better than the other two 

algorithms, and Fig. 22 shows the location of the BCS for 

MOIHBA. TABLE XVII displays the values of the control 

variables optimized by each algorithm. The data of the BCS 

of MOIHBA are given in TABLE XVIII, which are 1.3032 

(p.u.) and 0.0671. Compared with the other two algorithms, 

the comprehensive performance of the proposed algorithm is 

more competitive. All the above cases fully verify that the 

proposed algorithm perform well as well as practical in test 

systems of different sizes. 

 
TABLE XIII  

BCS OPTIMIZATION RESULTS IN CASE 6 

Control 

variables 
MOPSO MODE MOIHBA 

VG1(p.u.) 1.0595 1.1000 1.0118 
VG2(p.u.) 1.0116 0.9000 0.9790 
VG3(p.u.) 1.1000 1.1000 0.9731 
VG6(p.u.) 0.9000 1.0606 1.0454 
VG8(p.u.) 0.9000 0.9000 1.0022 
VG9(p.u.) 0.9552 0.9000 0.9582 
VG12(p.u.) 0.9000 0.9685 0.9327 

T4-18 1.1000 0.9624 0.9220 
T4-18 0.9000 1.0415 1.0936 
T21-20 0.9556 1.0074 0.9839 
T24-25 0.9000 0.9000 0.9000 
T24-25 1.1000 0.9000 0.9006 
T24-26 1.0186 1.0109 1.0052 
T7-29 0.9548 0.9516 0.9270 
T34-32 0.9000 0.9000 0.9038 
T11-41 0.9000 0.9005 0.9004 
T15-45 0.9000 0.9000 0.9034 
T14-46 0.9000 0.9000 0.9074 
T10-51 0.9000 0.9948 0.9914 
T13-49 0.9329 0.9055 0.9009 
T11-43 0.9418 0.9004 0.9106 
T40-56 1.0635 1.0800 1.0359 
T39-57 0.9000 0.9220 0.9422 
T9-55 0.9000 0.9433 0.9489 

C18(p.u.) 0 0.2533 0.2202 
C25(p.u.) 0.1623 0.0495 0.0494 
C53(p.u.) 0 0.0678 0.0111 
fVd (p.u.) 1.4116 1.1903 1.1798 

fL index 0.2761 0.2737 0.2734 

 
TABLE XIV  

COMPARISON OF BEST COMPROMISE SOLUTIONS IN CASE 6 

comparison fVd (p.u.) fL index 

MOIHBA 

MOPSO 

1.1798 

1.4116 

0.2734 

0.2761 

MODE 1.1903 0.2737 

 
9) Case 9 

Compared with the double-objective optimization problem, 

the optimization of three objectives simultaneously requires 

the higher performance of the algorithm. In case 9, to verify 

the proposed algorithm is also effective in solving the 

three-objective optimization problem in MORPO, three 

conflicting goal functions, namely, active power loss, voltage 

stability index and voltage deviation, will be optimized at the 

same time. Fig. 23 shows the PF distribution of MOPSO, 

MODE and MOIHBA algorithms. The diagram clearly 

shows the MOIHBA has a more uniform solution set, a wider 

range of solutions, and a better Pareto front than the other two 

algorithms. Fig. 24 shows the PF of MOIHBA. TABLE XIX 

shows the best compromise solutions obtained by three 

algorithms through fuzzy theory strategy. It shows the 

optimization results that the solution of 
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Fig. 19.  PFs obtained by four algorithms in Case 7 

 
Fig. 20.  The BCS of MOIHBA in Case 7

 
TABLE XV  

BCS OPTIMIZATION RESULTS IN CASE 7 

CVs Alg1 Alg2 Alg3 Alg4 CVs Alg1 Alg2 Alg3 Alg4 

VG1(p.u.) 0 0.9415 1.0477 0.9378 VG87(p.u.) 0.9000 1.0572 0.9533 1.0032 
VG4(p.u.) 1.1000 1.0242 0.9878 0.9756 VG89(p.u.) 0.9000 0.9341 1.0555 0.9692 

VG6(p.u.) 0.9000 1.1000 0.9000 0.9529 VG90(p.u.) 0.9000 0.9000 0.9984 0.9415 

VG8(p.u.) 1.1000 0.9780 0.9053 0.9795 VG91(p.u.) 1.1000 1.0870 0.9293 1.0228 
VG10(p.u.) 0.9000 0.9591 0.9170 0.9628 VG92(p.u.) 0.9014 0.9000 1.0547 0.9509 

VG12(p.u.) 1.1000 0.9000 0.9542 0.9570 VG99(p.u.) 1.1000 0.9169 0.9713 1.0078 

VG15(p.u.) 0.9000 0.9452 0.9227 0.9592 VG100(p.u.) 0.9679 1.1000 1.0381 1.0345 
VG18(p.u.) 1.1000 0.9256 1.0442 0.9411 VG103(p.u.) 0.9000 1.0497 1.0973 0.9403 

VG19 (p.u.) 0.9000 1.0525 0.9924 0.9207 VG104(p.u.) 0.9901 1.0245 1.0621 1.0517 

VG24(p.u.) 1.1000 1.0336 0.9409 0.9723 VG105(p.u.) 0.9000 1.1000 1.0953 0.9821 
VG25(p.u.) 1.1000 0.9210 1.0069 0.9172 VG107(p.u.) 0.9000 0.9317 1.0975 0.9615 

VG26(p.u.) 0.9000 1.0652 1.0905 1.0201 VG110(p.u.) 1.1000 0.9953 1.0246 1.0532 

VG27(p.u.) 1.1000 1.0622 0.9082 0.9115 VG111(p.u.) 1.1000 1.1000 0.9022 1.0421 
VG31(p.u.) 1.1000 1.0079 0.9152 0.9577 VG112(p.u.) 0.9000 0.9063 0.9370 0.9668 

VG32(p.u.) 0.9176 0.9700 0.9028 1.0306 VG113(p.u.) 0.9000 1.0153 1.0942 1.0058 

VG34(p.u.) 0.9755 0.9259 1.0432 0.9417 VG116(p.u.) 0.9000 1.1000 0.9797 0.9204 
VG36(p.u.) 1.0951 0.9000 1.0715 0.9896 T8 0.9944 0.9957 0.9971 0.9949 

VG40(p.u.) 0.9000 1.1000 0.9105 1.0201 T32 0.9869 0.9907 0.9721 0.9904 

VG42(p.u.) 0.9444 1.0492 0.9708 0.9862 T36 0.9950 1.0022 0.9864 1.0001 
VG46(p.u.) 1.1000 1.1000 0.9403 1.0407 T51 0.9970 0.9955 1.0251 0.9959 

VG49(p.u.) 0.9272 0.9000 0.9757 0.9926 T93 1.0124 1.0126 1.0232 1.0091 

VG54(p.u.) 0.9545 1.0001 1.0013 0.9618 T95 0.9997 1.0042 0.9882 1.0081 
VG55(p.u.) 0.9005 0.9503 0.9206 1.0038 T102 0.9710 0.9926 0.9854 0.9913 

VG56(p.u.) 1.0259 0.9733 1.0249 1.0568 T107 0 0.9142 0.9409 0.0117 

VG59(p.u.) 0.9000 0.9628 1.0836 0.9925 T127 0.9476 0.9448 0.9422 0.0464 
VG61(p.u.) 0.9000 0.9131 0.9650 1.0294 C34(p.u.) 0 0 0.0233 0.0547 

VG62(p.u.) 0.9000 0.9549 0.9580 1.0582 C44(p.u.) 0.3000 0.1427 0.1312 0.1492 

VG65(p.u.) 1.0254 0.9508 0.9011 0.9335 C45(p.u.) 0 0.2552 0.2857 0.2475 
VG66(p.u.) 0.9695 1.0858 1.0219 0.9441 C46(p.u.) 0 0.1655 0.1700 0.1318 

VG69(p.u.) 1.1000 0.9000 0.9045 0.9473 C48(p.u.) 0 0.0325 0.0358 0.0231 

VG70(p.u.) 0.9000 0.9000 1.0004 1.0066 C74(p.u.) 0 0.3000 0.2811 0.1555 
VG72(p.u.) 1.1000 1.0607 1.1000 1.0217 C79(p.u.) 0.2282 0.3000 0.0466 0.2725 

VG73(p.u.) 0.9000 1.0405 0.9202 0.9102 C82(p.u.) 0.3000 0.2998 0.1742 0.2949 

VG74(p.u.) 1.1000 1.0355 0.9661 0.9313 C83(p.u.) 0.3000 0.3000 0.1110 0.2936 
VG76(p.u.) 0.9013 0.9104 0.9002 0.9801 C105(p.u.) 0.3000 0.1563 0.1186 0.1319 

VG77(p.u.) 0.9000 1.0221 0.9156 0.9478 C107(p.u.) 0 0.2614 0.0200 0.1040 

VG80(p.u.) 1.1000 1.0522 1.0281 0.9424 C110(p.u.) 0 0.0393 0.0536 0.1494 

VG85(p.u.) 1.1000 0.9011 0.9110 0.9246 fPloss (MW) 131.8330 131.6734 131.9208 131.6729 

     fVd (p.u.) 1.2792 1.2775 1.3160 1.2774 

Note: CVs represents control variables; Alg1-Alg4 represent MOPSO, MODE, NSGA-II, MOIHBA, respectively

TABLE XVI  
COMPARISON OF BEST COMPROMISE SOLUTIONS IN CASE 7 

comparison fPloss (MW) fVd (p.u.) 

MOIHBA 

MOPSO 

131.6729 

131.8330 

1.2774 

1.2792 

MODE 

NSGA-II 

MOICA-III[41] 

131.6734 

131.9208 

131.7112 

1.2775 

1.3160 

1.2732 

 

MOIHBA is superior to MODE, and although the individual 

solutions of MOIHBA are inferior to MOPSO, the overall 

quality of all the solutions obtained by MOIHBA is the 

highest from the PF. It demonstrates that MOIHBA can also 

solve the three-objective optimization problem well. 

F. Performance Evaluation 

For the evaluation indexes of multi-objective optimization, 

commonly used evaluation indexes include generation 

distance index (GD), hypervolume index (HV), inversion 

generation distance (IGD), spacing and so on. In this paper, 

GD and HV are selected as evaluation indexes. 
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Fig. 21.  PFs obtained by three algorithms in Case 8 

 
Fig. 22.  The BCS of MOIHBA in Case 8 

 
TABLE XVII  

BCS OPTIMIZATION RESULTS IN CASE 8 

CVs Alg1 Alg2 Alg3 CVs Alg1 Alg2 Alg3 

VG1(p.u.) 1.1000 1.0985 0.9708 VG87(p.u.) 1.1000 1.0629 0.9000 
VG4(p.u.) 1.1000 1.0902 1.1000 VG89(p.u.) 1.1000 1.0785 1.0378 

VG6(p.u.) 1.1000 1.0879 1.0396 VG90(p.u.) 1.1000 1.0927 1.0395 

VG8(p.u.) 1.1000 1.0844 0.9853 VG91(p.u.) 1.0243 1.0559 0.9572 
VG10(p.u.) 1.1000 1.0931 0.9228 VG92(p.u.) 0.9000 1.1000 0.9752 

VG12(p.u.) 1.1000 1.0122 1.0247 VG99(p.u.) 1.1000 1.0532 0.9142 

VG15(p.u.) 1.1000 1.0996 0.9060 VG100(p.u.) 0.9000 1.0469 1.0528 
VG18(p.u.) 0.9000 0.9182 0.9547 VG103(p.u.) 1.1000 1.0999 0.9000 

VG19 (p.u.) 1.1000 1.0933 0.9000 VG104(p.u.) 1.1000 1.0997 0.9506 

VG24(p.u.) 1.1000 1.0697 1.1000 VG105(p.u.) 1.1000 1.0554 0.9000 
VG25(p.u.) 1.1000 1.0702 0.9319 VG107(p.u.) 1.1000 1.0840 0.9000 

VG26(p.u.) 1.1000 1.0332 0.9000 VG110(p.u.) 1.1000 1.0999 0.9000 

VG27(p.u.) 1.1000 1.0741 0.9000 VG111(p.u.) 1.1000 1.0823 0.9848 
VG31(p.u.) 1.1000 1.0461 1.0446 VG112(p.u.) 1.0880 0.9528 1.0343 

VG32(p.u.) 1.1000 0.9044 0.9861 VG113(p.u.) 0.9598 0.9618 1.1000 

VG34(p.u.) 1.1000 1.0917 1.0524 VG116(p.u.) 1.1000 1.0150 1.1000 
VG36(p.u.) 1.0128 1.0937 1.0141 T8 0.9865 0.9935 0.9897 

VG40(p.u.) 1.1000 1.0104 0.9000 T32 0.9900 0.9905 0.9903 
VG42(p.u.) 0.9000 0.9662 1.0837 T36 1.0392 1.0388 1.0333 

VG46(p.u.) 1.1000 1.0416 0.9000 T51 0.9792 0.9776 0.9837 

VG49(p.u.) 1.1000 0.9691 1.0649 T93 1.0333 1.0232 1.0204 
VG54(p.u.) 1.1000 1.0111 1.0025 T95 0.9765 0.9934 0.9946 

VG55(p.u.) 1.1000 1.0266 1.1000 T102 0.9978 0.9954 1.0008 

VG56(p.u.) 1.1000 1.0952 1.1000 T107 1.1000 0.9002 0.9005 
VG59(p.u.) 1.1000 1.0992 1.1000 T127 0.9269 0.9467 0.9469 

VG61(p.u.) 1.1000 1.0661 0.9000 C34(p.u.) 0 0.2454 0.1041 

VG62(p.u.) 1.1000 1.0739 0.9332 C44(p.u.) 0.3000 0.3000 0.3000 
VG65(p.u.) 1.1000 1.0999 1.1000 C45(p.u.) 0.3000 0.3000 0.3000 

VG66(p.u.) 1.1000 0.9550 0.9192 C46(p.u.) 0.3000 0.2811 0.0238 

VG69(p.u.) 1.1000 0.9948 0.9651 C48(p.u.) 0 0.0007 0.0010 
VG70(p.u.) 1.1000 1.0415 1.0805 C74(p.u.) 0 0.0347 0.0639 

VG72(p.u.) 1.1000 0.9759 1.0454 C79(p.u.) 0 0.0049 0.0002 

VG73(p.u.) 1.1000 0.9015 0.9000 C82(p.u.) 0.3000 0.3000 0.3000 
VG74(p.u.) 1.1000 1.0910 1.0905 C83(p.u.) 0.3000 0.2988 0.2989 

VG76(p.u.) 1.1000 1.0965 1.0074 C105(p.u.) 0.3000 0.1958 0.1870 

VG77(p.u.) 1.1000 1.0542 0.9326 C107(p.u.) 0.3000 0.2874 0.2989 
VG80(p.u.) 1.1000 0.9323 1.0139 C110(p.u.) 0.3000 0.0177 0.3000 

VG85(p.u.) 1.1000 0.9776 1.0854 fVd (p.u.) 1.3272 1.3077 1.3032 

    fL index 0.0672 0.0672 0.0671 

Note: CVs represents control variables; Alg1-Alg3 represent MOPSO, MODE, MOIHBA, respectively

TABLE XVIII  
COMPARISON OF BEST COMPROMISE SOLUTIONS IN CASE 8 

comparison fVd (p.u.) fL index 

MOIHBA 

MOPSO 

1.3032 

1.3272 

0.0671 

0.0672 

MODE 1.3077 0.0672 

 

1) GD 

In the multi-objective reactive power optimization 

problem, the GD index is used to evaluate the convergence 

performance of the pareto front obtained by the algorithm 

[42]. It mainly calculates the average separation from the 

algorithm’s PF to its corresponding real PF. A smaller 

average distance proves a much more satisfactory 

convergence performance of the algorithm. 

 
TABLE XIX  

COMPARISON OF BEST COMPROMISE SOLUTIONS IN CASE 9 

comparison fPloss (MW) fL index fVd (p.u.) 

MOIHBA 

MOPSO 

132.0725 

132.1261 

0.0673 

0.0672 

1.2835 

1.3137 

MODE 132.2659 0.0674 1.2838 
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The specific formula is as follows: 
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where n indicates the overall amount of non-inferior 

solutions, Edi indicates the Euclidean distance of the ith 

solution from real PF. 

2) HV 

The hypervolume index is adopted to measure the 

comprehensive performance of the algorithm, such as 

diversity, cutting-edge and convergence [11]. It mainly 

calculates the volume of the area enclosed between the PF 

obtained by the calculation algorithm and the reference point. 

 
Fig. 23.  PFs obtained by three algorithms in Case 9 

 

HV index represents the overall performance of the 

algorithm. The specific formula is as follows: 

 
1

( )
n

ii
HV v

=
=  (40) 

where δ indicates the Lebesgue measure for the volume. |n| 

means the overall amount of non-dominated solutions. vi 

indicates the hypervolume shaped by the ith solution and its 

reference point. 

3) Statistical result analysis 

Based on the previous eight case studies, two indexes, GD 

and HV are selected to investigate the performance of each 

algorithm, and the results will be presented in a box plot. 

The main function of the box plot is to find the overall 

distribution within the data, including minimum, maximum, 

 
Fig. 24.  The PF of MOIHBA in Case 9 
 

 
 

 

 
Fig. 25.  Boxplots of GD index for several algorithms 
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Fig. 26.  Boxplots of HV index for several algorithms 

 
TABLE XX  

THE VALUES OF GD INDEXES FOR SEVERAL ALGORITHMS 

Index Cases Type of data MOIHBA MOPSO NSGA-II MODE 

 
 

 

 
 

 

 
GD 

 

 
 

 

 
 

 

 

Case1 Mean 
Deviation 

0.000636 
0.000122 

0.000768 
0.000158 

0.002002 
0.000376 

- 
- 

Case2 Mean 

Deviation 

0.003779 

0.00073 

0.004431 

0.000551 

0.004437 

0.000251 

- 

- 
Case3 Mean 

Deviation 

0.006763 

0.001334 

0.007087 

0.000254 

0.007207 

0.000361 

- 

- 

Case4 Mean 
Deviation 

0.001721 
0.000648 

0.006464 
0.004448 

- 
- 

0.002558 
0.000339 

Case5 Mean 

Deviation 

0.005944 

0.001573 

0.010959 

0.002412 

- 

- 

0.006782 

0.000687 
Case6 Mean 

Deviation 

0.006082 

0.001157 

0.009359 

0.002067 

- 

- 

0.007279 

0.001408 

Case7 
 

Case8 

Mean 
Deviation 

Mean 

Deviation 

0.001722 
0.000411 

0.002071 

0.000839 

0.002608 
0.000582 

0.003234 

0.000718 

0.004295 
0.001116 

- 

- 

0.002218 
0.000491 

0.002597 

0.000174 

 
TABLE XXI  

THE VALUES OF HV INDEXES FOR SEVERAL ALGORITHMS  

Index Cases Type of data MOIHBA MOPSO NSGA-II MODE 

 Case1 Mean 

Deviation 

0.000032 

2.78665E-07 

0.000032 

6.80144E-07 

0.000027 

2.01075E-06 

- 

- 
 
 

Case2 Mean 
Deviation 

0.000730 
0.000011 

0.000700 
0.000032 

0.000630 
0.000091 

- 
- 

 

 

Case3 Mean 

Deviation 

0.017675 

0.000239 

0.017282 

0.000542 

0.017093 

0.000348 

- 

- 
 

HV 

Case4 Mean 

Deviation 

0.001420 

0.000042 

0.001110 

0.000270 

- 

- 

0.001400 

0.000050 

 
 

Case5 Mean 
Deviation 

0.071297 
0.002568 

0.050159 
0.005912 

- 
- 

0.069725 
0.004801 

 

 

Case6 Mean 

Deviation 

0.048833 

0.000910 

0.040677 

0.003116 

- 

- 

0.046980 

0.002176 
 

 
 

Case7 

 
Case8 

Mean 

Deviation 
Mean 

Deviation 

0.003940 

0.000060 
0.000170 

0.000004 

0.003746 

0.000157 
0.000130 

0.000013 

0.002045 

0.001173 
- 

- 

0.003830 

0.000118 
0.000160 

0.000011 
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TABLE XXII  
THE AVERAGE RUNNING TIME FOR SEVERAL ALGORITHMS 

Algorithms 
Cases 

Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 

MOIHBA 122.4381 128.2116 131.2872 168.3002 184.9136 163.1296 418.8992 442.3404 465.1260 

MOPSO 133.6267 132.9078 130.0905 169.6388 195.9156 179.9868 417.2444 501.8284 473.5467 

NSGA-II 125.2728 134.4408 132.8664 - - - 419.1788 - - 

MODE - - - 180.4910 192.7396 169.1127 441.9246 480.7238 488.9296 
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Fig. 27.  Dot line graph of average running time for several algorithms 

 

quantile, median and outlier values. 

In Fig. 25, the GD values of eight cases are calculated 

respectively. A smaller value of GD in an algorithm indicates 

that the algorithm has better convergence performance. It can 

be seen from the eight box plots, the GD index of MOIHBA 

has the smallest fluctuation and a lower mean value. 

Therefore, the results suggest a better convergence 

performance and stability for proposed algorithm in solving 

the MORPO problem. 

In Fig. 26, the HV values of each algorithm are analyzed in 

the same way. From the box plots, a higher mean value for 

MOIHBA compared to other algorithms can be clearly seen, 

in most cases, the fluctuation range of its value is smaller, and 

there is no outlier. This indicates that MOIHBA can obtain 

POS with better diversity. TABLE XX and TABLE XXI 

demonstrate the detailed numerical value of GD and HV 

obtained by each algorithm in each case. According to the 

data results, the value of MOIHBA is better in most cases. 

The algorithm complexity can be used as an evaluation 

method to reflect the running effect of algorithms. The 

algorithm time complexity, that is, the average running time, 

is used for analysis in this study. TABLE XXII shows the 

average running time of MOIHBA and other comparison 

algorithms in each case. From these data, although the 

running time of MOIHBA algorithm is slightly longer than 

other algorithms in individual cases, on the whole, MOIHBA 

algorithm takes less time to solve MORPO problems than 

other algorithms. From Fig. 27, a more intuitive view can be 

seen that the MOIHBA algorithm outperforms the other 

algorithms in terms of running time. This remarkable result 

confirms the positive and significant effect of using 

MOIHBA to solve MORPO problems. 

V.    CONCLUSION 

In this research, to address the MORPO problem, an 

improved multi-objective honey badger algorithm, MOIHBA, 

is proposed. It includes an initialization process based on the 

sine chaotic mapping strategy as well as a backward learning 

mechanism, and a search process based on the cross-learning 

mechanism. Meanwhile, this paper obtains the pareto optimal 

set by using a method based on crowding distance and fast 

non-dominated ranking. To test the effectiveness and 

superiority of this method, the MOIHBA and three other 

algorithms are adopted to optimize the dual-objective and 

triple-objective reactive power optimization problems on 

three test systems of different scales, two evaluation indexes 

GD and HV and the average running time of the algorithm are 

adopted to analyze the comprehensive performance of 

different algorithms. The simulation results of each case and 

the analysis results of the evaluation indicators show that, 
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compared with other algorithms, the quality of the solution 

set and the comprehensive performance of the MOIHBA 

algorithm are superior. Therefore, the method proposed in 

this paper can be effective in solving the MORPO problem 

and has excellent theoretical and practical value. 
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