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Abstract—This paper studies some of the closure properties
namely, homomorphism, inverse homomorphism, quotient and
reversal of lattice languages. The appropriate tools to generate
lattice languages such as lattice regular expressions, lattice
regular grammar, lattice linear grammar and lattice regular
grammar in normal form are defined. Also, the equivalences
between lattice regular grammar, lattice left linear grammar,
lattice right linear grammar and lattice grammar in normal
form have been shown. The pumping lemma for lattice regular
languages is established and used to prove that certain lattice
languages are not lattice regular languages. Further, the equiv-
alence of lattice finite automata and lattice regular grammar
has been demonstrated.

Index Terms—Finite automata, Lattice automata, Lattice
grammar, Lattice languages.

1. INTRODUCTION

Finite automata are conceptual machines that determine
whether or not a string (i.e., a sequence of characters) is
part of a language. The automata-theoretic approach applies
automata theory as a unifying paradigm for system veri-
fication, synthesis and specification [16], [17], [20]. Also,
automata allows the algorithmic and logical parts of rea-
soning about systems to be separated, yielding asymptoti-
cally optimal algorithms. For reasoning on Boolean-valued
systems, the approach of automata-theory has proven to be
very useful as well as powerful. Automata are the key to
some techniques namely partial-order verification, modular
verification, on-the-fly verification, open systems, infinite-
state systems, hybrid systems and verification of real time.
There are automata-based solutions to many decision and
synthesis problems for which no alternative solution exists.
The academic as well as in industrials, automated-verification
tools have used automata-based methodologies (for example,
COSPAN and SPIN). But, in a number of new verification
approaches involving reasoning about multi-valued Kripke
structures, an atomic proposition is regarded as an element
from a lattice rather than an element of Boolean value at a
given state.

The multi-valued setting appears as a matter of course
in systems where the designer can assign rich values to
atomic propositions such as unknown, uninitialized, high
impedance, logic 1, logic 0, don’t care, etc.,[13]. This has
indirect applications such as abstraction methods, where
as the abstract system allows the atomic propositions and
transitions to have unknown assignments [1], [7], verification
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of systems from varying viewpoints, where the value of
the atomic propositions is the composition of their values
in the different viewpoints [12] and query checking, where
query checking reduced as a model checking over multi-
valued Kripke structures[3]. Different forms of lattices are
used for different purposes. To illustrate, in the applica-
tion of abstraction, researchers have employed three values
ordered as in L3[6]. They also ordered its generalisation
to linear ordering[4]. The elements of lattice are sets of
formulas ordered by inclusion order in query checking[2].
When considering varying viewpoints, every viewpoint is
represented by Boolean and composition of these viewpoints
yields Boolean lattice products, such as L2,2[6]. Finally, in
systems having a wide range of atomic proposition values,
different orders may be applied to the individual values that
may not always result in a lattice.

It is acknowledged that traditional automata are Boolean
because they accept or reject their input. On the other
hand, weighted automata assign a value to each word taken
from a semiring over a large domain. There is special case
of weighted automata called lattice automata (multi valued
objects) introduced by Kupferman and Lustig, in which the
semiring is a finite lattice. They developed lattice automata
for finite and infinite words. It has intriguing theoretical
features as well as applications in formal languages. Closure
properties namely, join (union), meet (intersection) and com-
plementation are proved and decision problems for lattice
languages through lattice automata have been studied. Also,
it is proved that the results of lattice automata are distinct and
superior to those of semi-ring and weighted automata. They
have also investigated the complexity of constructions as well
as decision problems for lattice automata with respect to the
size of both the automaton and its corresponding lattice[15].
Some other theoretical properties of lattice automata such
as minimization, approximation and bisimulation relation
have been studied [5], [8], [9]. Whenever an automaton is
used to define a family of languages, one gets interested
in knowing what type of grammar is associated with it.
Therefore, another popular technique to specify languages
is called ‘Grammars’, used to describe the languages math-
ematically and has many interesting applications [10], [11],
[18], [21]. Hence, to study lattice languages there is a need
for grammar generating the lattice languages, which has not
been studied in recent years. With this understanding, the
common and powerful mechanism called lattice grammar for
lattice language is introduced and studied along with their
algebraic properties in this paper.

The paper is organized as follows: The basic notions and
some closure properties of lattice languages are presented
in Section 2. The closure properties such as homomor-
phism, inverse homomorphism, quotient and reversal of
lattice languages are proved in Section 3, in Section 4,
lattice regular expressions, lattice regular grammar, lattice
left linear grammar, lattice right linear grammar and lattice
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regular grammar in normal form are introduced and studied.
Also, the equivalence of lattice regular grammars, lattice left
linear grammars, lattice right linear grammars and lattice
regular grammars in normal form except for an empty string
are proved. In addition to this, pumping lemma for lattice
languages and the equivalence of lattice finite automata and
lattice regular grammars have been demonstrated.

2. PRELIMINARIES

The basic notions of finite automata and formal languages
can be found in [14], [19]. Definitions with appropriate
examples of lattices and its operations are discussed in [15].
The required notions and definitions of lattice automata have
been recalled in this Section.

Definition 2.1. [15] Let L be a lattice and Z be a set of
elements. An L-set over Z is a function S from Z to L, that
is assigning a value from L to each element of Z.

Definition 2.2. [15] Consider a lattice L and Σ, a set of
elements called alphabet. A lattice language L is a L-set over
Σ∗. Therefore, a lattice language L from Σ∗ to L assigns a
value from L to each word of L over Σ.

Definition 2.3. [15] A non-deterministic lattice automaton
on finite words (LNFW) is a 6-tuple A= {L,Σ,Q,Q0,δ ,F},
where L, Σ and Q are a lattice, an alphabet and a finite set
of states respectively, Q0 in LQ is a L-set of start states, δ

in LQ×Σ×Q is a L-transition-relation and F in LQ is a L-set
of final states.

“A run of an LNFW on a word w = σ1σ2 . . .σn is a
sequence of n+1 number of states r = q0.q1 . . .qn. val(r,w)=

Q0(q0)∧
n−1∧
j=0

δ (q j,σ j+1,q j+1)∧F(qn) is the value of r on w.

Clearly, Q0(q0) is the value of q0, q0 being a start state,
δ (q j,σ j+1,q j+1) is the value of q j+1 being the next state
of q j, when σ j+1 is an input alphabet, F(qn) is the value
of qn, qn being the final state and the meet of all these
values is the value of r with 0 ≤ j ≤ n− 1. We denote the
value of traversal of r by Q0(q0)∧

∧n−1
j=0 δ (q j,σ j+1,q j+1)

and its acceptance value by F(qn). The value of LNFW
A on a word w is denoted by A(w) and obtained by the
join of the values of all the possible runs of A on the word
w. i.e., val(A,w) =∨{val(r,w)/ a run on w of A is r}. The
lattice language of LNFW A is denoted by L(A), which
maps each word w to its corresponding value in L. That is,
L(A)(w) = val(A,w).”

Note: It is obvious that, in some cases the transition of
the lattice automata is still on the same state after reading
an input alphabet. i.e., δ (q j,σ j+1,q j) is also possible. The
extended transition function is given by δ ∗(q j,xa,qi) =
δ ∗(q j,x,qk)δ (qk,a,qi), where x∈ Σ∗,a∈ Σ and qi,q j,qk ∈Q.

Definition 2.4. [15] “ A deterministic lattice automaton on
finite words (LDFW) is an LNFW, where there is only one
state q0 ∈ Q such that Q0(q0) ̸=⊥ and ∀q′ ∈ Q and σ ∈ Σ

there is only one state q′′ ∈ Q such that δ (q′,σ ,q′′) ̸=⊥. ”

Note: l j : 0 ≤ j ≤ n − 1 is the value of q j+1 being the
next state of q j when σ j+1 is the input alphabet for the
corresponding transition δ (q j,σ j+1,q j+1).

Theorem 2.1. [15] Let A be a Non-deterministic lattice
automaton on finite words (or Deterministic lattice automa-
ton on finite words) with n number of states over L with
m number of elements. There is a simple Non-deterministic
lattice automaton on finite words (respectively, Deterministic
lattice automaton on finite words) A′ with nm number of
states such that L(A′) = L(A).

Theorem 2.2. [15] Let A be a Non-deterministic lattice
automaton on finite words with n number of states, over L

with m number of elements. There is a simple Deterministic
lattice automaton on finite words A′ with mn number of states
such that L(A′) = L(A).

3. CLOSURE PROPERTIES OF LATTICE LANGUAGES

In this section, the closure operations namely, homo-
morphism, inverse homomorphism, quotient and reversal of
lattice languages have been defined and proved that the lattice
languages are closed under homomorphism, inverse homo-
morphism, quotient with arbitrary sets and right quotient
by any set. This section starts with recalling the closure
properties namely, union, intersection and complementation
of lattice languages studied in [15].

Theorem 3.1. [15] Let A be an Non-deterministic lattice
automaton on finite words with n number of states. There
is a Non-deterministic lattice automaton on finite words A′

with 2n number of states such that L(A′) = comp(L(A)).
(i.e., lattice languages are closed under complementation).

Theorem 3.2. [15] Let A1 and A2 be Deterministic lattice
automata on finite words over L. There are Deterministic
lattice automata on finite words A∧ and A∨ such that
L(A∨) = L(A1)∨L(A2) and L(A∧) = L(A1)∧L(A2). If A1
and A2 has n1 and n2 number of states and L has m number
of elements then A∧ has atmost n1n2m2 and atleast n1n2m
number of states. Also, A∨ has n1n2 number of states.

Definition 3.1. An onto function f : Σ → ∆∗ is called a
homomorphism if for all x,y∈ Σ, f (xy) = f (x) f (y), in which
Σ and ∆ are alphabets. This homomorphism can be naturally
extended to f : Σ∗ →∆∗ as f (λ ) = λ , f (σx) = f (σ) f (x),σ ∈
∆ and x ∈ Σ∗.

Theorem 3.3. The class of all lattice languages is closed
under homomorphism and inverse homomorphism.

Proof: Let f : Σ → ∆∗ be a homomorphism and L ⊆ Σ∗

be a lattice language then there exists a lattice automaton
A= (L,Q,Q0,Σ,δ ,F) such that L(A) = L.

Now, construct a lattice automaton A′ =
(L,Q,Q0,∆,δ

′,F), where δ ′ ∈ LQ×∆×Q is defined
by δ ′(q0,α,q) = l if and only if there is a word
w ∈ Σ∗ such that f (w) = α and δ (q0,w,q) = l, where
q0,q ∈ Qα ∈ ∆∗ and l ∈ L.

Let α ∈ L(A′). Then, val(A′,α) =
∨{val(r,α)/ a run on α of A′ is r}, where val(r,α) =

Q0(q0)∧
n−1∧
j=1

δ (q j,α j,q j+1)∧F(qn) for some q0,qn ∈ Q.

Thus, there exists w ∈ Σ∗ ∋ f (w) = α and val(r,w) =

Q0(q0) ∧
n−1∧
j=1

δ (q j,w j,q j+1) ∧ F(qn) for some q0,qn ∈ Q.

Therefore, val(A,w) = ∨{val(r,w)/ a run on w of A is r}.
Hence, w ∈ L(A) = L
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⇒ f (w) ∈ f (L)
⇒ α ∈ f (L)
Similarly, the converse part also can be proved.
Let L ⊆ ∆∗ be a lattice language accepted by the lattice

automaton. Let A be a lattice automaton such that L(A) = L.
Construct a lattice automaton A′ = (L,Q,Q0,Σ,δ

′,F),
where δ ′ ∈ LQ×Σ×Q is defined by δ ′(q0,w,q) =
δ (q0, f (w),q), for all q0,q ∈ Q,w ∈ Σ∗. Then L(A) = L.

Now, let w ∈ L(A) then val(A,w) =
∨{val(r,w)/ a run on w of A is r}, where

val(r,w) = Q0(q0)∧
n−1∧
j=1

δ (q j,w j,q j+1)∧F(qn)

⇔ val(A, f (w))=∨{val(r, f (w))/ a run on f (w) of A′ is r},

where val(r, f (w)) = Q0(q0)∧
n−1∧
j=1

δ (q j, f (w j),q j+1)∧F(qn)

⇔ f (w) ∈ L(A) = L
⇔ w ∈ f−1(L).

Definition 3.2. Let L1 and L2 be two lattice languages over
the alphabet Σ then the quotient of L1 and L2 is defined as
L1/L2 = {x ∈ Σ∗| there exists y ∈ L2 such that xy ∈ L1}.

Theorem 3.4. The class of lattice languages is closed under
quotient with arbitrary sets.

Proof: Let L1 ⊆ Σ∗ be a lattice language and a
set L2 ⊆ Σ∗. Then there exists a lattice automaton A =
(L,Q,Q0,Σ,δ ,F) such that L(A) = L1.

Construct a lattice automaton A′ = (L,Q,Q0,Σ,δ ,F ′),
where F ′ : Q → L is defined by

∨
y∈L2

{δ (q,y,q′)∧F(q′)}

Now, x ∈ L(A′) ⇔ val(A′,x) =
∨{val(r,x)/ a run on x of A′is r}, where,

val(r,x) = Q0(q0) ∧
n−1∧
j=1

δ (q j,α j,q j+1) ∧ F ′(qn) for some

q0,qn ∈ Q.
⇔ there exists val(A′,xy) =

∨{val(r,xy)/ a run on xy of A′ is r}, where

val(r,α) = Q0(q0) ∧
n−1∧
j=1

δ (q j,xy,q j+1) ∧ F(q′n) for some

q0,qn ∈ Q and y ∈ L2.
⇔ xy ∈ L(A) = L1, for some y ∈ L2
⇔ x ∈ L1/L2.
Similarly, the converse part also can be proved.

Definition 3.3. Let L1,L2 ⊆ Σ∗. The right quotient of
L1 by L2 is defined as L−1

2 L1 = {x ∈ Σ∗| there exsist y ∈
L1 such that xy ∈ L2}.

Theorem 3.5. The class of lattice languages is closed under
right quotient by arbitrary set.

Definition 3.4. Let L be a lattice language over an alphabet
Σ then the reversal of L is denoted by LR and is defined by
LR = {wR : ∀w ∈ Σ∗}.

Theorem 3.6. The class of lattice regular is closed under
reversal. i.e., If L is lattice regular language then LR is also
a lattice regular language.

Proof: Let L ⊆ Σ∗ be a lattice language and L be
a given lattice then there exists a lattice automaton A =
(L,Q,Q0,Σ,δ ,F) such that L(A) = L.

Now construct a lattice automaton AR =
(L,QR,QR

0 ,Σ,δ
R,FR) such that L(AR) = LR where

QR = Q, QR
0 = F , FR = Q0 and δ R is defined as by

δ R(q,wR, p) = δ (p,w,q)∀p,q ∈ Q,w ∈ Σ∗.
Let wR ∈ L(AR) then val(AR,wR) =

∨{val(r,wR/ a run on wR of AR is r}, where

val(r,wR) = QR
0 (q0)∧

n−1∧
j=1

δ R(q j,w j,q j+1)∧FR(qn) for some

q0,qn ∈ QR.
Thus, there exists w ∈ Σ∗ such that wR = w and val(r,w) =

Q0(q0) ∧
n−1∧
j=1

δ (q j,w j,q j+1) ∧ F(q0) for some q0,qn ∈ Q.

Therefore, val(A,w) = ∨{val(r,w)/ a run on w of A is r}.
Hence, wR ∈ L(AR) ⇒ wR ∈ LR. Similarly, the converse

part also can be proved.
Therefore, the class of lattice regular language is closed

under reversal.

4. LATTICE REGULAR EXPRESSIONS AND GRAMMAR

In this section, lattice regular expressions, lattice gram-
mar, lattice regular grammar, lattice right linear grammar,
lattice left linear grammar and lattice grammar in normal
form are defined. Also, described the pumping lemma for
lattice languages, used to establish a necessary and sufficient
condition for a given lattice language to be regular. Further,
proved the equivalence between lattice finite automaton and
lattice regular grammar by showing that they generate the
same lattice language.

Definition 4.1. Let Σ be an given alphabet and L be an
lattice, then the family of lattice regular expressions R over
Σ is defined by the following ways:

• /0 (empty set) ∈ R

• λ (empty word) ∈ R

• x ∈ R;∀x ∈ Σ

• lx ∈ R and xl ∈ R for all l ∈ L and x ∈ R

If x1, x2 ∈ R then
• x1 + x2 ∈ R

• x1x2 ∈ R and
• x∗1 ∈ R.

Definition 4.2. Let LR be the lattice language represented
by lattice regular expressions R and is defined as follows:

• If /0 ∈ R then LR = { /0}
• If λ ∈ R then LR = {λ}
• For all x ∈ R, LR = {(x, l) : x drived from R and

l = val(R,w) ∈ L}
If x1 and x2 are lattice regular expressions then

• LR(x1 + x2) = LR(x1)∪LR(x2)
• LR(x1x2) = LR(x1)LR(x2) and
• LR(x∗1) = (LR(x1))

∗.

Theorem 4.1. If L is an lattice automaton language over Σ

then L = Lx for some lattice regular expression x ∈ R.

Proof: Let L be a lattice automaton language over Σ

then there exists a lattice automaton A = (L,Q,Q0,Σ,δ ,F)
such that L = L(A). Consider that there are n number of
states in Q and m number of alphabets in Σ such that
Q = {q1,q2, . . . ,qn} and Σ = {w1,w2, . . . ,wn} respectively.
For every i, j = 1,2, . . . ,n, let x0

i j = λ +ws, if δ (qi,ws,q j)

exists and val(R,ws) = (qi j) ∨ (
m∧

s=1
(qi,ws,q j));1 ≤ s < m

and xk
i j = xk−1

i j + (xk−1
ik (xk−1

kk )∗xk−1
k j ),k = 1,2, . . . ,n. By the
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principle of mathematical induction on k, it can be reduced
that Lxk

i j
(λ ) = ⊺ if i = j and ⊥ otherwise, where ⊺,⊥∈ L

represent top and bottom of the lattice L respectively.
Lxk

i j
(w) = δ (q1,w,q2) for each w ∈ Σ and for m ∈ N,

Lxk
i j
(wi0wi1 . . .wim) =∨i1≤k ∨i2≤k · · ·∨im≤k δ (qi,wi0 ,qi1)

∧δ (qi1 ,wi1 ,qi2)∧·· ·∧δ (qim ,wim ,q j).

Thus for all w ∈ Σ∗, Lxn
i j
(w) = δ ∗(qi,w,q j).

Therefore, L = Lx for some x ∈ R.

Definition 4.3. A lattice grammar is a 5-tuple G =
(L,V,T,S,P), where

• L - a lattice
• V - finite set of alphabet called non-terminal symbols
• T - finite set of alphabet called terminal symbols
• S - lattice set(L-set) of V called start variables such that

S : V → L

• P - finite set of lattice production rules (L-production
rules) over V ∪T such that

P = {A l−→ B : A,B ∈V ∪T, l ∈ L and atleast one Non
-terminal must occur on the left side of the rule}

Definition 4.4. If α
l−→ β , l ∈ L is a L-production rule

then AαB l
=⇒ AβB means AαB directly drives AβB, where

α,β ,A,B ∈ (V ∪T )∗.
If A,A1, . . . ,An ∈ (V ∪ T )∗ and A

l0−→ A1, A1
l1−→ A2, . . . ,

An−1
ln−→ An are L-production rules of G, where l0, l1, . . . , ln ∈

L then A drives An can be written as A l
=⇒
∗

An, where l is

the meet of all l j : 0 ≤ j ≤ n and the expression A
l0=⇒ A1

l1=⇒

A2
l2=⇒ . . .

ln=⇒ An is called derivation chain from A to An.
The value of the word of terminals w derivable from A ∈ S

is denoted by val(A,w) and obtained by val(A,w) = S(A)∧
n∧

j=0
{l j}, where l j ∈ L and S(A) is the value of the Non-

terminal of A, A being a star variable.

Definition 4.5. A lattice grammar G is said to be regular if
each of its lattice production rules are of the form A l−→ aB
or A l−→ a, where A,B ∈V,a ∈ T and l ∈ L.

Definition 4.6. A word w is said to be generated by the lat-
tice regular grammar G, if there exists atleast one derivation
chain from A to w and the value of the word w is defined as

val(G,w) = ∨{val(A,w) : for all A ∈ S.}

Definition 4.7. The L- regular language of the lattice regular
grammar G is the set of all words generated by G and is
denoted by L(G). That is,

L(G) = {val(G,w) : w generated by G}

Definition 4.8. A lattice grammar G= (L,V,T,S,P) is said
to be in normal form if the L-production rules is either of
the form:

A l−→ aB or A l−→ λ , where A,B ∈ V , a ∈ T , λ -empty
alphabet and l ∈ L.

Note: Each lattice grammar can be reduced to a lattice
grammar in normal form by changing its L-production rules

of the form A l−→ a by A l−→ aC and C l−→ λ , where C is a
newly added non-terminal, which is not in V .

Definition 4.9. A lattice grammar G= (L,V,T,S,P) is called
linear grammar, if the L-productions rules are of the form
A l−→w1Bw2 or A l−→w, where, A,B∈V , l ∈L and w1,w2,w∈
T ∗.

If the L-productions rules are of the form A l−→ Bw or
A l−→ w then G is called left linear grammar and if the L-
production rules are in the form A l−→ wB or A l−→ w then
G is called left linear grammar, where, A,B ∈ V , l ∈ L and
w1,w2,w ∈ T ∗.

Definition 4.10. A language L ⊆ T ∗ is called lattice linear
language, if there is lattice linear grammar G such that L(G)=
L.

The class of lattice regular language is a subclass of the
class of lattice language.

Theorem 4.2. Lattice left linear grammar and lattice right
linear grammar generates the same language.

Proof: Let G = (L,V,T,S,P) be a lattice left linear
grammar. Construct a lattice right linear grammar G′ =
(L,V ′,T ′,S′,P′) with L-production rules P′ as follows:

1. q0
l−→ w in P′ iff q0

l−→ w ∈ P, S(q0) = l.
2. q0

l−→ wA in P′, for S(q0) = l iff A l−→ w ∈ P.
3. A l−→ w and A l−→ wq0 in P′ iff q0

l−→ Aw ∈ P, S(q0) = l.
4. A l−→ wB iff B l−→ Aw ∈ P, where A,q0 ∈V and w ∈ T ∗.
To prove L(G′) = L(G):
Let w ∈ L(G), where w = w1w2 . . .wn;w j ∈ T ∗ for j =

1,2, . . . ,n. Then, val(G,w) = ∨{val(q0,w) : for all A ∈
S}, thus there exists q0 ∈ V such that Q0(q0) ∈ L and

val(q0,w) = S(q0)∧
n−1∧
j=0

{l j}, in which each l j ∈ L.

If q0
l−→ w is a production in P for some l ∈L then q0

l−→ w
is in P′ and w∈ L(G′). Otherwise, there exists q0,q1, . . . ,qn ∈
V and l1, l2, . . . , ln−1 ∈L such that q0

l0=⇒ q1w1
l1=⇒ q2w1w2

l2=⇒

. . .
ln−1
==⇒ w1w2 . . .wn = w.

Now, corresponding to the above derivation chain, P
must have the following L-production rules q0

l0−→ q1w1,
q1

l1−→ q2w2, . . . , qn−2
ln−2−−→ qn−1wn−1 and qn−1

ln−1−−→ wn.
Therefore, P′ should have the following lattice L-

production rules q0
l0−→ w1q1, q1

l1−→ w2q2, . . . , qn−2
ln−2−−→

wn−1qn−1 and qn−1
ln−1−−→ wn.

Thus, there is a derivation chain for w in G′ such that
q0

l0=⇒ w1q1
l1=⇒ w1w2q2

l2=⇒ . . .
ln−1
==⇒ w1w2 . . .wn = w.

Therefore, val(G′,w) = ∨{val(q0,w) : for all q0 ∈ S′},
thus there exists q0 ∈ V ′ such that Q0(q0) ∈ L and

val(A,w) = Q0(q0) ∧
n−1∧
j=0

{l j}, in which each l j ∈ L. i.e.,

w ∈ L(G′). Similarly, the converse of the theorem can be
proved.

Theorem 4.3. For every lattice grammar G = (L,V,T,P,S)
in normal form, there is a lattice automata A =
(L,Q,Q0,Σ,δ ,F).

Proof: Consider Q =V , Q0 = S, L be any lattice, define
the set F such that F : Q → L by F(q f ) = l iff q f

l−→ λ is a
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lattice production in P and δ ∈LQ×Σ×Q by δ (q,a, p) = l iff
q l−→ ap in P.

Now, A= (L,Q,Q0,Σ,δ ,F) is a lattice automaton.
Let x ∈ L(G) and w = w1w2 . . .wn,∀w j ∈ T . Then

val(G,w) = ∨{val(A,w) : for all A ∈ S}, where val(A,w) =

S(A)∧
n−1∧
j=0

{l j}, in which each l j ∈ L.

Now, val(A,w) implies that there exists q0,q1, . . . ,qn ∈V
and l1, l2, . . . , ln−1 ∈ L such that q0

l0=⇒ w1q1
l1=⇒ w1w2q2

l2=⇒

. . .
ln−1
==⇒ w1w2 . . .wn = w.

Then corresponding to the above derivation chain, the L-
production rule P has the following production rules:

q0
l0−→ w1q1, q1

l1−→ w2q2, . . . , qn−2
ln−2−−→ wn−1qn−1 and

qn−1
ln−1−−→ wn, which gives the following transitions in δ

of A such that δ (q0,w1,q1) = l0, δ (q1,w2,q2) = l1, . . . ,
δ (qn−1,wn,q f ) = ln−1.

Therefore, val(A,w)=∨{val(r,w)/ a run on w of A is r},

where val(r,w) = Q0(q0)∧
n−1∧
j=0

δ (q j,w j+1,q j+1)∧F(q f ), for

some q0 ∈ Q0 and q f ∈ F .
Thus, w ∈ L(A).
Similarly, the converse part also can be proved.

Corollary 4.1. For every lattice grammar G= (L,V,T,S,P)
in normal form, there is a lattice regular grammar G such
that L(G) = L(G)−λ .

Theorem 4.4. Every lattice right linear language can be
generated by a lattice grammar in normal form.

Proof: Let G = (L,V ′,T,S,P′) be given lattice right
linear grammar.

To prove the theorem, first construct a lattice regular gram-
mar G1 = (L,V1,T,S,P1) such that G∼ G1 and then construct
a lattice grammar in normal form G′ = (L,V ′,T,S,P′) such
that G′ ∼ G1.

case(i):
If P has L-production rules of the form A l−→ wB or A l−→

w of P with |w| ≤ 1 then put these rules in the set of L-
production rules P1.

For the L-production rules of P are in the form A l−→ wB
with |w|> 1 and w = w1w2 . . .wn the L-set production rules
P1 has following L-production rules A l−→ w1Z1, Z1

l−→ w2Z2,
. . . , Zn−1

l−→ wnB, where Z1,Z2, . . . ,Zn−1 ∈V1 which are not
in V .

For the L-production rules of P are in the form A l−→
w1w2 . . .wm,m ≥ 2 and l ∈L, the L-productions rules P1 has
the following production rules A l−→ w1Y1, Y1

l−→ a2Y2, . . . ,
Ym

l−→ λ , where Y1,Y2, . . . ,Ym ∈V1 which are not in V .
Therefore, V1 has set of all variables in V and also

possesses new variables used in the above L-production
rules.

Thus, the lattice grammar G1 = (L,V1,Σ,S,P1) with P1
contains the following types of lattice productions:

1. A l−→ aB
2. A l−→ B
3. A l−→ λ A,B ∈V1,λ ∈ Σ∗,a ∈ Σ

To prove G ∼ G1, Let w ∈ L(G) then val(G,w) =
∨{val(A,w) : for all A ∈ S}, where, val(A,w) = Q0(q0)∧

n−1∧
j=0

{l j}, in which each l j ∈ L for some q0 ∈ V such that

Q0(q0) ∈ L.
If q0

l−→ x is a lattice production in P then |w| = 1 then
clearly q0

l−→ w in P1.
Now, if |w| > 1 and w = a1a2 . . .an;∀ai ∈ Σ then

there exists q1,q2, . . . ,qn−1 ∈ V ′ such that q0
l−→ a1q1

l−→
a1a2q2, . . . ,qn−1

l−→ a1a2 . . .an = w.
i.e., q0

l
=⇒ x in G1

Hence, w ∈ L(G1)
Consider a word w ∈ L(G) then val(G,w) = ∨{val(A,w) :

for all A ∈ S}, where, val(A,w) = Q0(q0)∧
n−1∧
j=0

{l j : ∀l j ∈L}

for some q0 ∈V ′ such that Q0(q0) ∈ L.
Therefore, there is a derivation chain of w in G1 as given

below
q0

l1−→ a1A′
1

l2−→ a1a2A′
2

l3−→ . . .
lk−→ a1a2 . . .anA′

n
ll+1−−→ w1q1

r1−→
w1b1B′

1
r2−→ w1b1b2B′

2
r3−→ . . .

rm−→ w1b1b2 . . .bmB′
m

rm+1−−−→
w1w2q2

s1−→ . . .
tn−→ w1w2 . . .wnqn

tn+1−−→ w1w2 . . .wnλ = w
Thus, the productions
q0

l1−→ a1A′
1, A′

1
l2−→ a2A′

2, . . . , A′
i−1

ln−→ aiA′
li , A′

i+1
li+1−−→

ai+1Ai
i+2, . . . , A′

n
li+1−−→ qi, q1

r1−→ b1B′
1, B′

1
r2−→ b2B′

2, . . . ,

B′
m

rm+1−−−→ q2, . . . , C′
n−1

tn−→ wnqn, qn
tn+1−−→ λ are in the L-

production rules P1.
Therefore, there is a derivation chain for w in G as shown

below:
q0

l−→ w1q1
r−→ w1w2q2

s−→ . . .
t−→ w1w2 . . .wnqn

tn+1−−→
w1w2 . . .wnλ = w, where l = l1 ∧ l2 ∧·· ·∧ lk+1, r = r1 ∧ r2 ∧
·· ·∧ rm+1, s = s1 ∧ s2 ∧·· ·∧ su+1, . . . , t = t1 ∧ t2 ∧·· ·∧ tn+1.

Thus, there exists q0 ∈V1 such that Q0(q0) and val(A,w)
in G.

Therefore, w ∈ L(G), hence G∼ G1.
case(ii):
It is easy to see that V1 contains variables in V and some

new variables added in the above procedure for finding G1.
Use an algorithm to eliminate all lattice rules of the form
A l−→ B as by given below:

Construct the set Ui(A) = {A}, for A ∈ V ′, and Ui+1 =

Ui(A)∪{B|B l−→ Z ∈ P1 for some Z ∈Ui(A), l ∈ L}.
Since, V ′ is finite set, there exists an integer j such

that U j+k(A) = Uk(A);k = 1,2, . . . and U j(A) denoted by
U(A); ∀A ∈V ′.

Now construct the lattice grammar G′ = (V ′,Σ,S,P′). P′ is
defined as follows:

A r∧l−−→ aB is in P′ iff ∃ Z ∈V ′ ∋ A ∈U(Z) and Z l−→ aB ∈
P1, where r = ∧(r1,r2, . . . ,rm+1).

A r∧l−−→ λ is in P′ iff ∃ Z ∈V ′ ∋ A ∈U(Z) and Z l−→ λ ∈ P1,
where r = ∧(r1,r2, . . . ,rm+1).

Clearly, the lattice grammar G′ = (L,V ′,T,S,P′) is in
normal form. Therefore, it is simple to show that G1 ∼ G′.

Corollary 4.2. Lattice right linear grammar is equivalent to
lattice regular grammar except for λ .

Theorem 4.5. The following statements are equivalent ex-
cept that for λ .

• lattice regular grammar
• lattice left linear grammar

IAENG International Journal of Applied Mathematics, 52:4, IJAM_52_4_40

Volume 52, Issue 4: December 2022

 
______________________________________________________________________________________ 



• lattice right linear grammar
• lattice grammar in normal form.

The proof of the above theorem can be easily obtained
from results of the theorem 4.2, theorem 4.4, corollary 3.1
and corollary 3.2. The following lemma gives necessary and
sufficient condition for a given lattice language to be regular.

Lemma 4.1. (Pumping lemma) Let Σ be a given alphabet.
If L ⊆ Σ∗ be a lattice language over a lattice L then there
exits a positive integer m, where if for each word w ∈ Σ∗

with |w| ≥ m then w can be decomposed as w = xyz in such
a way that |y| ≥ 0, |xy| ≤ m and for each i ≥ 0, L(A)(xyz) =
L(A)(xyiz).

Proof: If L is lattice language then there exists a lattice
automaton A = {L,Σ,Q,Q0,δ ,F} such that L(A) = L. Let
m ≥ 0 be the number of states in A.

Let w = w1w2 . . .wi . . .wn be a word in Σ∗ with n ≥
m and L(A)(w) = l, l ∈ L. For s = 1,2, . . . ,n, let
δ ∗(q0,w1w2 . . .ws) = qs. There exists two integers j and k,
0 ≤ j < k ≤ m such that q j = qk, since there are m+1 states
in the sequence of states q0, . . . ,qm. Thus x = w1w2 . . .w j,
y = w j+1w j+2 . . .wk and x = wk+1wk+2 . . .wn then w = xyz
with |y| ≥ 1 and |xy|= k ≤ m and from

δ
∗(q0,w1w2 . . .w jw j+1 . . .wkwk+1 . . .wn)

= δ
∗(δ ∗(δ ∗(q0,(w1w2 . . .w j))w j+1 . . .wk)wk+1 . . .wn)

= δ
∗(δ ∗(q j,w j+1w j+2 . . .wk)wk+1 . . .wn)

= δ
∗(qk,wk+1 . . .wn)

= qn

and for any i ≥ 0
δ
∗(q0,w1w2 . . .w j(w j+1 . . .wk)

iwk+1 . . .wn)

= δ
∗(δ ∗(δ ∗(q0,(w1w2 . . .w j))(w j+1 . . .wk)

i)wk+1 . . .wn)

= δ
∗(δ ∗(q j,(w j+1w j+2 . . .wk)

i)wk+1 . . .wn)

= δ
∗(qk,wk+1 . . .wn)

= qn

Then for i ≥ 0, L(A)(xyz) = l = L(A)(xyiz).

The example given below uses the above stated pumping
lemma and illustrates how a given lattice language is not
regular.

Example 4.1. Consider a lattice language L ⊆ Σ∗ over a
lattice L, where L consists of strings of the form w = anbn

with lattice value l in which a,b ∈ Σ,n ∈ N and l ∈ L.
Now, consider a string w= anbn with n≥m, where L(w)=

l, l ∈ L. By pumping lemma, decompose w into xyz with
|y| ≥ 1 and |xy| ≤ m ≤ n,n,m ∈N such that L(xyz) = L(xyiz)
for every i≥ 0. Therefore, x = ar, y= as, z= atbn with r ≥ 0,
s ≥ 0, t ≥ 0 and r + s+ t = n, since the condition implies
that |xy| ≤ m ≤ n. A contradiction arise because L(xy0z) =
L(an−sbn) ̸= l, l ∈ L. Hence, the lattice language L is not
regular.

Theorem 4.6. Let G = (L,V,T,S,P) be a lattice
grammar, then there exists a lattice finite automaton
A(L,Σ,Q,Q0,δ ,F) such that L(A) = L(G).

Proof: Given a lattice regular grammar
G = (L,V,T,S,P). Now construct a lattice automaton
A = {L,Σ,Q,Q0,δ ,F}, where Q = V ∪ {q f }, Σ = T ,

S = Q0, L be any lattice, F = {q f : F(q f ) = ⊤} and the
L-transition-relation δ ∈ LQ×Σ×Q is defined as

δ (q,a, p) = l iff q l−→ ap, where q, p ∈V,a ∈ T and l ∈ L

δ (q,a,q f ) = l iff q l−→ a, where q ∈V,a ∈ T and l ∈ L.
To prove L(G) = L(A), let w = w1w2 . . .wn ∈ L(G) and

val(G,w) ∈ L then there exists q0 ∈V such that S(q0) ∈ L.
Now, val(G,w) implies that there exists at least one deriva-

tion chain of the form q0
l0=⇒ w1q1

l1=⇒ w1w2q2
l2=⇒ . . .

ln−1
==⇒

w1w2 . . .wn = w, where, l j ∈ L, q j ∈ Q for 0 ≤ j ≤ n − 1

and q0
l0−→ w1q1, q1

l1−→ w2q2, . . . , qn−2
ln−2−−→ wn−1qn−1 and

qn−1
ln−1−−→ wn all are in P of G.

That is, q0
l
=⇒
∗

w, l = ∧{l j : 0 ≤ j ≤ n}.
Therefore, there is a sequence of L-transition-relations

such that δ (q0,w1,q1) = l0, δ (q1,w2,q2) = l1, . . . ,
δ (qn−1,wn,q f ) = ln−1.

Therefore, for a word w, val(r,w) = Q0(q0) ∧
n−1∧
j=0

δ (q j,w j+1,q j+1)∧F(qn), where q0 ∈ Q0 and qn ∈ F .

Thus, val(A,w) = ∨{val(r,w)/ a run on w of A is r}.
Therefore w ∈ L(A).
The converse is similarly proved.

Example 4.2. Consider the lattice regular grammar G =
(L,V,T,S,P) where,
L = ⟨0,1,2,3,≤⟩, V = {q0,q1,q2,q3}, T = {a,b}, S =

{q0} with S(q0) = 3 and the L- production rules P is defined
as follows:
P = {q0

1−→ aq2,q2
2−→ bq2,q2

2−→ bq3,q3
3−→ a,q0

1−→ bq1,q1
2−→

aq1,q1
2−→ bq1}.

Construct a lattice finite automaton A= (L,Q,Σ,δ ,Q0,F)
where,

L= ⟨0,1,2,3,≤⟩, Σ= T , Q=V ∪{q f }, Q0 =F , F = {q f }
with F(q f ) = 3 and the L-transition-relations are defined by
P as follows:
δ (q0,a,q2) = 1, δ (q2,b,q2) = 2, δ (q2,b,q3) = 2,
δ (q3,a,q f ) = 3, δ (q0,b,q1) = 1, δ (q1,a,q1) = 2,
δ (q1,b,q1) = 2.

Theorem 4.7. Given a lattice finite automaton
A = (L,Σ,Q,Q0,δ ,F), there exists a lattice grammar
G(L,V,T,S,P) such that L(G) = L(A).

Proof: Given a lattice automaton A =
{L,Σ,Q,Q0,δ ,F}, construct a lattice regular grammar
G = (L,V,T,S,P), where V = Q, T = Σ, Q0 = S, L be any
lattice and the L-production rules of P are defined as

P = {q l−→ ap iff δ (q,a, p) = l, where q, p ∈ Q, a ∈
Σ and l ∈ L}

P = {q l−→ a iff δ (q,a,q f ) = l, where q,q f ∈ Q, a ∈
Σ and l ∈ L}

To prove L(A) = L(G).
Let w ∈ L(A) and val(A,w) =

∨{val(r,w)/ a run on w of A is r}, where val(r,w) =

Q0(q0) ∧
n−1∧
j=0

δ (q j,w j+1,q j+1) ∧ F(q f ), for some q0 ∈ Q0

and q f ∈ F . Then there exists q0,q1, . . . ,q f ∈ Q
such that δ (q0,w1,q1) = l0, δ (q1,w2,q2) = l1, . . . ,
δ (qn−1,wn,q f ) = ln−1 are all in δ of A.

Therefore, corresponding to the above transitions we have
the L-production rules as follows:
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q0
l0=⇒ w1q1

l1=⇒ w1w2q2
l2=⇒ . . .

ln−1
==⇒ w1w2 . . .wn = w

where, l j ∈L for 0 ≤ j ≤ n−1 and q0
l0−→ w1q1, q1

l1−→ w2q2,

. . . , qn−2
ln−2−−→ wn−1qn−1 and qn−1

ln−1−−→ wn all are in P of G.
That is, q0

l
=⇒
∗

w, l =∧{l j : 0 ≤ j ≤ n−1} and val(G,w) =
∨{val(A,w) : for all A ∈ S}, where val(A,w) = S(A) ∧
n−1∧
j=0

{l j}, in which each li ∈ L.

Therefore, w ∈ L(G).
The converse is similarly proved.

5. CONCLUSION

Lattice automata and the lattice languages accepted by it
have interesting theoretical characteristics as well as appli-
cations in various fields such as query checking, abstraction
method and quantitative verification. In this paper, the gener-
ating mechanism called lattice grammar for lattice languages
has been introduced and certain specific closure properties of
lattice languages have been proved. Lattice regular grammar,
lattice left linear grammar, lattice right linear grammar and
lattice grammar in normal form are defined and proved that
they are equivalent. Also defined lattice regular expressions
for lattice languages. Further, pumping lemma for lattice lan-
guages, used to establish a necessary and sufficient condition
for a given lattice language to be regular has been proved.
The equivalence between lattice finite automata and lattice
regular grammar has also been proven.
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