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Abstract—The adaptive fuzzy logic control problem for non-
linear systems with partial state constraints and input satura-
tion is concerned in this paper. By using the implicit function
theorem and mean value theorem, the pure feedback nonlinear
system can be transformed. Barrier Lyapunov Function (BLF)
is selected to prevent the state of some constraints from violating
the constraints. The output tracking problem of this kind of
system and the influence of input saturation are solved with
Lyapunov’s second method and backstepping method. The
analysis of probabilistic stability is also carried out to ensure
that all signals of the closed-loop system are bounded and the
system output can track the given reference signal. Finally, the
feasibility and effectiveness of the control scheme is verified by
simulation.

Index Terms—Adaptive control; pure feedback system; par-
tial state constraints; saturation input; fuzzy logic system (FLS)

I. INTRODUCTIONED

PURE feedback systems are ubiquitous in real life,
and many systems can be described by pure feedback

systems. In recent years, the research on pure feedback
nonlinear systems has become a hot spot and a series of
achievements have been made [1]–[15]. Wang et al. [11]
studied the pure feedback stochastic nonlinear system with
input constraints, the control scheme which considered the
influence of input saturation. However, the scheme didn’t
consider the state constraints of the system. Li et al. [14]
proposed the adaptive control scheme for pure feedback
stochastic nonlinear systems with dead time input and time-
varying delay, but the scheme ignored the input saturation.

The solution of constraint problem in control system is
also a very important work in industrial process control [16].
As a typical model in industry, strict feedback nonlinear
system has been widely studied [16]–[25]. For the stochastic
nonlinear system with full state constraints, two kinds of
algorithms were described by using symmetric BLF and
asymmetric BLF in [19]. Based on backstepping method,
Tee et al. [20] used traditional BLF and symmetric BLF
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respectively, proposed the corresponding adaptive control
strategy to settle the output constraint problem.

Partial state constraint control is only a part of the state in
the control system that needs to meet certain specific con-
straints. In general, only partial states, not complete states,
are constrained. For example, when the robot manipulator
grabs the workpiece from the pipeline, it does not involve
position constraints in the direction parallel to the pipeline,
but it will impose strict motion constraints in other directions.
In fact, output constraint control and full state constraint
control can be regarded as special forms of partial state
constraint control [26]. In addition, the existing research
results can not solve the input saturation phenomenon when
some states of the system must meet certain constraints. As
a result, it is of great practical important to investigate the
scheme under local state constraints.

In this context, this paper attempts to design an adaptive
controller to achieve effective control of pure feedback
nonlinear systems with partial state constraints and input
saturation. The rest of this article is organized as follows.
Section II gives the system description and basic knowledge.
Section III develops the control scheme. Section IV shows
the stability analysis. The simulation results are provided in
Section V, and the conclusion is given in last Section.

II. SYSTEM DESCRIPTIONS AND BASIC KNOWLEDGE

Considering the nonlinear system as follows:

dx = f(x, t)dt+ h(x, t)dw,∀x ∈ Rn (1)

where x is the state of the system, f : Ri+1 → R and h :
Rn → Rr are local Lipschitz functions satisfying f(0, t) =
h(0, t) = 0, ∀t ≥ 0.

In order to facilitate subsequent analysis, the following
definitions and lemmas are introduced.

Definition 1. [17] For each given V(x) ∈ C2, associated
with the differential (1), the differential operator L is defined
as follows:

LV =
∂v

∂x
f +

1

2
Tr{hT ∂

2v

∂x2
h} (2)

here Tr(A) is the trace of matrix A.

Lemma 1. [15] Assume that f(x, u) : Rn × R → R is
continuously differentiable, ∀(x, u) ∈ Rn × R , and there
exists d such that ∂f(x,u)

∂u > d > 0, ∀(x, u) ∈ Rn ×R. Then
there exists u∗ = u(x) such that f(x, u∗) = 0.
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Lemma 2. [27] For each constant kb and each real number
|z| < kb, there always exists

log
k2p
b

k2p
b − z2p

<
z2p

k2p
b − z2p

(3)

where p > 0 .

Lemma 3. [28] There is a C2 function v : Rn → R+,
r > 0, ρ > 0, k∞-class functions α1 and α2 make
α1(|x|) ≤ v(x) ≤ α2(|x|) and for all x ∈ Rn, t > t0,
there are L[V (x)] ≤ −rv(x) + ρ. For each x0 ∈ Rn, there
exists

E[V (x)] ≤ v(x0)e−rt +
ρ

r
,∀t > t0 (4)

Lemma 4. [29] For all ε > 0, p > 1, q > 1 and (p−1)(q−
1) = 1, there exists

xy ≤ εp

p
|x|p +

1

qεq
|y|q (5)

Consider the following pure feedback nonlinear systems: dxi = fi(xi, xi+1)dt+ ϕTi (x)dw, 1 ≤ i ≤ n− 1
dxn = fn(xn, u)dt+ ϕTn (x)dw
y = x1

(6)

where x = [x1, x2, ..., xn]T ∈ Rn, u ∈ R and y ∈ R
respectively represent the state variables, inputs and outputs
of the system, xi = [x1, x2, ..., xi]

T ∈ Ri , w is an r-
dimensional independent standard Brownian motion, fi(·)
and ϕi(·) are unknown functions, u indicates the saturation
input described by

u = sat(v) =

 uM , v ≥ uM
v, um ≤ v ≤ uM
um, v ≤ um

(7)

where sat(v) is the saturation function, v is the ideal control
law, um is the minimum value of the known input u, uM is
the maximum value of the known input u. Method similar to
[17], a piecewise smooth function is introduced to approach
u as follows:

g(v) =

{
umax tanh( v

umax
), v ≥ 0

u
min

tanh( v
u
min

), v < 0

=


umax (ev/umin−e−v/umin )

ev/umin+e−v/umin
, v ≥ 0

u
min

(ev/umax−e−v/umax )

ev/umax+e−v/umax
, v < 0

(8)

Then the saturation function sat(v) can be written as [30]

sat(v) = u = g(v) + ρ(v) (9)

where ρ(v) = sat(v)− g(v) , its upper bound is

|ρ(v)| = |sat(v)− g(v)| ≤Mu(1− tanh(1)) = D (10)

By mean value theorem, there exists µ(0 < µ < 1) to
make the following equation hold

g(v) = g(v0) + gvu(v − v0) (11)

where gvu = ∂g(v)
∂v

∣∣∣
v=vµ

, vµ = µv + (1− µ)v0.

Selecting v0 = 0, the following equation holds

g(v) = gvuv (12)

It is noteworthy that the thesis studies the solution of
partial state constraints. All States are divided into constraint
state xt = [x1, ..., xt]

T and free state xm = [xt+1, ..., xn]T .
The constraint status needs to meet the following constraints:

|xi| < ki (13)

where ki > 0 .
The control objective of the thesis is to design a controller

for (6) so that:
1) All signals of the closed-loop system are bounded;
2) Output tracking error shall be as small as possible;
3) The constrained state satisfies the constraints.
In order to complete the control scheme, the assumptions

are proposed.

Assumption 1. The tracking signal yd(t) and its jth order
derivative y(i)

d satisfy |yd| ≤ Y0 and
∣∣∣y(i)
d

∣∣∣ ≤ Yi, here Y0 and
Yi are unknown positive constants, i = 1, ..., n, respectively.

Assumption 2. The sign of smooth function gi(xi, xi+1), is
known, and there exist bm and bM such that

0 < bm ≤ |gi(xi, xi+1)| ≤ bM <∞ (14)

where gi(xi, xi+1) = ∂fi(xi,xi+1)
∂xi+1

, i = 1, ..., n.

Assumption 3. gm is an unknown constant and 0 < gm <
gvu ≤ 1.

III. CONTROLLER DESIGN

In this section, the controller will be designed for (6). The
following coordinate transformation will be used later

z1 = x1 − yd
zi = xi − αi−1, i = 2, ..., n

(15)

here αi is a virtual control signal. The detailed design steps
of the controller are as follows.

Step 1: According to (6) and (15), we can get

dz1 = [f1(x1, x2)− ẏd]dt+ ϕT1 (x)dw (16)

Define a Lyapunov function as follows:

V1 =
1

4
log

k4
b1

k4
b1 − z4

1

+
1

2
bmθ̃

2
1 (17)

where θ̃1 = θ1 − θ̂1. θ̂1 is the estimation of θ1 which is
described as

θi = max{b
2
M‖w∗i ‖

2

bm
}, i = 1, ..., n− 1

θn = max{gmb
2
M‖w∗n‖

2

bm
}

(18)

Then, by taking the differential operator L and (16) for
(17), we can get:

LV1 =
z3

1

k4
b1 − z4

1

[f1(x1, x2)− ẏd]

+
z3

1(3k4
b1 + z4

1)ϕT1 ϕ1

2(k4
b1 − z4

1)
2 − bmθ̃1

˙̂
θ1

(19)
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According to assumption 2, ∂f1(x1,x2)
∂x2

≥ bm > 0. Let’s
define

w1 =− ẏd + k1z1 +
z3

1

2(k4
b1 − z4

1)

+
τ

3
2

1 (3k4
b1 + z4

1)
3
2 ‖ϕ1‖3

3
√

2(k4
b1 − z4

1)
2 +

3z1

4(k4
b1 − z4

1)
1
3

(20)

Because ∂w1

∂x2
= 0, there is

∂[f1(x1, x2) + w1]

∂x2
≥ bm > 0 (21)

By lemma 1, for any x1 and w1, there exist x2 =
α∗1(x1, w1), so that

f1(x1, α
∗
1) + w1 = 0 (22)

According to the mean value theorem, there exists µ1(0 <
µ1 < 1) satisfied the following formula

f1(x1, x2) = f1(x1, α
∗
1) + gµ1(x2 − α∗1) (23)

where gµ1 = g1(x1, xµ1), xµ1 = µ1x2 + (1− µ1)α∗1.
Substituting (22) and (23) into (19), we can get

LV1 =
z3

1

k4
b1 − z4

1

[gµ1(z2 + α1 − α∗1)− k1z1 −
z3

1

2(k4
b1 − z4

1)

− τ
3
2

1 (3k4
b1 + z4

1)
3
2 ‖ϕ1‖3

3
√

2(k4
b1 − z4

1)
2 − 3z1

4(k4
b1 − z4

1)
1
3

]

+
z2

1(3k4
b1 + z4

1)ϕT1 ϕ1

2(k4
b1 − z4

1)
2 − bmθ̃1

˙̂
θ1

(24)

According to assumption 2 and formula (5), there are

z3
1gµ1z2

k4
b1 − z4

1

≤ 3z4
1

4(k4
b1 − z4

1)
4
3

+
1

4
b4Mz

4
2 (25)

Here α1 can be designed as

α1 = −k1z1 −
z3

1 θ̂1S
T
1 S1

2a2
1(k4

b1 − z4
1)

(26)

where a1 > 0 .
Substituting (26) into (24), we can get

z3
1gµ1α1

k4
b1 − z4

1

≤ − z4
1bmk1

k4
b1 − z4

1

− bmz
6
1 θ̂1S

T
1 S1

2a2
1(k4

b1 − z4
1)

2 (27)

The fuzzy logic system is used to approximate α∗1 as
follows

α∗1 = ω∗T1 S1(z1) + ε1(z1) (28)

where ω∗1 is the unknown optimal parameter and ε1(z1) is the
minimum fuzzy approximation error. Suppose |ε1(z1)| ≤ ε∗1
and ε∗1 > 0.

Substituting α∗1 into (24) and using Young’s inequality,
there has:

−z
3
1gµ1α

∗
1

k4
b1 − z4

1

≤ z6
1bmθ1S

T
1 S1

2a2
1(k4

b1 − z4
1)

2

+
1

2
a2

1 +
1

2
b2Mε

∗2
1 +

z6
1

2(k4
b1 − z4

1)
2

(29)

Combining (5), there has

z2
1(3k4

b1 + z4
1)ϕT1 ϕ1

2(k4
b1 − z4

1)
2 ≤z

3
1τ

3
2

1 (3k4
b1 + z4

1)
3
2 ‖ϕ1‖3

3
√

2(k4
b1 − z4

1)
3

+
1

3τ3
1

(30)

where τ1 is the positive design parameter.
Substituting (25), (27) and (29) into (30), we can obtain

LV1 ≤−
c1z

4
1

k4
b1 − z4

1

+
1

2
a2

1 +
1

2
b2Mε

∗2
1 +

1

3τ3
1

+
1

4
b4Mz

4
2

+ bmθ̃1[
z6

1S
T
1 S1

2a2
1(k4

b1 − z4
1)

2 −
˙̂
θ1]

(31)

where c1 = k1(1 + bm).
˙̂
θ1 can be designed as follows:

˙̂
θ1 =

z6
1S

T
1 S1

2a2
1(k4

b1 − z4
1)

2 − θ̂1 (32)

Substituting (32) into (31) and using (5) , one has:

LV1 ≤−
c1z

4
1

k4
b1 − z4

1

+
1

2
a2

1 +
1

2
b2Mε

∗2
1 +

1

3τ3
1

+
1

4
b4Mz

4
2 +

1

2
bmθ

2
1 −

1

2
bmθ̃

2
1

(33)

Step i: According to zi = xi − αi−1, i = 2, ..., t and (6),
it leads to

dzi =[fi(x̄i, xi+1)− Lαi−1]dt

+ (ϕi(x)−
i−1∑
j=1

∂αj−1

∂xj
ϕj(x))T dw

(34)

where Lαi−1 =
i−1∑
j=1

∂αi−1

∂xj
fj(x̄j , xj+1) +

i−1∑
j=1

∂αi−1

∂θ̂j

˙̂
θj +

i−1∑
j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d + 1

2

i−1∑
p,q=1

∂2αi−1

∂xp∂xq
ϕTp (x)ϕq(x).

Let’s choose the following Lyapunov function

Vi = Vi−1 +
1

4
log

k4
bi

k4
bi − z4

i

+
1

2
bmθ̃

2
i (35)

Taking the time derivative of (35) yields

LVi =LVi−1 +
z3
i

k4
bi − z4

i

[fi(x̄i, xi)− Lαi−1]

+

z2
i (3k4

bi + z4
i )

∥∥∥∥∥ϕi − i−1∑
j=1

∂αi−1

∂xj
ϕj

∥∥∥∥∥
2

2(k4
bi − z4

i )
2

− bmθ̃i ˙̂
θi

(36)

According to assumption 2, ∂fi(x̄i,xi+1)
∂xi+1

≥ bm > 0.
Define

wi =− Lαi−1 + kizi +
z3
i

2(k4
bi − z4

i )
2

+

τ
3
2
i (3k4

bi + z4
i )

3
2

∥∥∥∥∥ϕi − i−1∑
j=1

∂αi−1

∂xj
ϕj

∥∥∥∥∥
3

3
√

2(k4
bi − z4

i )
2

+
3zi

4(k4
bi − z4

i )
1
3

+
1

4
b4Mzi(k

4
bi − z4

i )

(37)
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Because ∂wi
∂xi+1

= 0, there has

∂[fi(x̄i, xi+1) + wi]

∂xi+1
≥ bm > 0 (38)

According to Lemma 1, for any xi and wi, there exists
xi+1 = α∗i (xi, wi), so that

fi(x̄i, α
∗
i ) + wi = 0 (39)

Similar to step 1, there exists µi(0 < µi < 1) satisfied

fi(x̄i, xi+1) = fi(x̄i, α
∗
i ) + gµi(xi+1 − α∗i ) (40)

where gµi = gi(x̄i, xµi), xµi = µixi+1 + (1− µi)α∗i .
Substituting (39) and (40) into (36), one has:

LVi =LVi−1 +
z3
i

k4
bi − z4

i

[gµi(zi+1 + αi − α∗i )− kizi

− z3
i

2(k4
bi − z4

i )
−
τ

3
2
i (3k4

bi + z4
i )

3
2

∥∥∥∥∥ϕi − i−1∑
j=1

∂αi−1

∂xj
ϕj

∥∥∥∥∥
3

3
√

2(k4
bi − z4

i )
2

− 3zi

4(k4
bi − z4

i )
1
3

− 1

4
b4Mzi(k

4
bi − z4

i )]

+

z2
i (3k4

bi + z4
i )

∥∥∥∥∥ϕi − i−1∑
j=1

∂αi−1

∂xj
ϕj

∥∥∥∥∥
2

2(k4
bi − z4

i )
2 − bmθ̃i ˙̂

θi

(41)

Applying Assumption 2 and (5) to z3i gµizi+1

k4bi−z
4
i

, one has:

z3
i gµizi+1

k4
bi − z4

i

≤ 3z4
i

4(k4
bi − z4

i )
4
3

+
1

4
b4Mz

4
i+1 (42)

αi can be designed as

αi = −kizi −
z3
i θ̂iS

T
i Si

2a2
i (k

4
bi − z4

i )
(43)

where ai > 0 .
Substituting (43) into (41), one has:

z3
i gµiαi
k4
bi − z4

i

≤ − bmz
6
i θ̂2S

T
i Si

2a2
i (k

4
bi − z4

i )
2 −

z4
i bmki

k4
bi − z4

i

(44)

Using fuzzy logic system to approach α∗i , there are

α∗i = ω∗Ti Si(zi) + εi(zi) (45)

where ω∗i is the unknown optimal parameter and εi(zi) is the
minimum fuzzy approximation error. Suppose |εi(zi)| ≤ ε∗i
and ε∗i > 0.

Substituting α∗i into (41) and using (5), one has:

−z
3
i gµiα

∗
i

k4
bi − z4

i

≤ bmz
6
i θ2S

T
i Si

2a2
i (k

4
bi − z4

i )
2 +

1

2
a2
i

+
1

2
b2Mε

∗2
i +

z6
i

2(k4
bi − z4

i )
2

(46)

and

z2
i (3k4

bi + z4
i )

∥∥∥∥∥ϕi − i−1∑
j=1

∂αi−1

∂xj
ϕj

∥∥∥∥∥
3

2(k4
bi − z4

i )
2 ≤

1

3τ3
i

+

z3
i τ

3
2
i (3k4

bi + z4
i )

3
2

∥∥∥∥∥ϕi − i−1∑
j=1

∂αi−1

∂xj
ϕj

∥∥∥∥∥
3

3
√

2(k4
bi − z4

i )
2

(47)

where τi is the positive design parameter.
Substituting (42), (44), (46) and (47) into (41), one has:

LVi ≤LVi−1 −
ciz

4
i

k4
bi − z4

i

+
1

2
a2
i +

1

2
b2Mε

∗2
i

+
1

3τ3
i

+
1

4
b4Mz

4
i+1 + bmθ̃i[

z6
i S

T
i Si

2a2
i (k

4
bi − z4

i )
2 −

˙̂
θi]

− 1

4
b4Mz

4
i

(48)

where ci = ki(1 + bm).
˙̂
θi can be constructed as follows:

˙̂
θi =

z6
i S

T
i Si

2a2
i (k

4
bi − z4

i )
2 − θ̂i (49)

Substituting (49) into (48), we can get

LVi ≤−
i∑

j=1

cjz
4
j

k4
bj − z4

j

+
1

2

i∑
j=1

a2
j +

1

2
b2M

i∑
j=1

ε∗2j +
i∑

j=1

1

3τ3
j

+
1

4
b4Mz

4
i+1 +

1

2
bm

i∑
j=1

θ2
j −

1

2
bm

i∑
j=1

θ̃2
j

(50)

Remark 1. This thesis studies the solution of partial state
constraints. The full states are divided into constraint state
xt = [x1, ..., xt]

T and free state xm = [xt+1, ..., xn]T . Step
1 - Step t constructs the virtual controller for the constrained
state xt , and Step t + 1 - Step n constructs the controller
of the free state xm .

Step m: According to zm = xm−αm−1,m = t+1, ..., n−
1 and (6), we can get

dzm =[fm(x̄m, xm+1)− Lαm−1]dt

+ (ϕm(x)−
m−1∑
j=1

∂αm−1

∂xj
ϕj(x))T dw

(51)

where Lαm−1 =
m−1∑
j=1

∂αm−1

∂xj
fj(x̄j , xj+1) +

m−1∑
j=1

∂αm−1

∂θ̂j

˙̂
θj +

m−1∑
j=0

∂αm−1

∂y
(j)
d

y
(j+1)
d + 1

2

m−1∑
p,q=1

∂2αm−1

∂xp∂xq
ϕTp (x)ϕq(x).

Construct the Lyapunov function as follows

Vm = Vm−1 +
1

4
z4
m +

1

2
bmθ̃

2
m (52)

Thus we have

LVm =LVm−1 + z3
m[fm(x̄m, xm+1)− Lαm−1]

+

3z2
m

∥∥∥∥∥ϕm − m−1∑
j=1

∂αm−1

∂xj
ϕj

∥∥∥∥∥
2

2
− bmθ̃m ˙̂

θm

(53)

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_03

Volume 53, Issue 1: March 2023

 
______________________________________________________________________________________ 



According to Assumption 2, ∂fm(x̄m,xm+1)
∂xm+1

≥ bm > 0.
Let

wm =− Lαm−1 + kmzm +
1

2
z3
m

+

√
3

2
τ

3
2
m

∥∥∥∥∥∥ϕm −
m−1∑
j=1

∂αm−1

∂xj
ϕj

∥∥∥∥∥∥
3

+
3

4
zm +

1

4
b4Mzm

(54)

Because ∂wm
∂xm+1

= 0, there is

∂[fm(x̄m, xm+1) + wm]

∂xm+1
≥ bm > 0 (55)

By Lemma 1, for any xm and wm, there exists an ideal
smooth control input xm+1 = α∗m(xm, wm), so that

fm(x̄m, αm
∗) + wm = 0 (56)

Similar to step 1, there exists µm(0 < µm < 1) satisfied

fm(x̄m, xm+1) = fm(x̄m, αm
∗) + gµm(xm+1 − α∗m) (57)

where gµm = gm(x̄m, xµm), xµm = µmxm+1+(1−µm)α∗m.
Substituting (56) and (57) into (53), we then have

LVm =LVm−1 + z3
m[gµm(zm+1 + αm − α∗m)− kmzm

− 1

2
z3
m −

√
3

2
τ

3
2
m

∥∥∥∥∥∥ϕm −
m−1∑
j=1

∂αm−1

∂xj
ϕj

∥∥∥∥∥∥
3

− 3

4
zm −

1

4
b4Mzm] +

3z2
m

∥∥∥∥∥ϕm − m−1∑
j=1

∂αm−1

∂xj
ϕj

∥∥∥∥∥
2

2
− bmθ̃m˙̂θm

(58)

Applying Assumption 2 and (5) to z3
mgµmzm+1, one has:

z3
mgµmzm+1 ≤

3

4
z4
m +

1

4
b4Mz

4
m+1 (59)

αm can be designed as

αm = −kmzm −
z3
mθ̂mS

T
mSm

2a2
m

(60)

where am is the positive design constant.
Substituting (60) into (58), one has:

z3
mgµmαm ≤ −kmbmz4

m −
bmz

6
mθ̂mS

T
mSm

2a2
m

(61)

Using fuzzy logic system to approach α∗m, there are

α∗m = ω∗Tm Sm(zm) + εm(zm) (62)

where ω∗Tm is the unknown optimal parameter and εm is the
minimum fuzzy approximation error. Suppose |εm| ≤ ε∗m
and ε∗m > 0.

Substituting α∗m into (58), then

−z3
mgµmα

∗
m ≤

bmz
6
mθmS

T
mSm

2a2
m

+
1

2
a2
m

+
1

2
b2Mε

∗2
m +

1

2
z6
m

(63)

By using (5), one has

3z2
m

∥∥∥∥∥ϕm − m−1∑
j=1

∂αm−1

∂xj
ϕj

∥∥∥∥∥
2

2
≤

1

3τ3
m

+

√
3

2
z3
mτ

3
2
m

∥∥∥∥∥∥ϕm −
m−1∑
j=1

∂αm−1

∂xj
ϕj

∥∥∥∥∥∥
3

(64)

where τm is the positive design parameter.
Substituting (59), (61), (63) and (64) into (58), one has:

LVm ≤LVm−1 − cmz4
m +

1

2
a2
m +

1

2
b2Mε

∗2
m +

1

3τ3
m

+
1

4
b4Mz

4
m+1 + bmθ̃m[

z6
mS

T
mSm

2a2
m

− ˙̂
θm]

− 1

4
b4Mz

4
m

(65)

where cm = km(1 + bm).
˙̂
θm can be constructed as follows

˙̂
θm =

z6
mS

T
mSm

2a2
m

− θ̂m (66)

Substituting (66) into (65) and use (5), we can obtain that

LVm ≤−
t∑

j=1

cjz
4
j

k4
bj − z4

j

−
m∑

j=t+1

cjz
4
j +

1

2

m∑
j=1

a2
j

+
1

2
b2M

m∑
j=1

ε∗2j +
m∑
j=1

1

3τ3
j

+
1

4
b4Mz

4
m+1

+
1

2
bm

m∑
j=1

θ2
j −

1

2
bm

m∑
j=1

θ̃2
j

(67)

Step n: By zn = xn − αn−1, we can get

dzn =[fn(x̄n, u)− Lαn−1]dt

+ (ϕn(x)−
n−1∑
j=1

∂αn−1

∂xj
ϕj(x))T dw

(68)

where Lαn−1 =
n−1∑
j=1

∂αn−1

∂xj
fj(x̄j , xj+1) +

n−1∑
j=1

∂αn−1

∂θ̂j

˙̂
θj +

n−1∑
j=0

∂αn−1

∂y
(j)
d

y
(j+1)
d + 1

2

n−1∑
p,q=1

∂2αn−1

∂xp∂xq
ϕTp (x)ϕq(x).

Construct the Lyapunov function as follows:

Vn = Vn−1 +
1

4
z4
n +

1

2
gmbmθ̃

2
n (69)

Taking the time derivative of (69) leads to

LVn =LVn−1 + z3
n[fn(x̄n, u)− Lαn−1]

+

3z2
n

∥∥∥∥∥ϕn − n−1∑
j=1

∂αn−1

∂xj
ϕj

∥∥∥∥∥
2

2

− gmbmθ̃n ˙̂
θn

(70)

According to Assumption 2, ∂fn(x̄n,u)
∂u ≥ bm > 0.
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Define

wn =− Lαn−1 + knzn +
1

2
z3
n

+

√
3

2
τ

3
2
n

∥∥∥∥∥∥ϕn −
n−1∑
j=1

∂αn−1

∂xj
ϕj

∥∥∥∥∥∥
3

+
1

2
b2Mz

3
n +

1

4
b4Mzn

(71)

Because ∂wn
∂u = 0, then

∂[fn(x̄n, u) + wn]

∂u
≥ bm > 0 (72)

By Lemma 1, for any xn and wn, there exists u =
α∗n(xn, wn), so that

fn(x̄n, α
∗
n) + wn = 0 (73)

Similar to step 1, there exists µn(0 < µn < 1) satisfied

fn(x̄n, u) = fn(x̄n, α
∗
n) + gµn(u− α∗n) (74)

where gµn = gn(x̄n, xµn), xµn = µnu+ (1− µn)α∗n.
Substituting (73) and (74) into (70), one has:

LVn =LVn−1 + z3
n[gµn(u− α∗m)− knzn −

1

2
z3
n

−
√

3

2
τ

3
2
n

∥∥∥∥∥∥ϕn −
n−1∑
j=1

∂αn−1

∂xj
ϕj

∥∥∥∥∥∥
3

− 1

2
b2Mz

3
n −

1

4
b4Mzn]

+

3z2
n

∥∥∥∥∥ϕn − n∑
j=1

∂αn
∂xj

ϕj

∥∥∥∥∥
2

2
− gmbmθ̃ṅ̂θn

(75)

Substituting (9) and (12) into (75), we have

z3
ngµnu = z3

ngµnρ(v) + z3
ngµngvuv (76)

Using (5), one has

z3
ngµnρ(v) ≤ 1

2
b2Mz

6
n +

1

2
D2 (77)

The ideal control signal v can be designed as

v = αn = −knzn −
z3
nθ̂nS

T
n Sn

2a2
n

(78)

where an is the positive design constant.
Substituting (78) into (76), one has:

z3
ngµngvuv ≤ −kngmbmz4

n −
gmbmz

6
nθ̂nS

T
n Sn

2a2
n

(79)

Using a fuzzy logic system to approach α∗n, we have

α∗n = ω∗Tn Sn(zn) + εn(zn) (80)

where ω∗Tn is the unknown optimal parameter and εn is the
minimum fuzzy approximation error. Suppose |εn| ≤ ε∗n and
ε∗n > 0.

Substituting α∗n into (75) yields

−z3
ngµnα

∗
n ≤

gmbmz
6
nθnS

T
n Sn

2a2
n

+
1

2
a2
n

+
1

2
b2Mε

∗2
n +

1

2
z6
n

(81)

Using (5), one has

3z2
n

∥∥∥∥∥ϕn − n−1∑
j=1

∂αn−1

∂xj
ϕj

∥∥∥∥∥
2

2
≤

1

3τ3
n

+

√
3

2
z3
nτ

3
2
n

∥∥∥∥∥∥ϕn −
n−1∑
j=1

∂αn−1

∂xj
ϕj

∥∥∥∥∥∥
3

(82)

where τn is the positive design parameter.
Substituting (77), (79), (81) and (82) into (75), one has:

LVn ≤LVn−1 − cnz4
n +

1

2
a2
n +

1

2
b2Mε

∗2
n

+
1

3τ3
n

+ gmbmθ̃n[
z6
nS

T
n Sn

2a2
n

− ˙̂
θn]

− 1

4
b4Mz

4
n +

1

2
D2

(83)

where cn = kn(gmbm + 1).
˙̂
θn can be constructed as follows:

˙̂
θn =

z6
nS

T
n Sn

2a2
n

− θ̂n (84)

Substituting (84) into (83) yields

LVn ≤−
c∑
j=1

cjz
4
j

k4
bj − z4

j

−
n∑

j=c+1

cjz
4
j +

1

2

n∑
j=1

a2
j

+
1

2
b2M

n∑
j=1

ε∗2j +
n∑
j=1

1

3τ3
j

+
1

2
bm

n−1∑
j=1

θ2
j

− 1

2
bm

n−1∑
j=1

θ̃2
j +

1

2
D2 +

1

2
gmbmθ

2
n −

1

2
gmbmθ̃

2
n

(85)

According to Lemma 2 :

− ciz
4
i

k4
bi − z4

i

≤ −ci log
k4
bi

k4
bi − z4

i

(86)

Substituting (86) into (85), we have

LVn ≤−
c∑
j=1

ci log
k4
bi

k4
bi − z4

i

−
n∑

j=c+1

cjz
4
j +

1

2

n∑
j=1

a2
j

+
1

2
b2M

n∑
j=1

ε∗2j +
n∑
j=1

1

3τ3
j

+
1

2
bm

n−1∑
j=1

θ2
j

− 1

2
bm

n−1∑
j=1

θ̃2
j +

1

2
D2 +

1

2
gmbmθ

2
n −

1

2
gmbmθ̃

2
n

(87)

The following definitions are given:

ψ = min{4ci, gm, i = 1, ..., n} (88)

λ =
1

2

n∑
j=1

a2
j +

1

2
b2M

n∑
j=1

ε∗2j +
n∑
j=1

1

3τ3
j

+
1

2
bm

n−1∑
j=1

θ2
j +

1

2
D2 +

1

2
gmbmθ

2
n

(89)

Combining (69), (87), (88) and (89), it leads to

LV ≤ −ψV+λ, t ≥ 0 (90)
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IV. STABILITY ANALYSIS

Theorem 1. For the system (6), based on Assumptions 1-3,
the virtual controller is designed as shown in (26), (43), and
(60), the controller is designed as shown in (78), and the
adaptive rate is shown in (32), (49), (66), and (84).

Then the designed adaptive controller can guarantee that:
1) All signals in the closed-loop system are bounded;
2) The constrained state is within the constraint boundary;
3) The output signal of the system can effectively track the

desired signal.

Proof. Based on (90), one has:

d(E[vn])

dt
= E[LVn] ≤ −ψE[vn] + λ (91)

Defining E[vn] = l and ψ > λ
l , can get d(E[vn])

dt ≤ 0.
For all t ≥ 0, when E[vn(0)] ≤ l, it can be obtained from
Lemma 3 as follows

0 ≤ E[vn(t)] ≤ vn(0)e−ψt +
λ

ψ
,∀t ≥ 0 (92)

From (92), it can be seen that log
k4bi

k4bi−z
4
i

and θ̃ are

bounded, so zi is bounded. Because θi is a constant, θ̂i
is also bounded. According to the definition of αi, it can
be concluded that αi is also bounded and |αi| ≤ α̃i ,α̃i
are positive constants. In addition, because x1 = z1 + yd,
xi = zi + αi−1, i = 2, ..., n, and yd is bounded, it can be
concluded that xi, i = 1, ..., n is bounded. According to the
above analysis, all signals are bounded.

Using x1 = z1+yd, |yd| ≤ Y0, we have |x1| = |z1 + yd| ≤
|z1| + |yd| < kb1 + Y0. Set the parameter kb1 = k1 − Y0,
there is |x1| < k1. From x2 = z2 + α1, it is concluded that
|x2| ≤ |z2| + |α1| < kb2 + α̃1. If choose kb2 = k2 − α̃1,
there exists |x2| < k2. Recursively, we can get |xi| < ki, i =
3, ..., c, so the system state will not be violated.

From (92), there are log
k4b1

k4b1−z
4
1
≤ 4vn(0)e−ψt +

4 λψ , k4b1
k4b1−z

4
1
≤ e4vn(0)e−ψt+4 λψ can be obtained

through transformation, and we can further get |z1| ≤

kb1
4

√
1− e−4vn(0)−4 λψ .

V. SIMULATION EXAMPLE

The following simulation examples will illustrate the
application of the provided control scheme. Consider the
nonlinear system as follows dx1 = [(1 + x2

1)x2 + 0.5x3
2]dt+ x2

1 sin(x2)dw
dx2 = (x2

1x2 + 1
5u

3 + u)dt+ [1 + sin(x2
1)]x2dw

y = x1

(93)
The tracking signal is selected as follows

yd = sin(t) + 0.5 sin(0.5t) (94)

The system has the nonlinear property of input saturation,
in which the saturated input model is

u = sat(v) =

 5, v ≥ 5
v,−10 ≤ v ≤ 5
−10, v ≤ −10

(95)

The initial conditions are [x1(0), x2(0)]T =
[0.3, 0.2]T , θ̂1(0) = θ̂2(0) = 0, a1 = 0.02, a2 = 50, kb1 =

Fig. 1: System output y and reference signal yd

Fig. 2: Control signal u

Fig. 3: Adaptive parameters θ̂1 and θ̂2

Fig. 4: Tracking error

1, k1 = 15, k2 = 2, and the simulation results are shown in
Figure 1-4.

Figure 1 shows that under the action of the designed
controller, the output signal can well track the given expected
signal. The trajectory of the control signal is described in
Figure 2. The trajectory of adaptive parameters are shown
in Figure 3, it shows that θ̂1 and θ̂2 are ultimately bounded.
The trajectory of the tracking error is shown in Figure 4,
it fluctuates between 0.1 and −0.1. From the simulation
results, the designed controller can ensure that the closed-
loop system has good tracking performance.

VI. CONCLUSION

The problem of adaptive tracking control for pure feedback
nonlinear systems with input saturation and partial state
constraints is studied. In order to facilitate the research, the
implicit function theorem and mean value theorem are used
to transform the pure feedback system. Then, the FLS is used
to approach the unknown functions in the system, and the
controller of the system is designed using the backstepping
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technique. Here, the BLF can make the constrained local s-
tate converge to the constraint boundary. Through simulation,
the provided method can make the system control achieve the
desired effect.
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