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Abstract—The Black-Scholes equation is a well known math-
ematic model in option pricing theory and for European options
it is a diffusion PDE with solution V (S, t), a function of current
value of the underlying asset S and time t. In theory, the range
of S is S ∈ (0,∞) and in practical computation we truncate the
infinity interval into a finite one, such as S ∈ (0, Smax), where
Smax is often a large quantity. In this paper, we use the Crank-
Nicolson method to compute the numerical solution, which
consists of a centered finite difference method with mesh size
∆S for the derivatives VS and VSS and a trapezoidal rule to the
time derivative Vt. We have to solve a triangular linear system
at each time step, which would be a serious computation burden
when N = Smax/∆S is large. To accelerate the computation
we use the Crout factorization of the triangular matrix, by
using the diagonal dominance. Numerical results for both the
put option and the call option are given, which illustrate the
advantage of the Crout factorization in terms of CPU time,
compared to the built-in command inv in Matlab.

Index Terms—Black-Scholes equation, European options,
Crank-Nicolson method, Crout factorization, diagonal domi-
nance.

I. INTRODUCTION

In the financial market, pricing an option is an important
problem in the view of both theory and practice. The Black–
Scholes (BS) model, which was proposed in 1973 by Black
and Scholes [3] and Merton [18], provides an approximate
description of the behavior of the underlying asset. Most
remarkably, the BS model leads to a boom in options trading
because of its simplicity and clarity in obtaining the price
of the option [24]. There are two classes of options, the
European options and the American options. For the former,
the BS equation is a boundary value problem of a diffusion
equation, while for the American options the BS equation is
a free boundary value problem. In this paper, we focus on
the BS model for the European options and a generalization
of our algorithm to the American options will be discussed
in our forthcoming paper.

The BS equation can be solved by both analytically
and numerically. Black and Scholes (1973) first found the
solution based on previous research on option pricing that
gave an idea of what the solution would look like. In [15]
Mellin transformation was utilized to explain this model.
Such a transformation did not require variable change or ex-
plaining dispersion condition. Company, Gonzalez and Jodar
[5] solved the BS model which was modified with discrete
dividend. They utilized a delta-characterizing grouping of
generalized Dirac-Delta function and connected the Mellin
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transformation to get an integral formula. However, in these
studies the closed form for the analytic solutions is only
available for BS equations with constant coefficients. For BS
model with time-dependent coefficients [11,12,14,20] there is
no closed form for the analytic solution and we have to rely
on numerical computation [4,6,9,10,19] .

For the European options, the BS model is the following
partial differential equation (PDE) about the unknown func-
tion V (S, t) with (S, t) ∈ (0,∞)× (0, T ):

Vt +
σ2S2

2
VSS + rSVS − rV = 0, (1)

together with final-value condition V (S, T ) = VT (S) and
suitable boundary conditions. This PDE is backward propa-
gation in time and it is not convenient to deal with. Usually,
we can make a variable change to transform it to a forward
propagation problem. To this end, we let

t̃ = T − t,

and by noticing t = T − t̃ we have

Vt̃ =
∂V

∂t̃
=
∂V

∂t

∂t

∂t̃
= −∂V

∂t
, i.e., Vt = −Vt̃.

Substituting this into (1) gives

Vt̃ −
σ2S2

2
VSS − rSVS + rV = 0,

and the final-value conditions is changed to V (S, t̃) = VT (S)
for t̃ = 0. For uniformness, we still use the variable t to
replace t̃ and focus on the following PDE

Vt −
σ2S2

2
VSS − rSVS + rV = 0, (2)

together with V (S, 0 = VT (S) (initial-value condition) and
some corresponding boundary conditions. For the BS model
(2), the notations are explained as follows. The quantity V
is the option value: when the distinction is important we
use C(S, t) to denote a call option and P (S, t) to denote a
put option. This value is a function of current value of the
underlying asset S and time t. The value of the option also
depends on the parameters σ (the volatility of the underlying
asset), E (the exercise price), r (the interest rate) and T (the
expiry time).

In a practical application, the initial and boundary condi-
tions for the BS model are specified by the put option or call
option. For an European put option, the symbol V is usually
denoted by P , i.e.,

Pt −
σ2S2

2
PSS − rSPS + rP = 0, (3a)

together with initial and boundary conditions

P (S, 0) = max{E − S, 0}, S ∈ (0,∞),

P (0, t) = Ee−rt, lim
S→∞

P (S, t)

S
= 0, t ∈ (0, T ).

(3b)

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_04

Volume 53, Issue 1: March 2023

 
______________________________________________________________________________________ 



For the call option, the BS model is specified by a PDE
with solution C(S, t):

Ct −
σ2S2

2
CSS − rSCS + rC = 0, (4a)

together with initial and boundary conditions

C(S, 0) = max{S − E, 0}, S ∈ (0,∞),

C(0, t) = 0, lim
S→∞

C(S, t)

S
= 1, t ∈ (0, T ).

(4b)

To make a practical computation, we have to restrict
ourself to a finite range for S, i.e., S ∈ [0, Smax]. The
quantity Smax should be as large as possible and in practice
it stands for the maximal price of the underlying asset
and according to [16] a simple rule for fixing Smax is to
let Smax be around four times of the exercise price E,
i.e., Smax = 4E. With a finite range of S, we have to
put suitable boundary conditions at S = Smax to replace
limS→∞

P (S,t)
S = 0 and limS→∞

C(S,t)
S = 1. According

to the analysis in [16], we choose the following boundary
condition at S = Smax for the put and call options:

P (Smax, t) = 0, C(Smax, t) = Smax − Ee−rt. (5)

Normally, this choice of boundary condition leads to a
negligible error in the value of the option. Clearly, for the
put and call options the governing PDE is the same and
therefore a discretization formula (2) is applicable to both
(3a)-(3b) and (4a)-(4b). The numerical method studied in
this paper is also applicable to the following BS equations
with time-varying coefficients

Vt −
σ2(t)S2

2
VSS − r(t)SVS + r(t)V = 0, (6)

which is the so-called generalized BS equation[12,20] and is
found useful in many application fields, such as the variable
volatility driven BS option pricing [8] and double barrier
option pricing [9].

In this paper, we use the Crank-Nicolson method to solve
the BS equation (6) (together with the boundary conditions
specified in (4a)-(4b) at S = 0 and (5) at S = Smax), which
consists of applying a centered finite difference scheme to
the first and second derivatives VS and VSS and applying
the trapezoidal rule to the time derivative Vt. At each step
of the Crank-Nicolson method, we have to solve a linear
system with a coefficient matrix of triangular structure. For
long time computation, solving this linear system would be
the major computation burden, especially when the number
of mesh sizes, i.e., N = Smax/∆S, is large. By proving the
diagonal dominance of the coefficient matrix, we show that
this matrix permits a stable Crout factorization, by which we
can handle the large scale linear system via fast forward and
backward substitutions. Numerical results indicate that such
an algorithm is more efficient than the built-in command inv
in Matlab, in terms of stability and CPU time.

The remainder of this paper is organized as follows. In
Section II, by using the trapezoidal rule as the time dis-
cretization and the centered finite difference formula as the
space discretization, we consider a fully discretized version
of (2) and present the discrete formula. At the discrete level,
we have to a linear system at each time point (the major
computation cost) and in Section III we describe a fast
Thomas method based on the Crout factorization for such

a system. Our numerical results are given in Section IV,
where we will consider concrete data for both the put model
(3a)-(3b) and the call model (4a)-(4b). We finish this paper
in Section V with some concluding remarks.

II. THE CRANK-NICOLSON DISCRETIZATION

In this section, we establish numerical formula for solving
(6). The main point is to discretize the time and space
derivatives, for which we use the trapezoidal rule and the cen-
tered finite difference formula, respectively. Such a Crank-
Nicolson scheme is successfully applied to many other prob-
lems, such as Fisher-Kolmogorov equation [25], fractional
problems[7,17] and transient diffusion convection reaction
problems [2]. To setup the space and time discretizations,
we first partition the computation domain [0, Smax]× [0, T ]
by mesh sizes ∆S and ∆t and denote an arbitrary grid on
this domain by (n∆S,m∆t), where n = 0, 1, . . . , N and
m = 0, 1, . . . ,M .

We first consider the time discretization via the trapezoidal
rule

V [m+1](S)− V [m](S) =
∆t

2
(L[m](S) + L[m+1](S)),

m = 0, 1, . . . ,M − 1,
(7)

where L[l](S) =
σ2
l S

2

2 V
[l]
SS(S) + rlSV

[l]
S (S)− rlV [l](S) (l =

m,m + 1) with V [l](S) being the approximate solution of
V (S, t) and t = tl, σl = σ(tl) and rl = r(tl). Next, we
discretize the spatial derivatives V [l]

SS(S) and V [l]
S (S) at S =

Sn by the centered finite difference method:

V
[l]
S (Sn) =

V [l](Sn+1)− V [l](Sn−1)

2∆S
+ τn, τn = O(∆S2),

V
[l]
SS(Sn) =

V [l](Sn+1)−V [l](Sn)
∆S − V [l](Sn)−V [l](Sn−1)

∆S

∆S
+ τn

=
V [l](Sn+1)− 2V [l](Sn) + V [l](Sn−1)

∆S2
+ τn,

where τn = O(∆S2) is the truncation error. Dropping this
truncation error in the above formulas gives the approxima-
tions as

V
[l]
S (Sn) ≈

V
[l]
n+1 − V

[l]
n−1

2∆S
,

V
[l]
SS(Sn) ≈

V
[l]
n+1 − 2V

[l]
n + V

[l]
n−1

∆S2
.

(8)

At S = Sn, the semi-discrete BS model is

V [m+1](Sn)− V [m](Sn) =
∆t

2
(L[m](Sn) + L[m+1](Sn)),

which after replacing V [l]
S (Sn) and V [l]

SS(Sn) by the centered
finite difference approximation in (8) gives

V [m+1]
n − V [m]

n =
∆t

2

(
L[m]
n + L[m+1]

n

)
,

m = 0, 1, . . . ,M − 1, n = 1, 2, . . . , N − 1,

L[l]
n :=

σ2
l S

2
n

2

V
[l]
n+1 − 2V

[l]
n + V

[l]
n−1

∆S2
+

rlSn
V

[l]
n+1 − V

[l]
n−1

2∆S
− rlV [l]

n , l = m,m+ 1.
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Let

α[l]
n =

∆tσ2
l S

2
n

4∆S2
+
rl∆tSn
4∆S

,

β[l]
n =

∆tσ2
l S

2
n

4∆S2
+
rl∆t

4
,

γ[l]
n =

∆tσ2
l S

2
n

4∆S2
− rl∆tSn

4∆S
.

(9)

Then, the discrete BS-model is

V [m+1]
n − V [m]

n = α[m]
n V

[m]
n+1 − 2β[m]

n V [m]
n + γ[m]

n V
[m]
n−1+

α[m+1]
n V

[m+1]
n+1 − 2β[m+1]

n V [m+1]
n + γ[m+1]

n V
[m+1]
n−1 ,

(10)

where n = 1, 2, . . . , N − 1. For n = 1 and n = N − 1, we
have to use the boundary conditions to specify V [l]

0 and V [l]
N

(l = m,m+ 1):

V
[l]
0 = Va(tl), V

[l]
0 = Vb(tl).

Define the following notations

V [m] =
(

(V
[m]
1 )>, (V

[m]
2 )>, . . . , (V

[m]
N−1)>

)>
,

cm,m+1 =


γ

[m]
1 Va(tm) + γ

[m+1]
1 Va(tm+1)

0
...
0

α
[m]
N−1Vb(tm) + α

[m+1]
N−1 Vb(tm+1)

 ,

A[l] =


−2β

[l]
1 α

[l]
1

γ
[l]
2 −2β

[l]
2 α

[l]
2

. . . . . . . . .
γ

[l]
N−2 −2β

[l]
N−2 α

[l]
N−2

γ
[l]
N−1 −2β

[l]
N−1

 ,

where l = m,m+ 1. From (10) we have

(I −A[m+1])V [m+1] = (I +A[m])V [m] + cm,m+1. (11)

III. CROUT FACTORIZATION FOR THE TRIANGULAR
SYSTEM

Both the put and call modes are defined for S ∈ (0,∞)
and in a practical convenience we truncate the infinity range
to a finite one (0, Smax) with Smax being a large quantity
(see our comments in Section I). On the other hand, to get
an accurate numerical solution the mesh size ∆S should be
small. This implies that the number of the discrete points for
S, i.e., N = Smax

∆S , is of often large. Indeed, for a computation
with Smax = O(103) and ∆S = O(10−3) we have to solve
the linear system (11) at each time step of size N = O(106).
For a regular desk computer, this is rather time expensive and
is an unrealistic task for long time computation, even though
the matrix A[m+1] is spare with triangular structure. So, it is
necessary and valuable to look for a fast algorithm to handle
the triangular system (11). To this end, we consider the Crout
factorization in this section.

Theorem 1: Let Sn = n∆S(n = 1, 2, . . . , N − 1) and
tm = m∆t(m = 1, 2, . . . ,M) with ∆S > 0 and ∆t > 0.
Assume that the problem parameters {σl, rl}l=1,2,...,M and
the discretization parameter ∆t satisfy

1 +
∆trl

2

(
1− rl

4σ2
l

)
≥ 0. (12)

Then, the matrix I −A[l] is invertible and it holds

I −A[l] = L[l]U [l], (13)

where l ≥ 0 denotes the index of the discrete time point
t = tl and

L[l] =



l1
m2 l2

m3 l3
. . . . . .

mN−2 lN−2

mN−1 lN−1


,

U [l] =



1 u1

1 u2

1 u3

. . . . . .
1 uN−2

1


.

The quantities {ln}N−1
n=1 , {mn}N−1

n=2 and {un}N−2
n=1 are deter-

mined recursively by
mn = −γ[l]

n , n = 2, 3, . . . , N − 1,

l1 = 1 + 2β
[l]
1 , u1 =

−α[l]
1

l1
,

ln = 1 + 2β
[l]
n −mnun−1, n = 2, 3, . . . , N − 1,

un =
−α[l]

n

ln
, n = 2, 3, . . . , N − 2.

Proof: According to [13, Theorem 2.1, pp. 51], it is
sufficient to prove that one of the following two conditions
holds:
1. the matrix I −A[l] is strict diagonally dominant;
2. the matrix I −A[l] is diagonally dominant and

α[l]
n 6= 0(∀n = 1, 2, . . . , N−2), |γ[l]

N−1| < 1+2β
[l]
N−1. (14)

We prove that under the assumptions stated by the theorem
the second condition holds. We have

I−A[l]
=



1 + 2β
[l]
1 −α[l]

1

−γ[l]
2 1 + 2β

[l]
2 −α[l]

2

. . .
. . .

. . .

−γ[l]
N−2 1 + 2β

[l]
N−2 −α[l]

N−2

−γ[l]
N−1 1 + 2β

[l]
N−1


.

According to (9), it is clear that α
[l]
n > 0 for n =

1, 2, . . . , N − 2 and β
[l]
n > 0 for n = 1, 2, . . . , N − 1. We

next prove

1 + 2β[l]
n ≥


α

[l]
n , n = 1,

|γ[l]
n |+ α

[l]
n , n = 2, 3, . . . , N − 2,

|γ[l]
N−1|, n = N − 1.

For n = 1, by noticing S1 = ∆S we have

1 + 2β
[l]
1 − α

[l]
1

= 1 +
∆tσ2

l S
2
1

2∆S2
+
rl∆t

2
− ∆tσ2

l S
2
1

4∆S2
− rl∆tS1

4∆S

= 1 +
∆tσ2

l S
2
1

4∆S2
− rl∆tS1

4∆S
+
rl∆t

2

= 1 +
∆tσ2

l

4
− rl∆t

4
+
rl∆t

2

= 1 +
∆tσ2

l

4
+
rl∆t

4
≥ 0,
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where we have used S1 = ∆S.
For n = 2, 3, . . . , N − 2 we have

1 + 2β[l]
n − (|γ[l]

n |+ α[l]
n ) = 1 +

∆tσ2
l S

2
n

2∆S2
+
rl∆t

2
−(

∆tσ2
l S

2
n

4∆S2
+
rl∆tSn
4∆S

+

∣∣∣∣∆tσ2
l S

2
n

4∆S2
− rl∆tSn

4∆S

∣∣∣∣) .
If ∆tσ2

l S
2
n

4∆S2 ≥ rl∆tSn

4∆S , i.e., nσ2
l ≥ rl, it holds

∆tσ2
l S

2
n

4∆S2
+
rl∆tSn
4∆S

+

∣∣∣∣∆tσ2
l S

2
n

4∆S2
− rl∆tSn

4∆S

∣∣∣∣ =
∆tσ2

l S
2
n

2∆S2
.

This implies 1 + 2β
[l]
n − (|γ[l]

n | + α
[l]
n ) = 1 + rl∆t

2 > 0. If
∆tσ2

l S
2
n

4∆S2 < rl∆tSn

4∆S (i.e., nσ2
l < rl), it holds

∆tσ2
l S

2
n

4∆S2
+
rl∆tSn
4∆S

+

∣∣∣∣∆tσ2
l S

2
n

4∆S2
− rl∆tSn

4∆S

∣∣∣∣ =
rl∆tSn
2∆S

,

and thus by using Sn = n∆S we get

1 + 2β[l]
n − (|γ[l]

n |+ α[l]
n ) = 1 +

∆tσ2
l S

2
n

2∆S2
+
rl∆t

2
− rl∆tSn

2∆S

= 1 +
n2∆tσ2

l

2
+
rl∆t

2
− nrl∆t

2

= 1 +
∆t

2

(
n2σ2

l − nrl + rl
)
.

By regarding 1 + ∆t
2

(
n2σ2

l − nrl + rl
)

as a function of n
for n ≥ 2, we know that the minimum of this function is1 + ∆t

2

(
4σ2

l − rl
)
, if rl

2σ2
l
≤ 2,

1 + ∆t
2

(
rl − r2l

4σ2
l

)
, if rl

2σ2
l
> 2.

For rl
2σ2

l
≤ 2, i.e., rl

4σ2
l
≤ 1 we have 1 + ∆t

2

(
4σ2

l − rl
)

=

1+4σ2
l ×∆t

2

(
1− rl

4σ2
l

)
> 0. For the other case rl

2σ2
l
> 2, i.e.,

rl
4σ2

l
> 1, we have 1 + ∆t

2

(
rl − r2l

4σ2
l

)
= 1 + ∆trl

2

(
1− rl

4σ2
l

)
and under the assumption (12) we have 1+ ∆t

2

(
rl − r2l

4σ2
l

)
≥

0 as well. The above analysis implies 1 + 2β
[l]
n − (|γ[l]

n | +
α

[l]
n ) ≥ 0 for all n = 2, 3, . . . , N − 2.
It remains to prove the last inequality 1+2β

[l]
N−1 ≥ |γ

[l]
N−1|.

Since our proof for 1 + 2β
[l]
n − (|γ[l]

n | + α
[l]
n ) ≥ 0 holds for

all n ≥ 2, it is clear that

1 + 2β
[l]
N−1− |γ

[l]
N−1| > 1 + 2β

[l]
N−1− (|γ[l]

N−1|+α
[l]
N−1) ≥ 0,

which ends the whole proof.
A routine calculation implies that the condition (12) is

equivalent to

σl ≥
rl
2

√
∆t

2 + ∆trl
. (15)

Hence, we can select a small ∆t to let I − A[l] invertible
and to let the Crout factorization (13) applicable. Of course,
this is only a sufficient condition and in many cases we find
that the coefficient matrix I −A[l] is invertible (and thus the
Crout factorization (13) is applicable) even though (15) does
not hold.

IV. NUMERICAL RESULTS

In this section, we consider some concrete examples and
compute the numerical solution via the CN scheme and the
Crout factorization (for handing the linear system at each step
of the CN scheme). All numerical results are implemented
by Matlab R2016b installed in a desk computer with Mac
OS and 2.7 GHz Intel Core i5.

A. Put model
We first consider the put model (3a)-(3b) with the follow-

ing data:

E = 2, Smax = 10, r = 0.02 + 0.04t, σ =
1 + et

4
, (16)

where r and σ are the same functions used in [11]. The
profile of the solution P (S, t) is illustrated in Figure 1 for
three different values of the expiry time T . We see that
there is bump near the left boundary S = 0 in the time
interval [0, 10] and as time grows the bump disappears and
the solution rapidly and uniformly decays to 0.

P
(S

,t
)

0
10

8

1

206

T=5

S t

4

2

10
2

0 0

0
10

20

1

P
(S

,t
)

T=15

S

5

t

2

10

0 0

0
10

1

20

P
(S

,t
)

T=20

S

5

t

2

10
0 0

Fig. 1. Solution P (S, t) of the put model with data (16) and different
expiry time T : T = 5, T = 15 and T = 20.

As we mentioned at the begin of Section III, each step
of the CN scheme lies in solving a large scale tridiagonal
system, which is the major computation cost. We now solve
this linear system for each CN step by two solvers: the
built-in command ‘backslash’ (i.e., the inv command) in
Matlab and the Crout factorization introduced in Section III.
In Figure 2, we plot the maximal error at each discrete time
point between the numerical solutions obtained by these two
solvers, where we see clearly that the error is very small.
This implies that both solvers lead to the same numerical
solutions if we neglect the roundoff error.

0 5 10 15 20
t

10
-22

10
-20

10
-18

10
-16

10
-14

10
-12

E
rr

o
r

T=20

Fig. 2. For the put model with data (16), the maximal error at each discrete
time point between the numerical solutions obtained by the Matlab’s built-in
command ‘backslash’ (i.e., the inv command) and the Crout factorization
introduced in Section III.

In Table I, we compare the CPU time of solving the put
model by using these two solvers. The CPU time is measured
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by the tic and toc commands in Matlab. Clearly, the
Crout factorization needs approximately a half less CPU time
compared to the backslash command.

TABLE I
PUT MODEL: COMPARISON OF CPU TIME (IN SECONDS) FOR TWO

LINEAR SOLVERS

(M,N ) (200, 100) (400, 200) (800, 400) (2000,1000)
backslash (inv) 0.4395 0.9888 3.1621 56.5350
LU-factorization 0.3720 0.4949 1.8848 31.6852

B. Call model
We next consider the call model (4a)-(4b) with data

E = 2, Smax = 10, r =
t

1 + t
, σ = 1 + ln(1 + t). (17)

We plot in Figure 3 the solution C(S, t) for different expiry
time T . Different from the put model, we see that the solution
of the call model evolves smoothly as t increases and does
not decay to zero uniformly.
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Fig. 3. Solution C(S, t) of the call model with data (17) and different
expiry time T : T = 5, T = 15 and T = 20.

We now compare the two linear solvers for each CN
step, i.e., the built-in command ‘backslash’ (i.e., the inv
command) in Matlab and the Crout factorization introduced
in Section III. Similar to Figure 2 we plot in Figure 4 the
maximal error between the numerical solutions computed
by these two solvers. Again, both solvers lead to the same
numerical solutions if we neglect the roundoff error.
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Fig. 4. For the call model with data (17), the maximal error at each discrete
time point between the numerical solutions obtained by the Matlab’s built-in
command ‘backslash’ (i.e., the inv command) and the Crout factorization
introduced in Section III.

At last, in Table II we compare the CPU time of solving
the call model by using these two solvers. Similar to the
put model, it is clear that the Crout factorization needs ap-
proximately a half less CPU time compared to the backslash
command.

TABLE II
CALL MODEL: COMPARISON OF CPU TIME (IN SECONDS) FOR TWO

LINEAR SOLVERS

(M,N ) (200, 100) (400, 200) (800, 400) (2000,1000)
backslash (inv) 0.3171 0.8395 3.7288 55.4824
LU-factorization 0.2599 0.5003 1.8370 34.2013

V. CONCLUSION

The Black-Scholes equation is a class of fundamental
mathematic models in finance. These are partial differential
equations and numerical solutions play an important role in
the study of these equations, especially when the problem
parameters are time-dependent (because there are no exact
solutions in this case). In this paper, we consider the Crank-
Nicolson (CN) scheme as discretization, which is of second-
order accuracy. In each CN step, we have to handle a large
scale linear system (with coefficient matrix changing from
step to step) and solving this system is the major computation
burden. By looking insight into the relationship between
the coefficients of the CN scheme, we propose a Crout
factorization of the matrix, which leads to fast computation
of the linear system via forward and backward substitutions.
Numerical results indicate that the Crout factorization needs
approximately a half less CPU time compared to the built-in
command inv in Matlab. Such a Crout factorization can be
used to handle linear systems arising from other problems,
such as the adaptive fuzzy funnel control [22], pollutant
spread in water [1] and parameter estimation [21].
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