
 

  
Abstract—The exponential growth of business data coming 

from heterogeneous sources imposes the use of new generations 
of database management systems and new data storage 
architectures. The major players in the big data market have 
turned to NoSQL (Not only SQL) technology, which provides a 
flexible data model and high scalability. In this paper, we 
investigate OLAP (Online Analytical Processing) 
implementation using columnar databases (a type of NoSQL 
system). We provide a set of formal transformation rules in 
order to map the multidimensional conceptual model to a 
target model that is suitable for the column-oriented model. 
Then, we propose two OLAP cube operators called MRC-Cube 
and SC-Cube, which allow to build the OLAP cube using the 
MapReduce paradigm and Spark respectively. We conduct an 
experimental comparison of their performance to analogous 
relational implementation using Oracle OLAP, we focus 
particularly on read latency metric under different 
experimental configurations. The obtained results show a clear 
difference when performing the OLAP cube building between 
the relational implementation and the columnar one.  

 
Index Terms— OLAP, Data warehouse, Column-family 

databases, NoSQL, Cube model, HBase 
 

I. INTRODUCTION 
LAP(Online Analytical Processing) can be defined as a 
computing method that performs multidimensional 

analysis of business data in order to extract meaningful 
indicators. In a broader sense, it refers to a set of tools and 
practices that enable decision-makers to identify issues and 
opportunities in a business process from different 
perspectives. A classical OLAP system includes three main 
components: a data source, which could be an OLTP 
(Online Transaction Processing) database from which data is 
extracted, a data warehouse where data is loaded in a 
multinational model, and a data cube which is a 
multidimensional data structure containing aggregated 
measures across different dimensions. OLAP types can be 
categorized based on the storage techniques, that is, 
relational, multidimensional, or hybrid. Accordingly, we 
distinguish three chief types of OLAP systems, namely    R-
OLAP(Relational-OLAP)[1][2],MOLAP(Multidimensional- 
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OLAP)[3] and HOLAP(Hybrid-OLAP). These classical 
implementations utilize traditional databases for storing and 
processing data. Unfortunately, despite being tried and 
tested, these databases can’t scale when faced with 
enormous data volumes. Indeed, with the advent of some 
fields like social media and the Internet of Things (IOT)[4], 
data repositories are reaching critical sizes that cannot be 
handled using classical database management systems. 
Hence, to tackle this problem, business intelligence software 
vendors tried to accommodate OLAP with big data by 
developing some solutions like Apache Hive and Apache 
Kylin. Unfortunately, these solutions construct the cube 
using a row-oriented method, which is not efficient in 
performing online analytical processing and doesn’t allow 
them to benefit from the greater performance they can 
obtain from the column-oriented approach.  

Over the last decade, a strong interest toward NoSQL 
(Not only SQL) technology has arisen[5]. This term 
identifies a type of database management system that stores 
data in a non-relational way. One of the major NoSQL-
oriented databases is the columnar data store, which saves 
data by columns rather than rows. This data storage type is 
considered as the future of Business Intelligence (BI) and 
the most suitable for data warehouses, and thus for 
processing analytical queries. Indeed, thanks to its storage 
model by column, data is stored sequentially on disk, which 
improves data access extremely. Furthermore, with this 
organization, columnar storage allows to ignore data that is 
not required for a certain query. An essential feature 
required for any OLAP system is its capability to perform 
aggregations and OLAP cube building over a large data set 
in a fraction of the time. Unfortunately, columnar databases 
lack of cube computation operators. To deal with this pitfall, 
a possible solution consists of integrating external tools like 
Hive and combining a set of “group by” clauses. This naive 
method requires multiple accesses to the data warehouse, 
which decreases performance drastically. 

In this research paper, we outline a novel approach for 
setting up OLAP systems with columnar databases. We 
propose a set of transformation rules to convert the 
multidimensional conceptual model to a target columnar 
logical model. Then, we provide two OLAP operators, 
which allow building cubes from a data warehouse built 
upon the column-wise approach, and we evaluate their 
performance when dealing with big data volumes. 

The remainder of this paper is organized as follows: 
Section 2 discusses the background of this work; Section 3 
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explains the proposed approach which enables instantiating 
data warehouses using column-family databases; Section 4 
describes the processing of MRC-Cube and SC-Cube 
operators through a running example; section 5 details 
implementation and experiments and reports the obtained 
results; Section 6 concludes this work and gives research 
perspectives. 

II. BACKGROUND 

A. Column-Family databases 
The column-family database is another NoSQL database 

that stores data using a column-wise approach, unlike 
relational ones, which organize data by rows.  

Data stored in a column family database is partitioned 
vertically, which makes partial read more efficient as only a 
subset of row attributes is loaded. For this reason, columnar 
stores are well-suited for OLAP applications. The 
fundamental concepts of the column-family data model are 
the keyspace, the column-family, and the column: 

 
• A keyspace is an object that contains a list of column 

families. Formally, a keyspace denoted ks can be 
represented by the tuple  where  is its 
name and  a collection of column families. 

• A column-family  in turn is an object that holds 
a collection of columns that can be represented by the 
tuple , where  is the name of cf  and 

 a collection of columns forming cf. 
• A row is an instance of a column-family having the same 

columns that can be represented by the triplet 
, where  is a unique key to 

identify the row,  a collection of column names 

and a collection of column values. 

• A column denoted col is the central part of the columnar 
data store, formally a column is a tuple  
where  is the column name and is the column 
value. 

The data structure of the column-family model is depicted in 
Fig. 1. 
 

 
Fig. 1. A representation of the column-family data model 

B. State of the art 
Since its advent, NoSQL systems have aroused the 

interest of the research community. Several research papers 
have compared it to the relational model in terms of 
read/write latency and scalability[6], [7]. Other research 
works has focused on the transformation from the relational 
model to a target NoSQL model [8], [9], [10],[11]. 

 Using NoSQL technology in OLAP systems is a recent 
research topic. Indeed, considerable research works 
addressed the instantiation of big data warehouses using 
NoSQL databases, either with document-oriented model 
[12], [13] or graph-oriented model [14], [15], [16], or key 
value stores [17].  

Regarding the columnar-oriented model, previous works 
studied specific approaches for modeling columnar data 
warehouses. In [18]  the authors introduce a set of mapping 
rules from the multidimensional conceptual model to a 
target logical model suited to columnar repositories. In [19] 
the authors propose three distinct approaches in terms of 
structure to map the star schema into a logical model 
adapted to column-oriented data warehouse. 

As far as OLAP cube building from a data warehouse 
implemented under the NoSQL model, novel approaches 
have been followed. Among them, we would name three 
relevant works. The first one proposes an aggregate operator 
called MC-CUBE that allows to build OLAP cube using the 
column-wise approach from a columnar data warehouse 
[20]. The second one presents a framework for 
implementing OLAP systems under graph-oriented 
databases using Neo4j and its declarative language Cypher 
[21]. The last one studied an extended type of OLAP 
cuboids built upon a document-oriented data warehouse 
using nesting and array[13]. 

We look ahead bringing our contribution to these works 
by using new algorithms for OLAP cube construction from a 
columnar data warehouse, and we aim to use Spark instead 
of Hadoop MapReduce to fully take advantage of in-
memory processing. 

III. COLUMN-FAMILY DATA WAREHOUSE 
A data warehouse’s logical model describes relationships 

between facts and dimensions in a more exhaustive manner 
compared to the conceptual model. Indeed, at the logical 
level, relationships, entity attributes, and keys are defined in 
order to serve as the foundation of the physical level.  In the 
literature, there are several candidate approaches for 
implementing big data warehouses using columnar 
databases [19]. The one that fits the column family 
databases proposes storing both the fact and its associated 
dimensions in the same keyspace. This model uses the 
concept of “column family” to distinguish between rows. In 
fact, every dimension is transformed into a column family 
containing its attributes. The same rule applies to the fact. 
This modeling approach allows storing attributes belonging 
to the same column family on the same disk, which 
increases the efficiency of processing certain queries. 
Indeed, for instance, HBase which is a popular column-
oriented NoSQL DBMS stores column families physically 
into separate files called HFiles. This means that each 
column family will have its own HFile and thus, queries 
involving column attributes contained in the same column 
family will run much faster as the other HFiles that doesn’t 
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apply to the query will be ignored. 

A. Formalization 
The mapping from the multidimensional conceptual 

model to the logical model according to the aforesaid 
approach is performed by the application of the following 
rules:  

• R1. The fact F and its corresponding dimensions are 
stored in the same keyspace ks. 

• R2. Each fact F is converted to a column family 
and each measure  is mapped to a 

simple column belonging to the fact column 
family. 

• R3. Each dimension D is mapped to a column family 
 ,and each dimension attribute is converted to 

a simple column within the column family. 
 

1) Case study 
For a running example, we consider a decision-making 

system in the form of a data mart (a mini data warehouse) 
set up to observe the activity of a reseller of computer 
hardwires and accessories at different stores. Each store is 
recognized by its region and type (according to its area). 
Sales are filled in according to a period that is broken down 
into months, quarters, and years. Sales are observed by the 
number of articles according to the type and the turnover. 
The logical model obtained by the application of the 
aforesaid mapping rules will store the fact and its related 
dimensions in one key space grouped by column family 

, , , . Following the second 
and third rules (R2 & R3), dimension attributes in the 
relational model will be mapped to columns in the identified 
column families as well as the measures of the fact 
e.g., , . The Fig. 2 illustrates 
the representation of the logical model. 
 

 
Fig. 2. The logical model representation of the columnar data warehouse. 

IV. OLAP CUBE CONSTRUCTION 

A. Approach overview 
The underlying idea of the proposed approach is to extract 

all the data forming the OLAP cube and then to use the 

MapReduce paradigm in the first place and Spark as an 
enhancement in the second place to compute all possible 
aggregates at different levels of granularity. Once the cube 
is fully calculated, it is materialized according to the 
columnar model in order to take advantage of this 
architecture with regard to the manipulation of the cube. 

The proposed OLAP implementation is based on a 
column-family architecture for data warehousing (described 
in Section III ) and a distributed OLAP cube computation 
algorithm. For simplicity, we assume that the cube contains 
two dimensions, namely, the article type (TYPE) and the 
store region (REG). The workflow of the OLAP 
construction is depicted in Fig. 3. 

 

 
Fig. 3. OLAP Cube computation approach 

B. Map-Reduce Columnar Cube (MRC-Cube) 
 This operator uses the MapReduce processing technique 

to build the cube. Recall that, MapReduce is a Java 
programming model within the Hadoop framework that is 
used for distributed computing. It contains two main tasks, 
the Map task, which takes input data and converts it to a 
key/value pair, and the Reduce task, which takes the output 
of the Map tasks, then iterates through all values associated 
with a given key and applies a reduce function to produce 
zero or many key/value pairs. The MRC-Cube operator 
computes the lattice of cuboids sequentially per stage. More 
precisely, it is executed in four stages: 

 
1) The first stage 

This phase consists of extracting the data that forms the 
cube from the column family data warehouse and 
performing multiple joins between the fact and its 
dimensions. The mappers receive rows combined based on 
column family from a columnar family data warehouse, then 
split each one into a key/value pair where the key part 
contains the row key (algo1: line4) and a tag (algo1: line5) 
to distinguish the row sources (the column family). The 
mapper can apply a filter to select values satisfying a certain 
predicate (algo1: line 3). The produced key/value pairs are 
buffered in memory, then partitioned by row key so that all 
occurrences belonging to the same row are grouped 
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together. The intermediate data is sorted by tag key before 
being sent to the reducer. The defined reducer function 
iterates over the sorted data and applies a reduce operation 
by each unique key encountered. The reduce operation 
consists of the concatenation of the corresponding set of 
values (algo2: line6). The output result is persisted on disk 
and serves as an input to the second stage. An illustration of 
the first stage is shown in Fig. 4. 

 

 
Fig. 4. Performing the reduce side join (the first stage) 
 
Listing 1. Reduce side join - Pseudo code of the map function of the first 

stage. 

Algorithm 1: MRC-Cube – first stage – map function 

1 input: (rowKey,col_family col_name col_value) 
              ∂ : query predicate 

2 output: (CompositeKey, ); 
3 if col_value satisfy ∂ do 
4    CompositeKey.key ← rowKey;   
5    CompositeKey.tag ← tag;   
6   ←col_value;   
7 end    
8 emit (CompositeKey, ) 
 
 

Listing 2. Reduce side join - Pseudo code of the reduce function of the first 

stage. 

Algorithm 2: MRC-Cube – first stage – reduce function 
1 input: (CompositeKey, ) 

2 output  
3 ← empty string; 

4  ← CompositeKey 

5 foreach  do 

6    = concat( , )   
7   end    
8 emit      
 

2) The second stage 
This stage aims at calculating the cube’s finest level of 

granularity (TYPE, REG). It takes the output of the first 
phase and iterates over each key/value pair. Following that, 
the mapper function maps each one encountered to another 
key/value pair, where the key portion carries the 
combination of the dimension attributes, and the value part 
holds the measure to be aggregated. For the sake of 
optimization, a first aggregation can be performed by a 
combiner. This is followed by a reducer function that 
performs an aggregation by key and persists the output pairs 
on the file system. 

 
Fig. 5.Building the first level of the cube corresponding to each dimension 
combination. 

 
3) The third stage 

This stage uses the output of the second stage, which 
corresponds to the first granularity level. The mapper 
function splits each encountered key into two parts; each 
one contains a dimension attribute and emits, for a given 
input key/value pair, two others having the same value. The 
reducer function performs a simple aggregation operation 
for each dimension separately. At the end of this stage, the 
second level of granularity representing (TYPE, ALL) and 
(ALL, REG) is calculated and stored on the file system. 

 
Fig. 6. Building the second level of granularity corresponding to each 
dimension separately. 

 
4) The fourth stage 

The execution of the fourth stage leads to the calculation 
of the highest level of granularity corresponding to (ALL, 
ALL). Starting from the output of the previous stage, the 
mapper function processes the input datasets and replaces 
the key entries with the string value ‘ALL, ALL’. Therefore, 
all key/value pairs will be sent to the same reducer. 
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C. Spark Columnar Cube (SC-Cube) 
Since its advent, MapReduce has been indisputably the 

standard parallel computation model for big data. However, 
the major disadvantage of MapReduce is that it processes 
data on disk after each iteration, which has a considerable 
I/O cost. Being aware of this pitfall, the community tried to 
overcome this problem by using random access memory 
(RAM) for data processing instead of disk. For example, 
Apache Spark keeps data in memory to speed up data flow 
between iterations. For this, the concept of an RDD is used, 
which stands for Resilient Distributed Datasets. An RDD is 
a data abstraction provided by Spark that allows to perform 
parallel calculations in memory on a cluster in a completely 
fault-tolerant way. Identically, Spark performs the cube 
computation in five stages. The processing of each stage is 
detailed below: 
 
1) The first stage 

First, Spark reads the input data from the columnar 
database by specifying the column families and the columns 
involved in the cube building, this avoids scanning 
unnecessary column values. Then Spark converts each row 
to a key/value pair RDD[(K, Map[CF, Map[CN, V]])], 
where the key K is nothing but the row key and the value is 
a nested map structure that associates a given column family 
CF and a column name CN to a value. Afterwards, an RDD 
transformation is applied to fetch only the columns that 
compose the cube. Each column will be tagged with its 
column family to indicate which fact or dimension it 
belongs to. Therefore, the first stage will produce the 
following intermediate pair RDD: [rowKey,’CF1 CN1, CF2 
CN2, …’]. 

 
2) The second stage 

In this stage, an RDD transformation is applied to the 
resulting RDD from the first stage to build the lowest level 
of granularity. The mapper tokenizes each value of the input 
RDD to fetch the dimension columns along with the fact 
measure column.  This allows to generate a new pair RDD  

 

 
 
where the key is a combination of all the dimensions 
involved in the cube and the value is the measure to be 
aggregated. At the end of this stage the first level of 
granularity (YEAR, REGION) is calculated. An illustration 
of the first and the second stage is shown in Fig. 7. 

 
3) The third and fourth stage 

The third and fourth stages are executed in parallel and 
aim at computing the second and third granularity levels, 
which correspond in our case to (YEAR, ALL) and (ALL, 
REGION). The input RDD is the resulting one from the 
previous transformation. The mapper split each key into two 
parts; each one represents a dimension attribute. Then, 
duplicates the measure value for the two keys. Next, Spark 
uses a transformation operation called reduceByKeyRDD 
that performs aggregation by each dimension attribute 
separately. 
 
4) The fifth stage 
   This stage computes the highest level of granularity of the 
cube, which corresponds to (ALL, Sum(revenue)) by 
performing an aggregation by the unique key ‘ALL’ from 
the resulting RDD of the second stage. 

V. IMPLEMENTATION AND EXPERIMENTS 

A. Experimental setup 
In order to prove the feasibility of the proposed OLAP 

operators, we have conducted an experimental evaluation in 
a distributed environment. This environment is set up using 
a cluster made up of three Docker containers. The 
Dockerfile used to build the image is available on GitHub 
repository [22]. Each container runs an instance of an image 
having Apache Hadoop v2.7.2, Apache Spark v2.2.1 and 
Apache HBase v1.4.8 installed on the same cluster as 
HBase, Spark can be used to perform complex processing 
on HBase data. For this, the different Spark Executors will 
be co-located with the region servers, and will be able to 
perform parallel processing directly where the data is stored. 

Fig. 7. Data extraction and building the first level of granularity (the first and second stage) 
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We integrated into this setup Oracle OLAP, a relational 
OLAP technology that offers the ability to perform 
sophisticated computation using SQL queries. The choice 
fell on Oracle OLAP to compare the proposed OLAP 
implementation with a relational one, based on read latency 
criteria, in order to decide impartially which implementation 
is more effective when scaling up or when queries get more 
complicated. 

 
Dataset: For feeding the HBase database, we used 

KoalaBench an extension of the TPC-H benchmark, which 
is commonly used for assessing the performance of decision 
support systems [23]. TPC-H encompasses a snowflake 
schema, including eight transactional tables that model the 
business process of a product seller. The KoalaBench is 
developed using the Java language and allows to generate 
different data sizes by specifying the scalability factor.  By 
contrast to the TPC-H benchmark, the extended one 
supports NoSQL systems and performs parallel and 
distributed generation of data natively in HDFS. Data 
loading is done by executing the utility command ImportTsv 
which allows to load data in TSV format into HBase. 
Practically, it triggers a MapReduce job on the main file 
stored in HDFS to read the data and then inserts it via put 
commands into the database. 

For illustration purposes, we append at the end of this 
paper the script for loading the generated data into HBase 
following the meta-model described previously. 

 

 
Fig. 8. The TCP-H relational data model redrawn based on [24] 
 
 
  According to the proposed rules, the fact table LineItem in 
the relational data model is converted to a column family in 
the corresponding columnar data model, and each measure 
is converted to a column belonging to the same column 
family. The foreign keys are not mapped as the matching 
between the fact column family and its associated dimension 
is assured by the row key. Following the rule R3, seven 
column families are identified to represent the dimensions in 
a normalized way, namely, , , 

, ,  ,  , . 
The obtained data model is depicted in  Fig. 9. 
 

 
Fig. 9. The columnar data model for TPC-H Shema 
 
  The TABLE I demonstrates how the scale factor influences 
the generated data. We observe that data is generated 
proportionally to the scale factor, except for the table Part in 
which we don’t scale linearly but logarithmically. 
 

TABLE I. DATA SIZE PER SCALE FACTOR[23] 
 

Table Lines Disk space in byte 
(sf=10) 

Customer 300000×sf  
 29360128 

Part 800000 × (1+log2(sf)) 69206016 
 

LineItem 6×106×sf  6227702579  
 

Supplier 20000×sf  
 

1782579  
 

OrderDate 2556×sf 
 

233472 
 

 
 

B. Experiment 1 
   The metric reported by the first experiment is the 
capability of the system to process queries involving a 
gradual number of dimensions. We used a dataset having 60 
million records (SF=1). Then we performed a comparative 
study between MRC-Cube, SC-Cube, and Oracle OLAP. In 
order to build the OLAP cube, we used queries that 
aggregate the sales revenue according to different 
dimensions. We distinguish three types of queries according 
to their dimensionality (Q1, Q2 and Q3); details about query 
configuration are depicted in Table 1. Each query was run 
three times. Fig. 10 reports the average execution time. 
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TABLE II. QUERIES CONFIGURATION 
 

Query Dimension: 
Attribute     Predicate Measure 

Q1(2D) Customer: 
Region 
Supplier: 
Region 

OrderDate: 
Year = 2022 
Customer: 

Region=Africa 
Sum (Revenue) 

  
Q2(3D) Customer: 

Region 
Supplier: 
Region 
OrderDate: 
Year 

  

Q3(4D) Customer: 
Region 
Supplier: 
Region 
OrderDate: 
Year 
Part: Brand 

   

 

 
Fig. 10. OLAP cube construction time by query dimension 

 
  The runtime graph of the above-mentioned queries (Q1, Q2 
and Q3) shows a slight variation when queries involve a 
higher number of dimensions. However, our findings 
demonstrate that OLAP cube computation with the 
relational approach is more time-consuming (up to more 
than four times slower). This is because the OLAP cube is 
built using the row-oriented approach, which is inefficient 
compared to the column-oriented method, especially when 
the select query implies a single attribute for each dimension 
table. Additionally, the curves of MRC-Cube and SC-Cube 
state clearly that Spark outperforms MapReduce. This is 
easily explained by the fact that Spark processes and saves 
data between intermediate steps in memory, whereas 
Hadoop MapReduce processes data on disk for subsequent 
steps. Which means that multiple accesses to the data 
warehouse are needed and imply a considerable I/O cost. 
  Furthermore, the way the data is organized in the data 
warehouse has a significant impact on OLAP cube building. 
Indeed, using column families enables attributes belonging 
to a specific dimension/fact to be stored in the same disk 
space, which speeds up decisional query response time, 
especially when they involve attributes of the same 
dimension. 
 

C. Experiment 2 
The aim of this experiment is to evaluate the scalability of 

MRC-Cube and SC-Cube when faced with an increasing 
size of the data warehouse. This is compared to analogous 
R-OLAP implementation: the Oracle OLAP operator. Recall 
that, Oracle OLAP is an embedded engine in the Oracle 
database which can perform complex computation with the 
use of straightforward SQL queries. The cube is built 
according to three dimensions: Customer, Supplier and 
OrderDate (Query Q2) with a scale factor gradually 
increasing from 1 to 10, which corresponds to a sample 
dataset varying approximatively from 1 GB to 10 GB. The 
obtained result is shown in Fig. 12. 

 

 
Fig. 11. Setting up the TPC-H schema with Oracle relational database 
management system (R-OLAP) 

 
 

 
Fig. 12. OLAP cube construction time by scale factor 

 
The curves show that the required time for building the 

OLAP cube with the relational approach increases 
exponentially when scaling up. By contrast, the curve of 
MRC-Cube and SC-Cube shows a slight variation when 
facing an increasing data volume, which is the reason for the 
invention of NoSQL databases, and performs OLAP cube 
computation up to four times faster. 

Overall, the result obtained states that the underlying 
performance cost involved in relational implementation is 
considerable as it requires longer data traversal when 
performing the OLAP cube construction. These traversals 
imply join operations over multiple tables, which decrease 
the performance considerably. On the other hand, the 
performance of the columnar approach lies in the use of 
parallel computing and takes full advantage of the columnar 
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approach, which allows less disk seek to output data as only 
the columns that are needed are accessed. 

VI. CONCLUSION 
This paper aims at implementing OLAP systems in 

column-family databases. For this, we proposed the design 
and implementation of a columnar data warehouse using a 
set of transformation rules that facilitate the mapping from 
the multidimensional conceptual model used as the basis of 
data warehouses and OLAP applications to the underlying 
logical model. Afterward, we presented two aggregate 
operators called MRC-Cube and SC-Cube, which use the 
Hadoop MapReduce paradigm and Apache Spark to 
compute OLAP cubes. These operators use the reduce side 
join algorithm to combine the content of the fact and 
dimension column families based on a row key. To validate 
our proposal, we conducted an experimental evaluation 
based on the read latency criterion. We compared MRC-
Cube and SC-Cube with each other and with a relational 
operator using Oracle OLAP. The obtained results show that 
both of our proposed aggregate operators perform well and 
exhibit the effectiveness of columnar databases for 
analytical purposes. 

This work provides interesting perspectives for future 
work. In the upcoming work, we aim at doing a comparative 
study between the columnar implementation and other 
NoSQL implementations in the literature. 
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APPENDIX 

Script loading in HBase 
1. CREATE'GlobalTable','CF_LineItem','CF_PART','CF_CUSTOMER, 

  'CF_SUPPLIER','CF_ORDER','CF_NATION','CF_REGION' 

2. hbase org.apache.hadoop.hbase.mapreduce.ImportTsv  

3. -Dimporttsv.separator=','  

-Dimporttsv.columns=HBASE_ROW_KEY, 

4. CF_LineItem:lineNumber,  
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5. CF_LineItem:quantity,  

6. CF_LineItem:extendedPrice,  

7. CF_LineItem:discount,  

8. CF_LineItem:tax,  

9. CF_LineItem:returnFlag,  

10. CF_LineItem:status,  

11. CF_LineItem:shipDate,  

12. CF_LineItem:comment,  

13. CF_ORDER:o_orderStatus,  

14. CF_ORDER:o_orderDate,  

15. CF_ORDER:o_orderPriority,  

16. CF_ORDER:o_comment,  

17. CF_ORDER:o_shipPriority,  

18. CF_CUSTOMER:c_name,  

19. CF_CUSTOMER:c_address,  

20. CF_CUSTOMER:c_phone,  

21. CF_CUSTOMER:c_accountBalance,  

22. CF_CUSTOMER:c_marketSegment,  

23. CF_PART:p_name,  

24. CF_PART:p_manufacturer,  

25. CF_PART:p_brand,  

26. CF_PART:p_type,  

27. CF_PART:p_size,  

28. CF_PART:p_container,  

29. CF_PART:p_retailPrice,  

30. CF_PART:p_comment,  

31. CF_SUPPLIER:s_supplierKey,  

32. CF_SUPPLIER:s_name,  

33. CF_SUPPLIER:s_address,  

34. CF_SUPPLIER:s_phone,  

35. GlobalTable, /root/flat_line_item.csv 
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