

Abstract—The exponential growth of business data coming

from heterogeneous sources imposes the use of new generations
of database management systems and new data storage
architectures. The major players in the big data market have
turned to NoSQL (Not only SQL) technology, which provides a
flexible data model and high scalability. In this paper, we
investigate OLAP (Online Analytical Processing)
implementation using columnar databases (a type of NoSQL
system). We provide a set of formal transformation rules in
order to map the multidimensional conceptual model to a
target model that is suitable for the column-oriented model.
Then, we propose two OLAP cube operators called MRC-Cube
and SC-Cube, which allow to build the OLAP cube using the
MapReduce paradigm and Spark respectively. We conduct an
experimental comparison of their performance to analogous
relational implementation using Oracle OLAP, we focus
particularly on read latency metric under different
experimental configurations. The obtained results show a clear
difference when performing the OLAP cube building between
the relational implementation and the columnar one.

Index Terms— OLAP, Data warehouse, Column-family

databases, NoSQL, Cube model, HBase

I. INTRODUCTION
LAP(Online Analytical Processing) can be defined as a
computing method that performs multidimensional

analysis of business data in order to extract meaningful
indicators. In a broader sense, it refers to a set of tools and
practices that enable decision-makers to identify issues and
opportunities in a business process from different
perspectives. A classical OLAP system includes three main
components: a data source, which could be an OLTP
(Online Transaction Processing) database from which data is
extracted, a data warehouse where data is loaded in a
multinational model, and a data cube which is a
multidimensional data structure containing aggregated
measures across different dimensions. OLAP types can be
categorized based on the storage techniques, that is,
relational, multidimensional, or hybrid. Accordingly, we
distinguish three chief types of OLAP systems, namely R-
OLAP(Relational-OLAP)[1][2],MOLAP(Multidimensional-

Manuscript received July 20, 2022; revised November 25, 2022.
Abdelhak Khalil is a software engineer and a PhD student at Hassan the

First University of Settat, Morocco (e-mail: a.khalil@uhp.ac.ma).
Mustapha Belaissaoui is a Professor of computer science and a former

deputy director of the National School of Business and Management of
Settat, Morocco. (e-mail: mustapha.belaissaoui@uhp.ac.ma).

*Corresponding author: Abdelhak Khalil

OLAP)[3] and HOLAP(Hybrid-OLAP). These classical
implementations utilize traditional databases for storing and
processing data. Unfortunately, despite being tried and
tested, these databases can’t scale when faced with
enormous data volumes. Indeed, with the advent of some
fields like social media and the Internet of Things (IOT)[4],
data repositories are reaching critical sizes that cannot be
handled using classical database management systems.
Hence, to tackle this problem, business intelligence software
vendors tried to accommodate OLAP with big data by
developing some solutions like Apache Hive and Apache
Kylin. Unfortunately, these solutions construct the cube
using a row-oriented method, which is not efficient in
performing online analytical processing and doesn’t allow
them to benefit from the greater performance they can
obtain from the column-oriented approach.

Over the last decade, a strong interest toward NoSQL
(Not only SQL) technology has arisen[5]. This term
identifies a type of database management system that stores
data in a non-relational way. One of the major NoSQL-
oriented databases is the columnar data store, which saves
data by columns rather than rows. This data storage type is
considered as the future of Business Intelligence (BI) and
the most suitable for data warehouses, and thus for
processing analytical queries. Indeed, thanks to its storage
model by column, data is stored sequentially on disk, which
improves data access extremely. Furthermore, with this
organization, columnar storage allows to ignore data that is
not required for a certain query. An essential feature
required for any OLAP system is its capability to perform
aggregations and OLAP cube building over a large data set
in a fraction of the time. Unfortunately, columnar databases
lack of cube computation operators. To deal with this pitfall,
a possible solution consists of integrating external tools like
Hive and combining a set of “group by” clauses. This naive
method requires multiple accesses to the data warehouse,
which decreases performance drastically.

In this research paper, we outline a novel approach for
setting up OLAP systems with columnar databases. We
propose a set of transformation rules to convert the
multidimensional conceptual model to a target columnar
logical model. Then, we provide two OLAP operators,
which allow building cubes from a data warehouse built
upon the column-wise approach, and we evaluate their
performance when dealing with big data volumes.

The remainder of this paper is organized as follows:
Section 2 discusses the background of this work; Section 3

An Approach for Implementing Online
Analytical Processing Systems under Column-

Family Databases
Abdelhak Khalil and Mustapha Belaissaoui

O

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_05

Volume 53, Issue 1: March 2023

__

explains the proposed approach which enables instantiating
data warehouses using column-family databases; Section 4
describes the processing of MRC-Cube and SC-Cube
operators through a running example; section 5 details
implementation and experiments and reports the obtained
results; Section 6 concludes this work and gives research
perspectives.

II. BACKGROUND

A. Column-Family databases
The column-family database is another NoSQL database

that stores data using a column-wise approach, unlike
relational ones, which organize data by rows.

Data stored in a column family database is partitioned
vertically, which makes partial read more efficient as only a
subset of row attributes is loaded. For this reason, columnar
stores are well-suited for OLAP applications. The
fundamental concepts of the column-family data model are
the keyspace, the column-family, and the column:

• A keyspace is an object that contains a list of column

families. Formally, a keyspace denoted ks can be
represented by the tuple where is its
name and a collection of column families.

• A column-family in turn is an object that holds
a collection of columns that can be represented by the
tuple , where is the name of cf and

 a collection of columns forming cf.
• A row is an instance of a column-family having the same

columns that can be represented by the triplet
, where is a unique key to

identify the row, a collection of column names

and a collection of column values.

• A column denoted col is the central part of the columnar
data store, formally a column is a tuple
where is the column name and is the column
value.

The data structure of the column-family model is depicted in
Fig. 1.

Fig. 1. A representation of the column-family data model

B. State of the art
Since its advent, NoSQL systems have aroused the

interest of the research community. Several research papers
have compared it to the relational model in terms of
read/write latency and scalability[6], [7]. Other research
works has focused on the transformation from the relational
model to a target NoSQL model [8], [9], [10],[11].

 Using NoSQL technology in OLAP systems is a recent
research topic. Indeed, considerable research works
addressed the instantiation of big data warehouses using
NoSQL databases, either with document-oriented model
[12], [13] or graph-oriented model [14], [15], [16], or key
value stores [17].

Regarding the columnar-oriented model, previous works
studied specific approaches for modeling columnar data
warehouses. In [18] the authors introduce a set of mapping
rules from the multidimensional conceptual model to a
target logical model suited to columnar repositories. In [19]
the authors propose three distinct approaches in terms of
structure to map the star schema into a logical model
adapted to column-oriented data warehouse.

As far as OLAP cube building from a data warehouse
implemented under the NoSQL model, novel approaches
have been followed. Among them, we would name three
relevant works. The first one proposes an aggregate operator
called MC-CUBE that allows to build OLAP cube using the
column-wise approach from a columnar data warehouse
[20]. The second one presents a framework for
implementing OLAP systems under graph-oriented
databases using Neo4j and its declarative language Cypher
[21]. The last one studied an extended type of OLAP
cuboids built upon a document-oriented data warehouse
using nesting and array[13].

We look ahead bringing our contribution to these works
by using new algorithms for OLAP cube construction from a
columnar data warehouse, and we aim to use Spark instead
of Hadoop MapReduce to fully take advantage of in-
memory processing.

III. COLUMN-FAMILY DATA WAREHOUSE
A data warehouse’s logical model describes relationships

between facts and dimensions in a more exhaustive manner
compared to the conceptual model. Indeed, at the logical
level, relationships, entity attributes, and keys are defined in
order to serve as the foundation of the physical level. In the
literature, there are several candidate approaches for
implementing big data warehouses using columnar
databases [19]. The one that fits the column family
databases proposes storing both the fact and its associated
dimensions in the same keyspace. This model uses the
concept of “column family” to distinguish between rows. In
fact, every dimension is transformed into a column family
containing its attributes. The same rule applies to the fact.
This modeling approach allows storing attributes belonging
to the same column family on the same disk, which
increases the efficiency of processing certain queries.
Indeed, for instance, HBase which is a popular column-
oriented NoSQL DBMS stores column families physically
into separate files called HFiles. This means that each
column family will have its own HFile and thus, queries
involving column attributes contained in the same column
family will run much faster as the other HFiles that doesn’t

ks CF(n ,C) ksn

CFC

CFcf CÎ

CF col(n ,C) CFn

colC

col colrow n v(K ,C ,C) rowK

colnC

colvC

col col(n , v)

coln colv

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_05

Volume 53, Issue 1: March 2023

__

apply to the query will be ignored.

A. Formalization
The mapping from the multidimensional conceptual

model to the logical model according to the aforesaid
approach is performed by the application of the following
rules:

• R1. The fact F and its corresponding dimensions are
stored in the same keyspace ks.

• R2. Each fact F is converted to a column family
and each measure is mapped to a

simple column belonging to the fact column
family.

• R3. Each dimension D is mapped to a column family
 ,and each dimension attribute is converted to

a simple column within the column family.

1) Case study
For a running example, we consider a decision-making

system in the form of a data mart (a mini data warehouse)
set up to observe the activity of a reseller of computer
hardwires and accessories at different stores. Each store is
recognized by its region and type (according to its area).
Sales are filled in according to a period that is broken down
into months, quarters, and years. Sales are observed by the
number of articles according to the type and the turnover.
The logical model obtained by the application of the
aforesaid mapping rules will store the fact and its related
dimensions in one key space grouped by column family

, , , . Following the second
and third rules (R2 & R3), dimension attributes in the
relational model will be mapped to columns in the identified
column families as well as the measures of the fact
e.g., , . The Fig. 2 illustrates
the representation of the logical model.

Fig. 2. The logical model representation of the columnar data warehouse.

IV. OLAP CUBE CONSTRUCTION

A. Approach overview
The underlying idea of the proposed approach is to extract

all the data forming the OLAP cube and then to use the

MapReduce paradigm in the first place and Spark as an
enhancement in the second place to compute all possible
aggregates at different levels of granularity. Once the cube
is fully calculated, it is materialized according to the
columnar model in order to take advantage of this
architecture with regard to the manipulation of the cube.

The proposed OLAP implementation is based on a
column-family architecture for data warehousing (described
in Section III) and a distributed OLAP cube computation
algorithm. For simplicity, we assume that the cube contains
two dimensions, namely, the article type (TYPE) and the
store region (REG). The workflow of the OLAP
construction is depicted in Fig. 3.

Fig. 3. OLAP Cube computation approach

B. Map-Reduce Columnar Cube (MRC-Cube)
 This operator uses the MapReduce processing technique

to build the cube. Recall that, MapReduce is a Java
programming model within the Hadoop framework that is
used for distributed computing. It contains two main tasks,
the Map task, which takes input data and converts it to a
key/value pair, and the Reduce task, which takes the output
of the Map tasks, then iterates through all values associated
with a given key and applies a reduce function to produce
zero or many key/value pairs. The MRC-Cube operator
computes the lattice of cuboids sequentially per stage. More
precisely, it is executed in four stages:

1) The first stage

This phase consists of extracting the data that forms the
cube from the column family data warehouse and
performing multiple joins between the fact and its
dimensions. The mappers receive rows combined based on
column family from a columnar family data warehouse, then
split each one into a key/value pair where the key part
contains the row key (algo1: line4) and a tag (algo1: line5)
to distinguish the row sources (the column family). The
mapper can apply a filter to select values satisfying a certain
predicate (algo1: line 3). The produced key/value pairs are
buffered in memory, then partitioned by row key so that all
occurrences belonging to the same row are grouped

FCF m FÎ

DCF

SalesCF StoreCF Article _ typeCF DateCF

region region(n , v) quantity quantity(n , v)

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_05

Volume 53, Issue 1: March 2023

__

together. The intermediate data is sorted by tag key before
being sent to the reducer. The defined reducer function
iterates over the sorted data and applies a reduce operation
by each unique key encountered. The reduce operation
consists of the concatenation of the corresponding set of
values (algo2: line6). The output result is persisted on disk
and serves as an input to the second stage. An illustration of
the first stage is shown in Fig. 4.

Fig. 4. Performing the reduce side join (the first stage)

Listing 1. Reduce side join - Pseudo code of the map function of the first

stage.

Algorithm 1: MRC-Cube – first stage – map function

1 input: (rowKey,col_family col_name col_value)
 ∂ : query predicate

2 output: (CompositeKey,);
3 if col_value satisfy ∂ do
4 CompositeKey.key ← rowKey;
5 CompositeKey.tag ← tag;
6 ←col_value;
7 end
8 emit (CompositeKey,)

Listing 2. Reduce side join - Pseudo code of the reduce function of the first

stage.

Algorithm 2: MRC-Cube – first stage – reduce function
1 input: (CompositeKey,)

2 output
3 ← empty string;

4 ← CompositeKey

5 foreach do

6 = concat(,)
7 end
8 emit

2) The second stage
This stage aims at calculating the cube’s finest level of

granularity (TYPE, REG). It takes the output of the first
phase and iterates over each key/value pair. Following that,
the mapper function maps each one encountered to another
key/value pair, where the key portion carries the
combination of the dimension attributes, and the value part
holds the measure to be aggregated. For the sake of
optimization, a first aggregation can be performed by a
combiner. This is followed by a reducer function that
performs an aggregation by key and persists the output pairs
on the file system.

Fig. 5.Building the first level of the cube corresponding to each dimension
combination.

3) The third stage

This stage uses the output of the second stage, which
corresponds to the first granularity level. The mapper
function splits each encountered key into two parts; each
one contains a dimension attribute and emits, for a given
input key/value pair, two others having the same value. The
reducer function performs a simple aggregation operation
for each dimension separately. At the end of this stage, the
second level of granularity representing (TYPE, ALL) and
(ALL, REG) is calculated and stored on the file system.

Fig. 6. Building the second level of granularity corresponding to each
dimension separately.

4) The fourth stage

The execution of the fourth stage leads to the calculation
of the highest level of granularity corresponding to (ALL,
ALL). Starting from the output of the previous stage, the
mapper function processes the input datasets and replaces
the key entries with the string value ‘ALL, ALL’. Therefore,
all key/value pairs will be sent to the same reducer.

tmpv

tmpv

tmpv

tmpv

stage1 stage1(k , v)

stage1v

stage1k

i tmpv vÎ

stage1v stage1v iv

stage1 stage1(k , v)

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_05

Volume 53, Issue 1: March 2023

__

C. Spark Columnar Cube (SC-Cube)
Since its advent, MapReduce has been indisputably the

standard parallel computation model for big data. However,
the major disadvantage of MapReduce is that it processes
data on disk after each iteration, which has a considerable
I/O cost. Being aware of this pitfall, the community tried to
overcome this problem by using random access memory
(RAM) for data processing instead of disk. For example,
Apache Spark keeps data in memory to speed up data flow
between iterations. For this, the concept of an RDD is used,
which stands for Resilient Distributed Datasets. An RDD is
a data abstraction provided by Spark that allows to perform
parallel calculations in memory on a cluster in a completely
fault-tolerant way. Identically, Spark performs the cube
computation in five stages. The processing of each stage is
detailed below:

1) The first stage

First, Spark reads the input data from the columnar
database by specifying the column families and the columns
involved in the cube building, this avoids scanning
unnecessary column values. Then Spark converts each row
to a key/value pair RDD[(K, Map[CF, Map[CN, V]])],
where the key K is nothing but the row key and the value is
a nested map structure that associates a given column family
CF and a column name CN to a value. Afterwards, an RDD
transformation is applied to fetch only the columns that
compose the cube. Each column will be tagged with its
column family to indicate which fact or dimension it
belongs to. Therefore, the first stage will produce the
following intermediate pair RDD: [rowKey,’CF1 CN1, CF2
CN2, …’].

2) The second stage

In this stage, an RDD transformation is applied to the
resulting RDD from the first stage to build the lowest level
of granularity. The mapper tokenizes each value of the input
RDD to fetch the dimension columns along with the fact
measure column. This allows to generate a new pair RDD

where the key is a combination of all the dimensions
involved in the cube and the value is the measure to be
aggregated. At the end of this stage the first level of
granularity (YEAR, REGION) is calculated. An illustration
of the first and the second stage is shown in Fig. 7.

3) The third and fourth stage

The third and fourth stages are executed in parallel and
aim at computing the second and third granularity levels,
which correspond in our case to (YEAR, ALL) and (ALL,
REGION). The input RDD is the resulting one from the
previous transformation. The mapper split each key into two
parts; each one represents a dimension attribute. Then,
duplicates the measure value for the two keys. Next, Spark
uses a transformation operation called reduceByKeyRDD
that performs aggregation by each dimension attribute
separately.

4) The fifth stage
 This stage computes the highest level of granularity of the
cube, which corresponds to (ALL, Sum(revenue)) by
performing an aggregation by the unique key ‘ALL’ from
the resulting RDD of the second stage.

V. IMPLEMENTATION AND EXPERIMENTS

A. Experimental setup
In order to prove the feasibility of the proposed OLAP

operators, we have conducted an experimental evaluation in
a distributed environment. This environment is set up using
a cluster made up of three Docker containers. The
Dockerfile used to build the image is available on GitHub
repository [22]. Each container runs an instance of an image
having Apache Hadoop v2.7.2, Apache Spark v2.2.1 and
Apache HBase v1.4.8 installed on the same cluster as
HBase, Spark can be used to perform complex processing
on HBase data. For this, the different Spark Executors will
be co-located with the region servers, and will be able to
perform parallel processing directly where the data is stored.

Fig. 7. Data extraction and building the first level of granularity (the first and second stage)

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_05

Volume 53, Issue 1: March 2023

__

We integrated into this setup Oracle OLAP, a relational
OLAP technology that offers the ability to perform
sophisticated computation using SQL queries. The choice
fell on Oracle OLAP to compare the proposed OLAP
implementation with a relational one, based on read latency
criteria, in order to decide impartially which implementation
is more effective when scaling up or when queries get more
complicated.

Dataset: For feeding the HBase database, we used

KoalaBench an extension of the TPC-H benchmark, which
is commonly used for assessing the performance of decision
support systems [23]. TPC-H encompasses a snowflake
schema, including eight transactional tables that model the
business process of a product seller. The KoalaBench is
developed using the Java language and allows to generate
different data sizes by specifying the scalability factor. By
contrast to the TPC-H benchmark, the extended one
supports NoSQL systems and performs parallel and
distributed generation of data natively in HDFS. Data
loading is done by executing the utility command ImportTsv
which allows to load data in TSV format into HBase.
Practically, it triggers a MapReduce job on the main file
stored in HDFS to read the data and then inserts it via put
commands into the database.

For illustration purposes, we append at the end of this
paper the script for loading the generated data into HBase
following the meta-model described previously.

Fig. 8. The TCP-H relational data model redrawn based on [24]

 According to the proposed rules, the fact table LineItem in
the relational data model is converted to a column family in
the corresponding columnar data model, and each measure
is converted to a column belonging to the same column
family. The foreign keys are not mapped as the matching
between the fact column family and its associated dimension
is assured by the row key. Following the rule R3, seven
column families are identified to represent the dimensions in
a normalized way, namely, , ,

, , , , .
The obtained data model is depicted in Fig. 9.

Fig. 9. The columnar data model for TPC-H Shema

 The TABLE I demonstrates how the scale factor influences
the generated data. We observe that data is generated
proportionally to the scale factor, except for the table Part in
which we don’t scale linearly but logarithmically.

TABLE I. DATA SIZE PER SCALE FACTOR[23]

Table Lines Disk space in byte
(sf=10)

Customer 300000×sf
 29360128

Part 800000 × (1+log2(sf)) 69206016

LineItem 6×106×sf 6227702579

Supplier 20000×sf

1782579

OrderDate 2556×sf

233472

B. Experiment 1
 The metric reported by the first experiment is the
capability of the system to process queries involving a
gradual number of dimensions. We used a dataset having 60
million records (SF=1). Then we performed a comparative
study between MRC-Cube, SC-Cube, and Oracle OLAP. In
order to build the OLAP cube, we used queries that
aggregate the sales revenue according to different
dimensions. We distinguish three types of queries according
to their dimensionality (Q1, Q2 and Q3); details about query
configuration are depicted in Table 1. Each query was run
three times. Fig. 10 reports the average execution time.

LineItem

PK partKey
PK orderKey
PK supKey

 LineNumber
 Quantity
 ExtendedPrice
 Discount
 Tax
 ReturnFlag
 LineStatus
 ShipDate
 Comment

Order

PK orderKey

 orderStatus
 totalPrice
 orderDate
 orderPriority
 shipPriority
 comment
 customerKey

partSupplier

PK partKey
PK supplierKey

 availableQuantity
 supplyCost
 comment

Part

PK partKey

 name
 manufacturer
 brand
 type
 size
 container
 retailPrice
 comment

Supplier

PK supplierKey

 name
 adress
 phone
 accountBalance
 comment
 nationKey

Nation

PK nationKey

 nation_name
 regionKey

Region

PK regionKey

 region_name

Customer

PK customerKey

 name
 adress
 phone
 accountBalance
 marketSegment
 nationKey

ORDERCF SUPPLIERCF

CUSTOMERCF NATIONCF REGIONCF PARTSUPPCF PARTCF

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_05

Volume 53, Issue 1: March 2023

__

TABLE II. QUERIES CONFIGURATION

Query Dimension:
Attribute Predicate Measure

Q1(2D) Customer:
Region
Supplier:
Region

OrderDate:
Year = 2022
Customer:

Region=Africa
Sum (Revenue)

Q2(3D) Customer:

Region
Supplier:
Region
OrderDate:
Year

Q3(4D) Customer:
Region
Supplier:
Region
OrderDate:
Year
Part: Brand

Fig. 10. OLAP cube construction time by query dimension

 The runtime graph of the above-mentioned queries (Q1, Q2
and Q3) shows a slight variation when queries involve a
higher number of dimensions. However, our findings
demonstrate that OLAP cube computation with the
relational approach is more time-consuming (up to more
than four times slower). This is because the OLAP cube is
built using the row-oriented approach, which is inefficient
compared to the column-oriented method, especially when
the select query implies a single attribute for each dimension
table. Additionally, the curves of MRC-Cube and SC-Cube
state clearly that Spark outperforms MapReduce. This is
easily explained by the fact that Spark processes and saves
data between intermediate steps in memory, whereas
Hadoop MapReduce processes data on disk for subsequent
steps. Which means that multiple accesses to the data
warehouse are needed and imply a considerable I/O cost.
 Furthermore, the way the data is organized in the data
warehouse has a significant impact on OLAP cube building.
Indeed, using column families enables attributes belonging
to a specific dimension/fact to be stored in the same disk
space, which speeds up decisional query response time,
especially when they involve attributes of the same
dimension.

C. Experiment 2
The aim of this experiment is to evaluate the scalability of

MRC-Cube and SC-Cube when faced with an increasing
size of the data warehouse. This is compared to analogous
R-OLAP implementation: the Oracle OLAP operator. Recall
that, Oracle OLAP is an embedded engine in the Oracle
database which can perform complex computation with the
use of straightforward SQL queries. The cube is built
according to three dimensions: Customer, Supplier and
OrderDate (Query Q2) with a scale factor gradually
increasing from 1 to 10, which corresponds to a sample
dataset varying approximatively from 1 GB to 10 GB. The
obtained result is shown in Fig. 12.

Fig. 11. Setting up the TPC-H schema with Oracle relational database
management system (R-OLAP)

Fig. 12. OLAP cube construction time by scale factor

The curves show that the required time for building the

OLAP cube with the relational approach increases
exponentially when scaling up. By contrast, the curve of
MRC-Cube and SC-Cube shows a slight variation when
facing an increasing data volume, which is the reason for the
invention of NoSQL databases, and performs OLAP cube
computation up to four times faster.

Overall, the result obtained states that the underlying
performance cost involved in relational implementation is
considerable as it requires longer data traversal when
performing the OLAP cube construction. These traversals
imply join operations over multiple tables, which decrease
the performance considerably. On the other hand, the
performance of the columnar approach lies in the use of
parallel computing and takes full advantage of the columnar

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_05

Volume 53, Issue 1: March 2023

__

approach, which allows less disk seek to output data as only
the columns that are needed are accessed.

VI. CONCLUSION
This paper aims at implementing OLAP systems in

column-family databases. For this, we proposed the design
and implementation of a columnar data warehouse using a
set of transformation rules that facilitate the mapping from
the multidimensional conceptual model used as the basis of
data warehouses and OLAP applications to the underlying
logical model. Afterward, we presented two aggregate
operators called MRC-Cube and SC-Cube, which use the
Hadoop MapReduce paradigm and Apache Spark to
compute OLAP cubes. These operators use the reduce side
join algorithm to combine the content of the fact and
dimension column families based on a row key. To validate
our proposal, we conducted an experimental evaluation
based on the read latency criterion. We compared MRC-
Cube and SC-Cube with each other and with a relational
operator using Oracle OLAP. The obtained results show that
both of our proposed aggregate operators perform well and
exhibit the effectiveness of columnar databases for
analytical purposes.

This work provides interesting perspectives for future
work. In the upcoming work, we aim at doing a comparative
study between the columnar implementation and other
NoSQL implementations in the literature.

REFERENCES
[1] R. Kimball, “Kimball Dimensional Modeling Techniques,” pp. 1–

24, 2013, doi: 10.1016/B978-0-12-411461-6.00009-5.
[2] O. Mangisengi and A. M. Tjoa, “A multidimensional modeling

approach for OLAP within the framework of the relational model
based on quotient relations,” in Proceedings of the 1st ACM
international workshop on Data warehousing and OLAP - DOLAP
’98, Washington, D.C., United States, 1998, pp. 40–46. doi:
10.1145/294260.294270.

[3] B. Dinter, C. Sapia, G. Höfling, and M. Blaschka, “The OLAP
market: state of the art and research issues,” in Proceedings of the
1st ACM international workshop on Data warehousing and OLAP
- DOLAP ’98, Washington, D.C., United States, 1998, pp. 22–27.
doi: 10.1145/294260.294268.

[4] C. Junkuo and M. Mingcai Lin Xiaojin, “A Survey of Big Data for
IoT in Cloud Computing,” IAENG International Journal of
Computer Science, vol. 47, no. 3, pp. pp585-592, 2020.

[5] K. ElDahshan, E. K. Elsayed, and H. Mancy, “Enhancement
Semantic Prediction Big Data Method for COVID-19: Onto-
NoSQL,” IAENG International Journal of Computer Science, vol.
47, no. 4, pp. 613–622, 2020.

[6] Y. Cheng, P. Ding, T. Wang, W. Lu, and X. Du, “Which Category
Is Better: Benchmarking Relational and Graph Database
Management Systems,” Data Sci. Eng., vol. 4, no. 4, pp. 309–322,
Dec. 2019, doi: 10.1007/s41019-019-00110-3.

[7] K. Sahatqija, J. Ajdari, X. Zenuni, B. Raufi, and F. Ismaili,
“Comparison between relational and NOSQL databases,” in 2018
41st International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), Opatija,
May 2018, pp. 0216–0221. doi: 10.23919/MIPRO.2018.8400041.

[8] G. Karnitis and G. Arnicans, “Migration of Relational Database to
Document-Oriented Database: Structure Denormalization and Data
Transformation,” in 2015 7th International Conference on
Computational Intelligence, Communication Systems and Networks,
Riga, Latvia, Jun. 2015, pp. 113–118. doi:
10.1109/CICSyN.2015.30.

[9] T. Jia, X. Zhao, Z. Wang, D. Gong, and G. Ding, “Model
Transformation and Data Migration from Relational Database to
MongoDB,” in 2016 IEEE International Congress on Big Data
(BigData Congress), San Francisco, CA, USA, Jun. 2016, pp. 60–
67. doi: 10.1109/BigDataCongress.2016.16.

[10] S. Lee, B. H. Park, S.-H. Lim, and M. Shankar, “Table2Graph: A
Scalable Graph Construction from Relational Tables Using Map-
Reduce,” in 2015 IEEE First International Conference on Big Data
Computing Service and Applications, Redwood City, CA, USA,
Mar. 2015, pp. 294–301. doi: 10.1109/BigDataService.2015.52.

[11] C. Costa and M. Y. Santos, “Big Data: State-of-the-art Concepts,
Techniques, Technologies, Modeling Approaches and Research
Challenges,” IAENG International Journal of Computer Science,
vol. 44, no. 3, pp. 285–301, 2016.

[12] S. Bouaziz, A. Nabli, and F. Gargouri, “Design a Data Warehouse
Schema from Document-Oriented database,” Procedia Computer
Science, vol. 159, pp. 221–230, 2019, doi:
10.1016/j.procs.2019.09.177.

[13] M. Chavalier, M. El Malki, A. Kopliku, O. Teste, and R. Tournier,
“Document-oriented data warehouses: Models and extended
cuboids, extended cuboids in oriented document,” Proceedings -
International Conference on Research Challenges in Information
Science, vol. 2016-Augus, 2016, doi: 10.1109/RCIS.2016.7549351.

[14] A. Vaisman, F. Besteiro, and M. Valverde, “Modelling and
Querying Star and Snowflake Warehouses Using Graph
Databases,” in New Trends in Databases and Information Systems,
vol. 1064, T. Welzer, J. Eder, V. Podgorelec, R. Wrembel, M.
Ivanović, J. Gamper, M. Morzy, T. Tzouramanis, J. Darmont, and
A. Kamišalić Latifić, Eds. Cham: Springer International Publishing,
2019, pp. 144–152. doi: 10.1007/978-3-030-30278-8_18.

[15] C.-H. Chou, M. Hayakawa, A. Kitazawa, and P. Sheu, “GOLAP:
Graph-Based Online Analytical Processing,” Int. J. Semantic
Computing, vol. 12, no. 04, pp. 595–608, Dec. 2018, doi:
10.1142/S1793351X18500071.

[16] H. Akid, G. Frey, M. B. Ayed, and N. Lachiche, “Performance of
NoSQL Graph Implementations of Star vs. Snowflake Schemas,”
IEEE Access, vol. 10, pp. 48603–48614, 2022, doi:
10.1109/ACCESS.2022.3171256.

[17] K. Abdelhak, “New Approach for implementing big datamart using
NoSQL key-value stores”.

[18] M. Chevalier, M. E. Malki, A. Kopliku, O. Teste, and R. Tournier,
“Implementation of Multidimensional Databases in Column-
Oriented NoSQL Systems,” in Advances in Databases and
Information Systems, vol. 9282, M. Tadeusz, P. Valduriez, and L.
Bellatreche, Eds. Cham: Springer International Publishing, 2015,
pp. 79–91. doi: 10.1007/978-3-319-23135-8_6.

[19] K. Dehdouh, F. Bentayeb, O. Boussaid, and N. Kabachi, “Using the
column oriented NoSQL model for implementing big data
warehouses,” International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’15), pp. 469–
475, 2015.

[20] K. Dehdouh, O. Boussaid, and F. Bentayeb, “Big Data Warehouse:
Building Columnar NoSQL OLAP Cubes,” International Journal
of Decision Support System Technology, vol. 12, no. 1, pp. 1–24,
Jan. 2020, doi: 10.4018/IJDSST.2020010101.

[21] A. Khalil and M. Belaissaoui, “A Graph-oriented Framework for
Online Analytical Processing,” IJACSA, vol. 13, no. 5, pp. 547–
555, 2022, doi: 10.14569/IJACSA.2022.0130564.

[22] L. Sfaxi, “Hadoop Cluster with Docker.” [Online]. Available:
https://github.com/liliasfaxi/hadoop-cluster-docker

[23] M. Chevalier, M. El Malki, A. Kopliku, O. Teste, and R. Tournier,
“Benchmark for OLAP on NoSQL technologies comparing NoSQL
multidimensional data warehousing solutions,” Proceedings -
International Conference on Research Challenges in Information
Science, vol. 2015-June, no. June, pp. 480–485, 2015, doi:
10.1109/RCIS.2015.7128909.

[24] “TPC-H Specification,.” Accessed: Sep. 28, 2022. [Online].
Available:
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-
h_v2.17.2.pdf

APPENDIX

Script loading in HBase
1. CREATE'GlobalTable','CF_LineItem','CF_PART','CF_CUSTOMER,

 'CF_SUPPLIER','CF_ORDER','CF_NATION','CF_REGION'

2. hbase org.apache.hadoop.hbase.mapreduce.ImportTsv

3. -Dimporttsv.separator=','

-Dimporttsv.columns=HBASE_ROW_KEY,

4. CF_LineItem:lineNumber,

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_05

Volume 53, Issue 1: March 2023

__

5. CF_LineItem:quantity,

6. CF_LineItem:extendedPrice,

7. CF_LineItem:discount,

8. CF_LineItem:tax,

9. CF_LineItem:returnFlag,

10. CF_LineItem:status,

11. CF_LineItem:shipDate,

12. CF_LineItem:comment,

13. CF_ORDER:o_orderStatus,

14. CF_ORDER:o_orderDate,

15. CF_ORDER:o_orderPriority,

16. CF_ORDER:o_comment,

17. CF_ORDER:o_shipPriority,

18. CF_CUSTOMER:c_name,

19. CF_CUSTOMER:c_address,

20. CF_CUSTOMER:c_phone,

21. CF_CUSTOMER:c_accountBalance,

22. CF_CUSTOMER:c_marketSegment,

23. CF_PART:p_name,

24. CF_PART:p_manufacturer,

25. CF_PART:p_brand,

26. CF_PART:p_type,

27. CF_PART:p_size,

28. CF_PART:p_container,

29. CF_PART:p_retailPrice,

30. CF_PART:p_comment,

31. CF_SUPPLIER:s_supplierKey,

32. CF_SUPPLIER:s_name,

33. CF_SUPPLIER:s_address,

34. CF_SUPPLIER:s_phone,

35. GlobalTable, /root/flat_line_item.csv

Abdelhak Khalil is a researcher in computer science at Hassan the First
University, Settat, Morocco. Previously, he obtained his engineering degree
from the National School of Applied Science of Marrakech. His interests in
research focus on business intelligence evolution in the big data era, big
data analytics, value creation from big data, and cluster computing.

Mustapha Belaissaoui is a Professor of computer science at Hassan the
First University, Settat, Morocco. He received his PhD in artificial
intelligence from Mohammed V University. His research interests include
artificial intelligence, combinatorial optimization, and information systems.
He authored more than a hundred papers, including journals, conferences,
chapters, and books that appeared in specialized journals and symposia.
Furthermore, he was deputy director of the National School of Business and
Management of Settat.

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_05

Volume 53, Issue 1: March 2023

__

