
 

 
Abstract—In this paper, model predictive control (MPC) 

based energy management strategy is developed for dual motor 

coupled plug-in hybrid vehicle (PHEV) configuration. Firstly, 

the dynamic characteristics and working mode of dual motor 

coupled PHEV configuration are analyzed. Secondly, the 

rule-based strategy and dynamic programming (DP) strategy 

are developed and selected as the benchmark. Thirdly, vehicle 

speed prediction accuracy of three different prediction models 

for various time domain lengths is investigated considering the 

possibility of real-time applications. Thus, RBF neural network 

prediction model is applied in the following MPC strategy. 

Finally, the MPC strategy is developed through the rolling 

optimization and local optimization of DP strategy, which 

achieves the optimal torque distribution between engine and 

motors. Comparative analysis for rule-based, DP and MPC 

strategies are performed. It is seen that the MPC strategy can 

obtain similar fuel consumption with DP strategy, while the 

MPC strategy has certain real-time application potential with 

only 0.269s per single step calculation time. Compared with the 

rule-based strategy, the MPC achieves obvious fuel consumption 

and total cost improvement by 14.5% and 12.6% respectively. 

Therefore, MPC strategy can effectively improve the fuel 

economy and has certain real time application potential. 

 
Index Terms—Plug in hybrid electric vehicle; Dual motor 

coupled; Dynamic programming; Model predictive control; 

Energy management strategy.  

I. INTRODUCTION 

S a compromise for new energy vehicles, PHEV has 

longer driving range and higher fuel economy compared 

with pure electric vehicles and traditional fuel vehicles [1, 2]. 

In order to further improve the fuel economy of PHEV, 

vehicle configuration and energy management strategy have 
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been studied [3]. 

In the aspect of vehicle configuration, the operating modes 

of dynamic coupling configuration of PHEV are investigated 

to realize the fuel economy improvement [4]. The 

three-planet coupling configuration [5, 6] has obvious 

advantages in the transmission system while the improvement 

of fuel efficiency is inconspicuous. The planetary gear 

mechanism and clutch power separation system combined 

configuration [7] can achieve better economy and power 

performance than the traditional vehicles. Through the 

coupling of planetary gear mechanism, the PHEV can 

effectively reduce the total cost [8]. Therefore, the planetary 

gear coupling mechanism can greatly improve the driving 

efficiency of PHEV.  

 Many scholars have carried out studies on energy 

management strategy (EMS). The EMS can be generally 

divided into rule-based energy management strategies and 

optimization-based energy management strategies [9, 10]. In 

the aspect of rule-based energy management strategies, Liu & 

Peng have proposed a rule-based strategy about the hybrid 

configuration of double planetary gears to solve the mode 

switch of multi-power source [11]. Moreover, the genetic 

algorithm can optimize the control strategy, which improves 

the system efficiency [12]. Besides, the intelligent logic 

rule-based strategy [13] optimizes engine operation range and 

improves the adaptability to unknown driving conditions. The 

rule-based energy management strategy has easy 

implementation and good real-time performance while the 

adaptability is poor in general.  

In the aspect of reducing the fuel and electric consumption 

of PHEV, Wang & Jiao have proposed Pontryagin’s 
minimum principle and particle swarm optimization strategies 

to reduce the battery recession of PHEV [14]. The dynamic 

programming is applied to estimate the optimal-benchmark 

solution for truck model. Then fuel economy under different 

control strategies are assessed [15]. Nowadays, the local 

linear approximation [16] and the convex optimization [17] 

algorithms can significantly reduce the calculation time of DP 

algorithm. Particularly, Meo has proved that the nonlinear 

convex optimization can considerably improve the economic 

performance of hybrid electric vehicles [18]. The 

optimization-based algorithms can be applied to the external 

power grid on PHEV and provide a new idea for energy 

management strategy [19]. Vajedi & Silva have proposed the 

equivalent minimum fuel consumption strategy, which can 

obtain the optimization solution by converting fuel and 

electricity consumption into an objective function [20, 21]. 
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Compared with the EMS without the assistance of economy 

driving system, an adaptive strategy under MPC [22] can 

improve the fuel economy through HIL test. The calculation 

task of optimization-based strategy is enormous and the 

complex calculation is not acceptable for most practical 

applications. Therefore, the instantaneous optimal energy 

management strategy [23] such as MPC has developed 

rapidly and has been widely used for the benefits of real-time 

ability and good control effect. 

Based on the analysis above, it is found that lots of scholars 

focus on the development of PHEV configuration and energy 

management strategy unilaterally. And only few scholars 

consider both fuel economy and real-time performance. 

Therefore, in this paper, the MPC strategy is developed with 

full consideration of vehicle economy and real-time 

application potential. In section II, dual motor coupled PHEV 

configuration is researched. In section III, the rule-based 

strategy and DP strategy are discussed. In section IV, three 

different vehicle speed prediction models for various time 

domain lengths are investigated. Besides, the model with the 

best speed prediction effect is selected and applied to the 

MPC strategy. Based on the DP algorithm and constraint 

functions, the MPC strategy is developed and analyzed to 

obtain the optimal control sequence. In section V, some 

conclusive remarks in the economy and real-time 

performance of PHEV under three strategies are given.  

II. CONFIGURATION AND MODELING OF DOUBLE MOTOR 

COUPLED PHEV 

A. Analysis of Vehicle Configuration and Dynamic 

Characteristics Introduction 

The PHEV configuration is shown in Figure 1. The target 

PHEV is mainly composed of Motor-Generator 1(MG1), 

Motor-Generator 2 (MG2), engine and planetary gear 

mechanism. MG1 is connected with the sun gear of the 

planetary gear mechanism; MG2 is connected with the ring 

gear of the planetary gear through a fixed reduction gear i1. 
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Fig. 1. The dual motor coupling configuration of PHEV 

Based on the principle of electricity consumption priority, 

the PHEV can be operated under three pure electric operating 

modes when the battery energy is sufficient: MG1, MG2 and 

dual motor speed coupling operating mode. Similarly, the 

vehicle operating modes can be split into three conditions 

when the energy of battery pack is insufficient. 

Case1: When vehicle speed is low, clutch C1 is disengaged 

and clutch C2 is engaged. The MG2 works as a generator and 

the engine drives MG2 to generate electricity. The target 

vehicle works in the series operating mode and the generated 

MG2 power is supplied to MG1 to propel the vehicle.  

Case2: When vehicle works at medium speed, the clutch 

C1 and C2 are both engaged. Only the engine drives the 

vehicle and the ring gear can transmit the engine power to the 

wheel.  

Case3: When the vehicle works at high speed, the vehicle is 

driven by the engine and MG1together. 

To sum up, the vehicle operating mode can be adjusted 

automatically according to the battery power. The operation 

status of each component for the six operating modes is shown 

in Table 1. 

TABLE I 

 WORKING CONDITION DIAGRAM OF EACH COMPONENT 

(W= Work, C=Closed, L=Locked, D=Disengaged, E= Engaged) 

Operating 

mode 
MG1 MG2 Engine 

Sun 

gear 

Ring 

gear 
C1 C2 

MG1  W C C W L D D 

MG2  C W C L W E D 

Speed coupling  W W C W W E D 

Series  W W W W L D E 

Engine  C W W L W E E 

Combined  W W W W W E E 

B. Dynamic Characteristics Analysis 

1) MG1 operating mode  

The energy flow of the only MG1 operating mode is shown 

in Figure 2. MG1 drives the vehicle with the condition of 

sufficient battery pack energy, low velocity and small 

required power. The ring gear is locked. The clutch C1 and 

C2 are disengaged. The MG1 power can be transmitted to the 

wheel through the planetary gear. The dynamic relation is 

derived as shown in equation (1): 
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Fig.  2. Energy flow of MG1 operating mode 

2) MG2 operating mode 

The energy flow of the only MG2 operating mode is shown 

in Figure 3. MG2 drives the vehicle with the condition of 

sufficient battery pack energy, medium velocity and small 

power demand. The sun gear is locked. The clutches C1, C2 

are engaged and disengaged respectively. The MG2 power 

can be transmitted to the wheel through the planetary gear. 

The dynamic relation is derived as shown in equation (2): 

 

2

1

1
2

(1 )

(1 )
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c

c MG

k

i k

i k
T T
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                                             (2) 
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where ωc is the output speed of planetary carrier, rad/s; ωMG1 

and ωMG2 are the MG1 and MG2 speed respectively, rad/s; k is 

the characteristic parameter of the planetary gear; Tc is 

planetary carrier torque, Nm; i1 is the fixed reduction gear 

ratio; TMG1 and TMG2 are the MG1 and MG2 torque 

respectively, Nm. 
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Fig.  3. Energy flow of MG2 operating mode 

3) Dual motor speed coupling operating mode  

The energy flow of this mode is shown in Figure 4. When 

the battery pack energy is sufficient and the velocity is high, 

the two motors are cooperated together to satisfy the speed 

requirement. Clutch C1 is engaged and clutch C2 is 

disengaged. The dynamic relation is derived as shown in 

equation (3): 

                           

1 2

1

1
1 2
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k
k
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                    (3) 
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Fig.  4. Energy flow of dual motor speed coupling operating mode 

4) Series operating mode  

The energy flow of series operating mode is shown in 

Figure 5. The MG2 power is sent to the MG1 to propel the 

vehicle for the condition of insufficient battery energy, low 

vehicle speed and small power demand. At this time, the ring 

gear is locked, clutch C1 is disengaged and clutch C2 is 

engaged. The dynamic relation is derived as shown in 

equation (4): 

 
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                                             (4) 

where, ωeng is the engine speed, rad/s; Teng is the engine torque, 

Nm. 
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Fig.  5. Energy flow of series operating mode 

5) Engine operating mode  

The energy flow of engine operating mode is shown in 

Figure 6. The engine drives the vehicle alone with the 

condition of low battery pack energy and medium/high 

velocity. At this time, the sun gear is locked, and the clutches 

C1, C2 are engaged. The dynamic relation is derived as shown 

in equation (5): 
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Fig.  6. Energy flow of engine operating mode 

6) Combined operating mode 

The energy flow of combined operating mode (engine, 

MG1 and MG2) is expressed in Figure 7. When the battery 

pack energy is insufficient and the vehicle works at a high 

velocity, the engine, MG1 and MG2 drive the vehicle together. 

At this time, the MG2 can be used as either a motor or a 

generator to adjust the engine optimal operating. The clutch 

C1 and C2 are engaged. The dynamic relation is derived as 

shown in equation (6): 
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Fig.  7. Energy flow of combination operating mode 

C. Core Components and Vehicle Model 

The parameter matching of vehicle components are 

performed based on the vehicle performance index, as shown 

in Table 2. Detailed parameter matching process will not be 

discussed in this paper. 

The full PHEV model is established by 

MATLAB/Simulink/Stateflow with the combination of 

vehicle component such as motor, engine, battery, clutch, 

planetary gear etc. The full vehicle model is shown in Figure 

8. 

TABLE II  

VEHICLE PARAMETERS 

Parameters Value Unit 

Full mass 1750 kg 

Frontal area 2.35 m2 

Maximum engine power 75 kW 

maximum engine speed 6500 rpm 

Maximum engine torque 135 Nm 

MG1 rated/peak power 15/30 kW 

MG1 rated/peak torque 70/145 Nm 

MG1 rated/peak speed 2000/6200 rpm 

MG2  rated/peak power 30/60 kW 

MG2 rated/peak speed 3000/7500 rpm 

MG2 rated/peak torque 95/190 Nm 

Characteristics of planetary gear k 

(R/S) 
2.5 - 

Final ratio i0 3.5 - 

Reduction ratio i1 1.6 - 

Battery capacity 40 A·h 

Battery rated voltage 360 V 

Inverter Hybrid Control Unit
MG1

MG2 Engine

Vehicle Model
Engine

Battery Driver Model
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Gears
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Gear

t
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Main 
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Fig. 8. Full vehicle model of the target PHEV 

III. RULE-BASED AND DYNAMIC PROGRAMMING BASED EMS FOR PHEV  

A. Rule-based Energy Management Strategy 

1) Principle of rule-based energy management strategy 

Since the cost of electricity is relatively cheap than fuel, the 

PHEV will work in the electric operating mode until the 

battery State of Charge (SOC) drops to the bottom line. Based 

on the change trajectory of the battery SOC, the PHEV 

operating modes can be divided into Charge Depleting (CD) 

mode and Charge Sustaining (CS) mode. The schematic 

diagram of regular CD-CS strategy is expressed in Figure 9. 
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Fig.  9. Regular CD-CS control strategy 

Since the battery SOC is high in CD mode and the electric 

driving is cost-effective than that of fuel drive, MG1 and 

MG2 drive the vehicle together. In this stage, the electricity is 

the only energy source and the battery SOC is decreasing in 

this stage.  

In the CS mode, the engine and two motors drive the 

vehicle coordinately. Besides, the engine is the main energy 

source. The engine can provide the required vehicle power 

and provide additional power to keep battery SOC in a 

reasonable value. 

2) Formulation of rule-based energy management 

strategy  

The multi-power sources of PHEV bring various operating 

modes and relatively complicated EMS. Rule-based strategy 

has the benefits of simple formulation and high application, so 

the rule-based strategy is selected as the benchmark strategy 

in this paper. In Figure 10, the rule-based strategy is 

explained. 
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Fig.  10. Mode switching algorithm based on rule-based strategy  
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It is seen from Figure 10 that different operating modes can 

be selected depending on relevant vehicle parameters. 

B. Dynamic Programming Based Energy Management 

Strategy 

1) Principle of dynamic programming algorithm 

Dynamic programming is the most common method to 

solve multi-stage decision optimization problem. In this 

problem, several interacting stages constitute the multi-stage 

decision. Each stage includes a decision problem. At the same 

time, the decision of each stage and its results will affect next 

stage. Then the decision of each stage constitutes a decision 

sequence [24]. The schematic diagram of multi-stage decision 

making problem is shown in Figure 11.  

state2state0 state1
f(0) f(1) f(k) f(N)

decision0 decision1 decision k decision N-1

 

Fig.  11. Schematic diagram of multi-stage decision making problem 

For a given multi-stage decision system, the cost function 

of each stage and the optimal control sequence are combined 

to achieve global optimization by reverse solution. 

2) Problem construction of dynamic programming 

algorithm 

In this paper, battery SOC is chosen as the system state 

variable and there is a certain dynamic relationship in the 

planetary gear dynamic coupling mechanisms.  

At the same time, the output torque of planet carrier has 

proportional relationship with the input torque of ring gear 

and sun gear. Therefore, the engine torque Teng and MG2 

speed ωMG2 are selected as the system control variables. The 

selected state variables and control variables are described in 

equation (7).   

              
2

( ) ( )

( ) [ ( ), ( )]eng MG

x k SOC k

u k T k k

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                                            (7) 

The system state equation (8) is obtained. 
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In equation (8), ( )
bat

P k  can be derived by equation (9). 
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                       (9)                                        

where PMG1 and PMG2 are the power of MG1 and MG2 

respectively, kW. 

Firstly, the optimization objective function in the time 

domain of k-time prediction is established as shown in 

equation (10).  

 2

= ( ( ), ( ))
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
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where L is the instantaneous optimization function, and L 

changes with the change of prediction time domain; f is the 

oil price, 7 RMB/L; fuel (k) is the fuel consumption at a 

certain stage; e is the electricity price, 0.6 RMB/kWh; SOCf 

is the SOC value at the end time; (SOC(k)-SOCf  )
2
 is the 

penalty function of the model and the penalty coefficient  is 

a large value to avoid the SOC drops too fast.  
In order to make the solution reasonable and reduce the 

calculation time, the following constraints should be added, as 

shown in equation (11). 
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where  the subscript eng represents the engine and the 

subscripts min and max represent the upper and lower limits 

of the value respectively. 

IV. MODEL PREDICTIVE CONTROL BASED ENERGY MANAGEMENT 

STRATEGY FOR PHEV 

A. Introduction of Model Predictive Control 

The DP based energy management strategy has excellent 

performance in improving fuel economy. However,  due to 

the complex calculation of global optimization, the DP 

algorithm is difficult to be applied in real vehicle. Therefore,  

model predictive control strategy is proposed on the basis of 

DP methodology with the consideration of fuel economy and 

real-time application. MPC control schematic diagram is 

shown in Figure 12. 

Past Now Future
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k k+q

u(k+j)

k+p

Predicted time domain length p

Control time 
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xr(k+j)

xp(k+j)

 

Fig.  12.  MPC control schematic diagram 

The two most important steps of model predictive control 

are rolling optimization and prediction model selection. 

Rolling optimization is not a global optimization. It needs to 

determine the optimization goal in the current time domain 

and gradually complete the overall optimization. Rolling 

optimization is a unique advantage of MPC, which is also the 

biggest difference from DP algorithm.  

The prediction model can predict the future state of the 

system. In this paper, three different prediction models are 

discussed to obtain the best speed prediction time domain. 

Specific solutions are covered in section IV.B. 

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_10

Volume 53, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

B. Evaluation Standard of Vehicle Future State Prediction  

The prediction of the vehicle future state is realized based 

on historical information and current information. According 

to the prediction model, the vehicle running state in the finite 

prediction time domain is predicted. The precision of  

predicted vehicle state also influences the accuracy of the 

energy management strategy. So, the prediction method 

should be reasonably selected. 

In order to verify the accuracy of speed prediction, root 

mean square error (RMSE) is used as the evaluation index, as 

shown in equation (12)-(13). 

 2

1

( ) ( ) ( ) /


    
p

p r
i

R k v k i v k i p                             (12) 

          2

1

Re ( ) /
S

k

R k S


                                                       (13)                                                                                                                           

where R (k) is the root mean square error in the prediction 

time domain; Re is the total root mean square error; vp (k +i) is 

the predicted speed at that time, vr (k +i) is the actual speed. 

The value of Re has an inverse relationship with the prediction 

result. 

Therefore, the index prediction, Markov prediction and 

neural network prediction are applied to predict the vehicle 

operation status information. 

In this paper, four different working conditions are selected 

as the sample condition. The working conditions are shown in 

Figure 13. 

 
Fig.  13. Sample condition 

1) Prediction Based On Index Model 

Index function, as a common prediction model, is used to 

predict the future development trend. In the aspect of vehicle 

running state prediction, the index prediction model can 

predict the future vehicle acceleration and further obtain the 

predicted speed.  

The specific implementation is as follows: according to the 

acceleration a (k), the acceleration sequence within k ~ k +p 

can be obtained from equation (14). Then the current 

acceleration, speed and the future speed series in k ~ k +p can 

be further obtained from equation (15). 

( ) ( ) exp , 1,2, ,


       
 

i
a k i a k i p                   (14)                            

( + ) ( ) ( )  
k+i

k
v k i v k a x dx                             (15)                                                     

where a (k+i) is the acceleration at the time of k+i; τ is the 

recession factor of the function. Under different time-domain 

length, the prediction effect is different due to the different 

values of τ. 

For different prediction time-domain length, the value of τ 

is also different when reaches the best predication accuracy. 

The optimal τ value is used for the prediction simulation 

analysis in different forecast time-domains. The simulation 

effects of different prediction time are shown in Figure 14. 

Actual
  Predict

 
(a) 

Actual
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(b) 

Actual
  Predict

 
(c) 

Fig.  14. Forecast effect of index model prediction. (a)  p =5s.  (b)  p =10s.  (c)  

p =15s. 

2) Prediction Based On Markov Model 

Since the vehicle driving is affected by several external 

factors, the change of vehicle speed (acceleration) is a random 

process. Markov model is a sequence of random variables. 

The system state at a certain time in the future only relies on 

the present time state. Therefore, the system state at any time 

in the future can be inferred from the current system state 

instead of the historical state. 

In Markov model, the sampling step is set as 1s, and the 

speed and acceleration are discretized at appropriate intervals. 

The nearest neighbor method can be used to obtain the speed 

and acceleration state values in all state spaces, as shown in 

equation (16). 

          
 
 






 1 2

1 2

l

r

v

a

… , v

a ,

v , v ,

, aa …,
                                        (16)                    

The sum of the acceleration transfer times can be obtained 

from equation (17). Then the maximum likelihood estimation 

method can be applied to calculate the acceleration 

probability corresponding to discrete vehicle speed, as shown 

in equation (18). 
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At each speed, one-step state transition probability matrix P 

can be obtained. Multiple transition probability matrices are 

constructed into one-step Markov model. The one-step 

transition probability matrix of acceleration at 35km/h is 

shown in Figure 15. 

 
Fig.  15. One step transition probability matrix model 

The above process is repeated until vehicle speed and 

acceleration in the whole prediction time domain are obtained. 

The prediction effect in each prediction time domain is shown 

in Figure 16. 
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Fig.  16. Forecast effect of Markov model.  (a)  p =5s.  (b)  p =10s.  (c)  p 

=15s. 

3) Prediction Based On RBF Neural Network Model 

The RBF neural network is generally displayed as Gauss 

function. Therefore, the activation function of RBF neural 

network can be expressed as equation (19). 

  2
2

2

1
exp

2
- - -

 
 
 

p i p i
R x c = x c

σ
                 (19)                    

where xp-c
2 

i  is the European norm; ci is the center of the 

Gaussian function. 

Therefore, the output of RBF neural network can be 

expressed as equation (20). 

2
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1
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2

h

i ij p i
i

y x c j n
σ




 
      

 1

            (20)                    

where, xp is the input sample; ci is the center of the hidden 

layer node; ij is the connection weight between the hidden 

layer and the output layer; yi is the actual output of the input 

sample. 

The historical vehicle speed and current vehicle speed 

information are the input variables of the neural network. The 

predicted speed in the prediction time domain is the output. 

The number of neurons in the neural network is 30. The 

mapping relationship is derived as shown in equation (21). 

 1 2 1
, , ,

k 
    RBk+ k+ k+ Fp k h
v , v , v f v v           (21)                    

where v is the driving speed; h is the number of input 

historical speeds; fRBF is the mapping relationship between 

input and output of RBF neural network; p is the prediction 

length in time domain. 

The RBF prediction model is developed using MATLAB 

to obtain the single-step prediction result in Figure 17 (a). As 

seen in Figure 17 (b), most of the single-step prediction errors 

are less than 0.1km/h, and the errors of other individual points 

are also within 1km/h. The developed RBF model has good 

prediction result and high accuracy, so it can be further 

studied. 

 
(a) 

 
(b) 

Fig.  17. RBF prediction model single step prediction diagram. (a) 

single-step prediction result. (b) single-step prediction relative error. 

The prediction results of different prediction time domains 

of RBF neural network model are shown in Figure 18. 
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Fig.  18. Forecast effect chart of RBF model.  (a)  p =5s.  (b)  p =10s.  (c)  p 

=15s. 

4) Prediction Model Selection 

The prediction results of different prediction models under 

different prediction time domain lengths are expressed in 

Table 3. The root mean square error of different prediction 

models under the same prediction time domain is shown in 

Figure 19. 

TABLE III  

PREDICTION EFFECT UNDER DIFFERENT PREDICTION MODELS 

Predict time 

domain p 

RMSE under 

Index model 

prediction 

RMSE under 

Markov model 

prediction 

RMSE under 

RBF model 

prediction 

5s 2.7521 1.9136 1.7913 

10s 5.4615 4.6554 4.3538 

15s 10.3855 8.9699 8.0255 

 

Fig.  19.  Comparison chart of prediction effort for different models 

It is seen from Figure 19 that the prediction accuracy of 

three prediction methods has inverse relationship with the 

prediction time domain. The RBF neural network prediction 

model is the most accurate predication model in the same 

prediction time domain. Therefore, the RBF neural network 

model is chosen in the subsequent model prediction algorithm. 

Considering comprehensively, 10s is selected as the 

prediction time domain length. 

C. Solution of Model Predictive Control Problem  

Based on the battery SOC reference trajectory and RBF 

neural network prediction model, the rolling optimization of 

MPC can be realized using DP algorithm framework and 

constraint equation (8) - (11). The solution process is shown 

in Figure 20. 

Engine

MG1

MG2

Vehicle 

speed 

Acceleration  

Prediction models：
RBF neural network 

models

k~k+p SOC reference 

trajectory  SOC 

reference in 

k~k+p

Dynamic 

programming 

predicts solution 

in time domain

Obtain the vehicle speed and 

acceleration information by 

k~k+p prediction

Output k~k+p internal 

control sequence，the 

first control act on the 

vehicle  

Fig.  20. MPC solution flow chart 

V. ANALYSIS OF SIMULATION RESULTS 

A. Analysis of Fuel Economy  

In this paper, six UDDS driving conditions are selected as 

the test condition. Initial and termination battery SOC are set 

as 0.7 and 0.3 respectively. The prediction step is 10s under 

RBF neural network. Based on the above conditions, 

rule-based (CD-CS) strategy, DP strategy and MPC strategy 

are verified. The simulation results of battery SOC in the 

above strategies are shown in Figure 21. 

 
Fig.  21.  Comparison of battery SOC for three algorithms 

It is seen in Figure 21, battery SOC in the rule-based 

strategy decreases rapidly and then fluctuates around 0.3. 

Since the fuel and electricity are reasonably distributed by the 

global optimization of the DP algorithm, the battery SOC of 

the DP algorithm decreases slowly. Similarly, with the 

limitation of reference trajectory and constraints, the battery 

SOC of the MPC algorithm decreases slowly. 

The engine working point can be analyzed for three energy 

management strategies, as shown in Figure 22.  

As seen in Figure 22, since the rule-based strategy is not 
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flexible, the operation points of engine are more scattered in 

low efficiency area and the fuel economy is poor. The engine 

working points of DP algorithm are more scattered around the 

high-efficiency area of optimal working curve. The engine 

working points of MPC algorithm are also dispersed in high- 

efficiency area. However, the MPC algorithm only predicts 

the local optimal in time domain. The global energy 

management strategy is approximating optimal. The MPC 

cannot predict more driving information in the future. 

Therefore, some engine working points are dispersed in the 

low efficiency range. Nevertheless, the whole vehicle 

economy is greatly improved in comparison with the 

rule-based strategy. 

 
Fig.  22.  Comparison of engine operating points for three algorithms 

As shown in Figure 23, the fuel consumption results for 

three energy management strategies are obtained. Since the 

electric power of rule-based (CD-CS) strategy is sufficient at 

t=0-4000s, the vehicle is driving under CD mode with the fuel 

consumption of zero. When the battery SOC drops to the 

bottom value, the vehicle is driving under CS mode with 

sharply rising fuel consumption. For the DP strategy and 

MPC strategy, the engine and motor are reasonable controlled 

by optimization algorithm. Therefore, the fuel consumption 

curves rise slowly with similar changing trend. As for the fuel 

consumption of the three strategies, the fuel consumption of 

DP strategy and MPC strategy is smaller than rule-based 

strategy. 

Fig.  23. Comparison of fuel consumption for three algorithms 

Then, the cost for different algorithms are calculated with 

the combination of the fuel consumption and electricity (The 

electricity price is 0.6 RMB/kWh, and the gasoline price is 7 

RMB/L), as shown in Table 4. 

It is seen from Table 4 that the MPC strategy has similar 

total cost with DP strategy, while the rule-based strategy has 

higher total cost compared with DP and MPC strategies. To 

further confirm the validity of MPC strategy, the fuel cost and 

total cost of MPC strategy are further compared and analyzed 

in Table 5. The fuel cost and total cost of MPC strategy is 

significantly reduced by 14.5% and 12.6% respectively in 

contrast to rule-based strategy, which proves the validity of 

the proposed MPC strategy. 

TABLE IV 

COST COMPARISON OF DIFFERENT OPTIMIZATION ALGORITHM 

Working 

condition 

Proposed 

strategy 

Fuel 

cost/L 

Electricity 

cost/kWh 

Total cost 

/RMB 

Working 

condition 

of UDDS 

Rule 

strategy 
3.25 5.7672 26.21 

DP 

strategy 
2.66 5.7586 22.08 

MPC 

strategy 
2.78 5.7514 22.91 

TABLE V 

COMPARISON AND ANALYSIS OF MPC AND RULE STRATEGIES 

- Rule strategy MPC strategy Improvement 

Fuel cost/L 3.25 2.78 14.5% 

Total cost/RMB 26.21 22.91 12.6% 

B. Real Time Performance Analysis 

In win7 system, CPU i5-4460, 3.2GHz, memory 16GB 

desktop computer, the RBF prediction model is verified. The 

results are expressed in Table 6. 

TABLE VI   

REQUIRED OPERATING TIME AT DIFFERENT PREDICTED 

LENGTHS 

- 
Prediction 

length 5s 

Prediction 

length 10s 

Prediction 

length 15s 

1 UDDS 

working condition 

prediction time 

1.75s 1.98s 2.89s 

Single step 

prediction time 
1.27ms 1.45ms 2.11ms 

As shown in Table 6, the prediction time has the linear 

relation with the prediction time domain. Under the whole 

UDDS condition, the prediction time increases from 1.75s to 

2.89s, and the single step prediction time increases from 

1.27ms to 2.11ms. The single step prediction time is relatively 

short, so the single step prediction has certain real-time 

application potential. Considering the accuracy and rapidity 

of the prediction in time domain, it is reasonable to select 10s 

as the prediction step. 

TABLE VII   

CALCULATION TIME OF MPC 

- Consumption time/s 

6 UDDS working condition 

prediction time 
2213 

Conversion to single step calculation 

time 
0.269 

As shown in Table 7, the total calculation time is 2213s 

under 6 UDDS conditions and the single step calculation time 

is 0.269s. With the reduction of the prediction time, the 

calculation time is reduced. Meanwhile, the cost of the whole 

vehicle is also reduced. Therefore, the 10s is selected as the 

prediction step for better economy improvement and certain 
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real-time application potential. 

VI. CONCLUSION 

In this paper, model predictive control based energy 

management strategy is developed for dual motor coupled 

PHEV configuration. The PHEV powertrain model is 

constructed using MATLAB/Simulink/Stateflow. Then, the 

rule-based strategy and DP strategy are established. The DP 

strategy can improve operation efficiency of power 

components under different working conditions while the 

real-time performance is poor. The rule-based strategy has 

opposite characteristics with the DP strategy. Considering the 

vehicle economy and real-time application potential, MPC 

strategy is developed. Under RBF neural network prediction 

model, DP algorithm framework and constraint functions, the 

economy and real-time performance of MPC strategy are 

verified. 

The results show that: MPC strategy can obtain similar fuel 

consumption compared DP strategy, while the calculation 

time of MPC strategy has real-time application potential with 

only 0.269s per single step calculation time. The fuel cost and 

total cost of MPC strategy is significantly reduced by 14.5% 

and 12.6% respectively in comparison with the rule-based 

strategy. Therefore, MPC strategy not only improves fuel 

economy, but also has application potential in real time. 
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