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A Two-Stage Robust Omega Portfolio
Optimization with Cardinality Constraints

Liangyu Min, Member, IAENG, Yimin Han*, Yi Xiang

Abstract—The Omega portfolio is one of the non-Gaussian
portfolio models independent of the strict distribution as-
sumption, which has attracted interest from scholars. Fur-
thermore, the robust Omega portfolio is capable of cop-
ing with the scenario of data uncertainty. However, the
conservatism inherent in robust optimization has not been
applauded by the activist investors, prompting us to polish
the classical portfolio model. Therefore, this paper aims to
develop the less conservative robust Omega portfolio, in
which a two-stage portfolio structure is designed. In the
first stage, Genetic algorithm, Gurobi solver, and Mosek
solver are employed to solve the mixed-integer programming
problem to screen out qualified risky assets for the sequel
modeling. Then, the robust Omega portfolios are built based
on the selected assets in the second stage. The US 30
industry portfolio data set is used for the empirical research,
whose results demonstrate the effectiveness of the proposed
methodology.

Index Terms—Portfolio selection,
Omega ratio, Cardinality constraint

Genetic algorithm,

I. INTRODUCTION

S a successful theoretical model, the mean-variance
(MV) portfolio[1] has gained much attention from
academia and industry. With advances in computer sci-
ence and engineering, the fundamental assumption of MV
seems to be too strict to satisfy the growing investor
demand. To remedy the defect, some scholars proposed
and developed the Omega portfolio[2], [3], [4], [5]. Com-
pared to the traditional MV model, the Omega portfolio
takes into account the state of all observations, rather
than characterizing the overall distribution using only two
representative parameters, mean and variance.
Theoretically, modeling Omega portfolio requires pre-
cise distributional knowledge is required, which poses
a challenge for practitioners mired in data ambiguity.
Fortunately, the robust Omega portfolio relaxes the precise
restriction on the experimental samples, which assumes the
data could vary within the range. Considering the worst-
case scenario is a common methodology to transform
and solve the robust optimization problem[6], [7], [8].
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However, this approach is prone to improving the out-of-
sample robustness while ignoring the potential asset gain,
which would result in a conservative portfolio.

For investors with a risk-seeking preference, the over-
conservative portfolio may not be favored, which motivates
researchers to develop models balancing risk and return.
[7] designed the hybrid robust portfolio, in which both the
best-case and the worst-case counterparts are considered.
[9] analyzed the cost of robustness theoretically. [8] tried
to reduce the conservatism of the worst-case portfolio
by introducing the higher moments. Existing studies also
point out that some off-the-shelf techniques could pro-
vide insights for constructing promising portfolios, such
as machine learning[10], [11], [12], deep learning[13],
[14], clustering[15], [16], regression[17], [18], [19], [20],
heuristic algorithms[21], [16], etc.

Based on the current research progress, this paper
contributes to developing the less conservative robust
Omega portfolio, in which a two-stage portfolio structure
is designed. Intuitively, the first stage is the preselection
aiming to select qualified risky assets, and the second stage
is to construct the robust Omega portfolio based on the
screened assets. A heuristic algorithm, genetic algorithm
(GA), and two state-of-art solvers, Gurobi and Mosek,
are used to solve the mixed-integer programming problem
proposed in the preselection. To verify the effectiveness
of the proposed model, the US 30 industry portfolio data
set is employed to implement the numerical experiments.
In addition, we also test some benchmark models such
as 1/N strategy, Markowitz portfolio, and the single-
stage robust Omega portfolio. Computation results and the
corresponding comparative analysis support the superiority
of the GA-based two-stage robust Omega portfolio.

The organization of this paper is as follows. Section
II introduces the robust Omega portfolio and the corre-
sponding cardinality constraint. Section III discusses the
preselection in the first stage, and Section IV shows the
work in the second stage, in which the necessary logical
relationship between the two stages is explained. Section
V implements the numerical experiments and verifies the
effectiveness of the propose model. Section VI concludes
the paper.

II. PRIMAL PORTFOLIO MODEL

Suppose that there are n financial risky assets in the
market, whose returns are indicated by a random vector
r = {f1,72,...,7,}. Denote w € R™ as the portfolio
weight vector held by an investor. According to the
definition given by [2], the Omega ratio of the ith risky

Volume 53, Issue 1: March 2023



TAENG International Journal of Applied Mathematics, 53:1, IJAM_53 1 11

asset is as follows:
. fToo[l — F(m)]dn
b S Fridr
where F(r;) is the cumulative density function, and f(r;)
is the probability density function. Therefore, the Omega

portfolio optimization problem can be addressed as fol-
lows:
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Kapsos et al. [4], [S] provided the sample-based linear
programming (LP) form of (2), in which they assume m
possible scenarios and the probability of the jth scenario
is p; = 1/m. Define 71,72, ..., T, be the m-rounds sam-
pling assets returns, the problem (2) can be transformed
into the following linear fractional optimization:

wr — T
(1/m)l'u
Uj Z T — w’rj

max
wER™ wER™
s.t.
uj =0 3)
Tw=1
w € [w, W]
wr>T

Obviously, the Omega portfolio requires to be fully
aware of the distribution of the achievable assets. However,
access to this information is costly and time-consuming,
and practitioners have to resort to the method of sample
estimation to fulfill the task. To alleviate the influence
bought by potential error-prone estimation, the robust
variant of the Omega portfolio is developed according to
the results in [22], [4]. To be specific, we consider the
following polytopic uncertainty where the distribution of
7 is constrained by the pre-specified mixture distributions:

k
p(";)G’PA{Z)\ipi(i')aAizovai1} “4)
im1

The worst-case approach is feasible to deal with the
robust portfolio problem[6]. Accordingly, the worst-case
Omega portfolio can be derived:

max min 6

0.qz
st. (Rx)m—712>0
n'g=1
q>7121 — Rx (5)
q>0
z=1w

2w <z < 2w
2>0,0>0

zw, w is the S x 1
Sxn

where the rescaled vector * =
vector representing the sampling scenario, R € R
is the discrete distribution. Empirical studies point out
that holding a sparse portfolio is beneficial to individual

investors, which could be implemented by the cardinality
constraint:

Ck ={weR"ye{0,1}":Tw=11y=K;w<y}

(6)
where y; is the binary variable indicating whether an asset
has been selected.

As a result, the Omega portfolio constrained by Cx
is a mixed-integer programming (MIP) problem, which
has been recognized as an NP-hard problem. In additional
to the computational difficulties, conservatism is also the
main problem in the worst-case portfolio optimization,
which is not preferred by the risk-seeking investors.
To overcome the potential conservatism, we divide the
proposed Omega portfolio into the two stages. In the
first stage, i.e., preselection, we implement a cardinality
constrained portfolio to select K assets with satisfactory
performance, in which the profit-pursuing rule is designed.
Based on the picked risky assets in the prior stage, the
robust Omega portfolio is constructed in the second stage.

II1. FIRST STAGE: PRESELECTION

The classical mean-variance model paves the way for
the portfolio selection problem. Hence, we consider build-
ing the following Markowitz portfolio with cardinality
constraints to select promising assets for the second phase:

min  w'Yw
st. wE[F] > p
1Tw=1
1'y=K
w<y
w >0,y € {0,1}"

)

where p is the target return of the portfolio. Due to
the objective function is quadratic, and y; is the bi-
nary variable, the problem (7) is hard to solve by some
well-implemented algorithms such as simplex and the
interior-point method. To deal with these complicated
optimization problems, scholars have developed lots of
exact and heuristic algorithms. For instance, branch &
bound[23] and cutting planes[24] are two mainstreams in
solving the MIP problem, which have been implemented
in some commercial solvers like Gurobi[25], CPLEX[26],
and Mosek[27]. Randomized algorithms also play some
indispensable roles in solving large-scale integer program-
ming. Compared with the exact algorithm, the solution
of the randomized algorithm may be suboptimal, but
the heuristic algorithm has some advantages in solving
efficiency. Therefore, the heuristic solution provided by
the randomized algorithm could be used as the warm-start
in some optimization toolKits.

Accordingly, GA, Gurobi 9.5.0, and Mosek 9.3 are the
three selected solvers for the first stage problem (7), and
the corresponding results are delivered to the second stage
for constructing the robust Omega portfolio. Considering
the stochastic nature of GA, we fixed the random seed in
programming for reproducing.
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IV. SECOND STAGE: ROBUST OMEGA PORTFOLIO

Based on the risky assets selected from the first stage,
we build the robust Omega portfolio (5) in this stage.
By adjusting the target return p in problem (7), the
constituents of this phase’s portfolio may be changed
accordingly. Intuitively, we assume that using aggressive
1 would somewhat reduce the conservatism of the worst-
case Omega portfolio. However, the actual effectiveness of
the strategy depends on the outcome of the preselection
stage, as well as the performance of the solver [28].

The threshold 7, in addition to the risky assets selected,
is also a key parameter influencing the robust Omega
portfolio performance. In this paper, we use the rule-of-
thumb to determine the threshold as in existing research
[29], [5]. Note that the main goal of this work is to
construct the less conservative robust Omega portfolio, this
work tries to do this by separating the integer constraint
Ck and establishing the independent problem (7). To be
fair, customizing the dynamic adjusting strategy for the
threshold would also contribute to improving the portfolio
performance. But this topic is out of the scope of this
study, and will be discussed in the forthcoming full-length
paper.

Actually, the equality constraint could be violated in the
process of solving, thus considering the relaxed formula-
tion of Cx is feasible in programming:

Ck ={weR"ye{0,1}": Tw < Ll'y < Kjw <y}
(®)
Accordingly, the relaxed formulation of the problem (7)
in the first stage and the problem (5) in the second stage
respectively could be obtained in the same vein.

V. NUMERICAL EXPERIMENTS
A. Data set

The US 30 industry data set from the website of
Kenneth. R. French is employed in our numerical exper-
iments to demonstrate the effectiveness of the proposed
strategy. Table I presents the descriptive statistics of the
experimental data set ranging from 2012 to 2021. It can
be observed that the overall distribution of the industry
data is stable, which is good for avoiding accidental errors
in our experiments. K-S tests are also carried out in the
empirical research, and the statistical results strongly reject
the normality hypothesis, which in turn is suitable for
some non-Gaussian models such as the Omega portfolio.

The first 500 observations are fed into the proposed
portfolio model for preselection. Then the 601 ~ 1200
samples are used for the robust Omega portfolio mod-
eling, from which the optimized weight vectors can be
obtained. Whilst, the remaining data will be used for out-
of-sample experiments. To comprehensively evaluate the
performance of the two-stage portfolio model, the MV
portfolio, 1/N strategy[30], and the single-stage robust
Omega portfolio are also gauged for comparative analysis.

All of the numerical experiments were carried out on
the Apple M1 Max computer with the Mac OS Monterey
operating system, 64G LPDDRS memory, and a 2T SSD
hard disk. The Python 3.8 platform was used to accomplish
the task of data processing, and the Matlab R2021a was
employed to program the mathematical models.

B. Results: the first stage

It is efficient and flexible for an individual investor to
manage a portfolio consisting of about 10 risky assets[7].
Therefore, we test K = 9,10,11,12 respectively in
the constraint Cx at the first stage. As a common-used
evolutionary algorithm in financial applications[16], [31],
GA employs the operators such as selection, crossover,
and mutation to explore the solution space, and drives the
population to converge to the best fitness chromosome,
which is denoted as the weight of an individual asset
within the portfolio. Fig. 1 illustrates the principle of
GA briefly. In this numerical experiment, the size of the
population is 150, the maximal generation is 500, and the
number of the elite is 10.

The fitness curves of GA for the problem (7) with
different K are shown in Fig. 2. It can be found that all
of the evolution curves converge within 120 generations.
Table II~III show the results of preselection solved by GA,
Gurobi, and Mosek, respectively. Apparently, the three
solvers have different characteristics in dealing with the
gradually changing constraints. GA shows evident ran-
domness and high sensitivity to the constraint condition,
in that it filters distinct subsets of the risky assets with
different values of K. Gurobi is the most conservative
solver and insensitive to the Cx. Contrary to GA, Gurobi
has the consistent assets subset as the first stage. Mosek
neutralizes the characteristics of the two solvers, which
ensuring that there is no great difference between the
solution sets while keeping the constraint active.

C. Results: the second stage

The corresponding robust Omega portfolio models are
built and investigated in this stage. To avoid the issue of
data snooping, we select the data with an interval from the
training set as the testing set for evaluating the portfolio
performance.

Fig. 3 presents the out-of-sample performance of the
proposed two-stage robust Omega portfolio based on
GA (GA-Ro-Omega) as well as the benchmark models.
Due to the two-stage robust Omega portfolio based on
Gurobi (Gro-Ro-Omega) and Mosek (Msk-Ro-Omega)
do not show significant superiority over the single-stage
robust Omega portfolio (Ro-Omega), we have omitted
their cumulative return curves for greater clarify the fig-
ure. Roughly speaking, GA-Ro-Omega outperforms other
models in terms of cumulative return, which preliminary
confirms the effectiveness of the GA-based preselection.
However, more detailed comparative analysis should be
done for deepening the conclusion.

Table IV presents the comparative analysis from the
three perspectives: ROI, STD, MDD. GA-Ro-Omega has
outstanding performance on both profitability and robust-
ness. For instance, when K = 11, GA-Ro-Omega yields
the highest ROI of 1.5752, followed by 1/N, 1.0936;
GA-Ro-Omega has the optimal MDD of 0.2867, MV
follows with 0.3094. Although GA-Ro-Omega shows clear
advantages in seeking returns and controlling extreme
risks, it also assumes more volatility than other models,
which can be inferred from the STD.
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TABLE 1
DESCRIPTIVE STATISTICS OF THE DATA SET.
Industry Mean (%) Stdev. (%) 25% Quantile (%) 50% Quantile (%) 75% Quantile (%) Range
Food 0.0424 0.9150 -0.3900 0.0600 0.5200 0.1623
Beer 0.0580 1.0306 -0.4200 0.0700 0.5500 0.2274
Smoke 0.0436 1.2302 -0.5600 0.0700 0.6800 0.2149
Games 0.0800 1.5269 -0.6800 0.1200 0.9000 0.2304
Books 0.0431 1.3340 -0.6400 0.0700 0.7800 0.2144
Hshld 0.05160 0.9727 -0.3800 0.0700 0.5300 0.1910
Clths 0.0685 14214 -0.6200 0.0900 0.8200 0.2747
Hith 0.0663 1.0671 -0.4400 0.0900 0.6300 0.1661
Chems 0.0575 1.3064 -0.5700 0.0900 0.7500 0.2409
Txtls 0.0692 1.9462 -0.7100 0.0900 0.9300 0.4032
Cnstr 0.0754 1.5251 -0.6400 0.1000 0.8700 0.3149
Steel 0.0530 1.9205 -1.0000 0.0500 1.0300 0.2659
FabPr 0.0701 1.4181 -0.6300 0.0900 0.7800 0.2560
ElcEq 0.0611 1.4438 -0.6200 0.0800 0.8000 0.2767
Autos 0.1114 1.8416 -0.7100 0.0900 0.9300 0.2974
Carry 0.0611 1.5829 -0.5900 0.0700 0.7400 0.3111
Mines 0.0383 1.6870 -0.9000 0.0400 1.0000 0.2580
Coal -0.0309 3.0904 -1.6000 -0.0300 1.4700 0.3835
0Oil 0.0215 1.7846 -0.7700 0.0100 0.8200 0.3602
Util 0.0426 1.0860 -0.4500 0.0800 0.5700 0.2343
Telem 0.0492 1.0153 -0.4300 0.0700 0.5700 0.1817
Servs 0.0862 1.2472 -0.4500 0.1100 0.7100 0.2387
BusEq 0.0933 1.3161 -0.4900 0.1300 0.7400 0.2357
Paper 0.0490 1.0883 -0.4500 0.0900 0.5900 0.1939
Trans 0.0630 1.2982 -0.5400 0.1000 0.7400 0.2418
Whilsl 0.0595 1.1602 -0.4800 0.0900 0.6500 0.2291
Rtail 0.0762 1.0548 -0.4200 0.1200 0.6300 0.1705
Meals 0.0643 1.1638 -0.4200 0.0900 0.6300 0.3117
Fin 0.0732 1.3394 -0.5000 0.1000 0.7200 0.2781
Other 0.04998 1.0587 -0.4400 0.0700 0.5500 0.1978
chromosomes crossover
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Fig. 1. Flowchart of GA.
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TABLE II
SELECTED ASSETS IN THE FIRST STAGE.
Solver K=9 K=10
Assets selected Selected subset Assets selected Selected subset
GA 5 {4,5,10,21, 27} {18,22,27,28,30}
Gurobi 7 {2,3,8,20,23,27,28} 7 {2,3,8,20,23,27,28}
Mosek 9 {1,2,3,8,20,23,27, 28,29} 10 {1,2,3,6,8,20, 23,27, 28,29}
TABLE III
SELECTED ASSETS IN THE FIRST STAGE.
Solver K=l K=12
Assets selected Selected subset Assets selected Selected subset
GA 7 {8,18,19,22,24,27,29} 5 {6,8,11,20,22}
Gurobi 7 {2,3,8,20,23,27, 28} 7 {2,3,8,20,23,27, 28}
Mosek 11 {1,2,3,6,8,11, 20, 23, 27, 28, 29} 12 {1,2,3,6,8,10,11, 20, 23, 27, 28, 29}
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Fig. 3.

TABLE IV
PERFORMANCE OF THE TESTED PORTFOLIO MODELS.
K= K=1 K=11 K=12
Proposed model 0 0

ROI STD MDD ROI STD MDD ROI STD MDD ROI STD MDD
GA-Ro-Omega 0.8055  0.2453  0.4886  2.1363 0.2018  0.2730 1.5752  0.1937  0.2867 1.5590  0.1928  0.2858
Gro-Ro-Omega 0.4068  0.1904 03170  0.4068  0.1904  0.3170  0.4068  0.1904  0.3170  0.4068  0.1904  0.3170
Msk-Ro-Omega  0.4046  0.1879  0.3158  0.4040  0.1895  0.3156  0.4033 0.1892 03150  0.4009  0.1884  0.3138

Benchmarks ROI STD MDD

1/N 1.0936 0.2006 0.3835

MV 0.7417 0.1642 0.3094

Ro-Omega 0.3906 0.1871 0.3118

Acronyms: ROI: Return of investment; STD: Annualized standard deviation; MDD: Max drawdown.

121 25
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Cumulative returns of the portfolio models.
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The effectiveness of the preselection depends on the
solver involved in the first stage. Due to both Gurobi and
Mosek trying to solve the MIP problem by resorting to
the exact algorithm, they show similar performance on the
numerical experiments. However, neither Gro-Ro-Omega
nor Msk-Ro-Omega shows significant performance im-
provement for Ro-Omega. Essentially, the problem (7) is a
minimum-variance portfolio essentially, the exact solution
given by Gurobi or Mosek exhausts the information of
the training samples, while may not be generic enough
to deal with the out-of-sample observations. One possible
approach to tackle the issue is to set an aggressive target
return in the first stage, but the inherent shortcomings of
the MV model may obstruct the decision makers from
achieving their goals. Instead of tuning the parameters in
problem (7), the inherent randomness of GA-Ro-Omega
improves the out-of-sample generalization of the proposed
portfolio. To summarize, the experimental results still
verify the validity of the specified preselection, especially
using the GA solver in the first stage.

VI. CONCLUSIONS & DISCUSSIONS

In this study, we mainly investigate the issue of over-
coming the potential conservatism of the robust Omega
portfolio. As a result, we design and develop the two-stage
robust Omega portfolio, where a MIP-based preselection is
specified to screen out the risky assets for the sequel stage
modeling. Both the heuristic algorithm and exact method
are tested in the first stage to select the qualified assets sub-
set. The corresponding robust Omega portfolios (GA-Ro-
Omega, Gro-Ro-Omega, Msk-Ro-Omega) are constructed
in the second stage. Computational results support the
efficiency of the proposed models, which also demonstrate
the effectiveness of GA. Even though the suboptimal
solutions provided by some heuristic algorithms are not
quite exact, they can still play a crucial role in elevating
the out-of-sample portfolio performance.

As demonstrated in the existing studies, the standard
formulation of the Omega ratio optimization portfolio
tends to be idealistic in the circumstance of lacking precise
return distribution information, especially the estimation
error would do harm to the efficiency and effectiveness of
the portfolio model. Although the robust variant consider-
ing different types of uncertainty is beneficial to construct-
ing realistic portfolio models, the ensuing conservatism
becomes a novel controversial topic. This paper tries to
overcome the inherent conservatism of the robust Omega
portfolio model to some extent by the mean of the random
algorithm, GA. Some other random algorithms such as
particles swarm optimization (PSO), neural network (NN)
are also worthwhile to improve the performance of the
robust Omega portfolio model.

Future work will revolve around developing intelligent
portfolio models, in which more heuristic algorithms,
machine learning models, and deep learning models are in-
volved. In addition, optimizing the existing robust Omega
portfolio model from a theoretical point of view will be
one of the priorities. In this vein, designing and developing
a dynamic framework for the robust Omega portfolio is a
feasible research direction.
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