
Cross-diffusion-driven Instability and Pattern
Formation in a Nonlinear Predator-prey System

Wenbin Yang, Yimamu Maimaiti

Abstract—In this paper, a spatial predator-prey model with
an alternative food sources and cross-diffusion is studied. We
show that the self-diffusion can not induce a Turing Instability
theoretically, but the cross-diffusion can. Moreover, the one-
dimensional morphological spatial pattern is characterized, and
the effects of parameter µ or ρ on pattern formation are
discussed numerically.

Index Terms—reaction-diffusion equations, predator-prey
model, pattern dynamics, cross-diffusion.

I. INTRODUCTION

MANY of the most interesting dynamics in biology are
related to the interactions between species, and the

spatio-temporal dynamics of a predator-prey system has been
investigated by many researchers [1]–[4]. For the predator
population without any alternative source, the general Lotka-
Volterra predator-prey system can be described as follows:{

du
dt = γu(1− u

K )− αuv,
dv
dt = ρuv − βv,

(1)

where u and v are the biomass of the prey and predator at
any time t, respectively; γ is the intrinsic growth rate, k is
the environmental carrying capacity of the prey species, α
is the predation rate, ρ(< 1) is called the conversion rate of
prey to predator biomass, and β is the natural death rate of
the predator.

Ghosh and Kar [5] have considered a predator-prey ODE
model having some alternative source to predator, as follows:{

du
dt = γu(1− u

K )− αuv,
dv
dt = µv(1− u

K ) + ρuv − βv,
(2)

where µ is the maximum growth rate due to alternative
source for food. The term (1 − u/K) adds a density-
dependent effect to the focal prey, and it is observed that
as the focal prey population u increases, the predator uses
less amount of alternative source and the consumption of
alternative source tends to zero when u approaches K. [5]
showed that alternative source of food to the predator hurts
the growth of the prey species.

Recently, much attention has been focused on the Turing
instability of the predator-prey model by taking into account
the effect of cross-diffusion [6], [7]. Cross-diffusion, the
phenomenon in which a gradient in the concentration of one
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species induces a flux of another chemical species, has gener-
ally been neglected in the study of reaction-diffusion systems
[8]–[14]. Now, we consider the Lotka-Volterra predator-prey
model (2) with cross-diffusion and an alternative source of
food for the predator:{

∂u
∂t = d11

∂2u
∂x2 + γu(1− u

K )− αuv,
∂v
∂t = d21

∂2u
∂x2 + d22

∂2v
∂x2 + µv(1− u

K ) + ρuv − βv,
(3)

where x ∈ (0, l), d11 and d22 are diffusion coefficients
of the prey and predator population, d21 is cross-diffusion
coefficient of the predator population, and l > 0 is a positive
constant.

The paper is organized as follows. In section II, we will
derive the sufficient conditions of the asymptotic stability
and Turing Instability of our proposed models. The one-
dimensional morphological spatial pattern will be character-
ized, and the effects of parameter µ or ρ on pattern formation
will be discussed in section III.

II. MATHEMATICAL ANALYSIS

In this section, we will consider the asymptotic stability
and Turing instability of our proposed models. First, it
is obvious that system (1) has the following nonnegative
constant solutions:

1) e1 = (0, 0);
2) e2 = (K, 0);
3) e2 = (u∗, v∗) = (βρ ,

γ(ρK−β)
αβk ), if ρK > β.

Accordingly, system (2), and thus system (3) has the follow-
ing nonnegative constant solutions:

1) U1 = (0, 0);
2) U2 = (K, 0);
3) U3 = (0, c), where c is an arbitrary positive constant,

if µ 6= β;
4) U4 = (u∗, v∗), where

u∗ ≡ u(µ) = K(
β − µ
ρK − µ

),

v∗ ≡ v(µ) = (
γ

α
)(
ρK − β
ρK − µ

),

if either µ > β > ρK or µ < β < ρK holds.

Theorem 1. i) For system (1):
• e1 is a unstable saddle point.
• If β > ρK (β < ρK), then e2 is a asymptotically stable

node (a unstable saddle point).
• Assume the ρK > β. If β2γ

ρ2K > 4(ρK−β), then e3 is a

asymptotically stable node; if β2γ
ρ2K < 4(ρK − β), then

e3 is a asymptotically stable spiral point.
ii) For system (2):
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• If µ > β (µ < β), then U1 is a unstable node (a unstable
saddle point).

• If β > ρK (β < ρK), then U2 is a asymptotically stable
node (a unstable saddle point).

• If γ < αc and µ < β (γ > αc and µ > β), then U3 is a
asymptotically stable node (unstable); if (γ − αc)(µ−
β) < 0, then U3 is a unstable saddle point.

• If µ > β > ρK, then U4 is unstable. Therefore,
variation of the growth rate µ due to alternative source
never stabilizes the system (2). If µ < β < ρK, U4 is
stable.

iii) For system (3):
• If µ < β < ρK and d21 = 0, then U4 is still stable.
• If µ < β < ρK, then a necessary condition for

the emergence of cross-diffusion instability is d21 ≥
(2a11−1)−

√
1+8(2Det(J)+

√
Det(J))

2a12
.

The results show that, self-diffusion can not induce Turing
instability, but cross-diffusion may lead to Turing instability.

Proof: We only consider cases ii) and iii), since a similar
proof of case i) can be made in more straightforward way.

ii) For system (2), the Jacobian matrix at some a equilib-
rium is

J(U) =

(
γ(1− 2u

K )− αv −αu
v(ρ− µ

K ) µ(1− u
K ) + ρu− β

)
. (4)

At the equilibria U1, U2 and U3, the corresponding Jacobian
matrix can be respectively, calculated as

J(U1) =

(
γ 0
0 µ− β

)
, J(U2) =

(
−γ −αK
0 ρK − β

)
,

J(U3) =

(
γ − αc 0
c(ρ− µ

K ) µ− β

)
.

By the linear stability theory, we obtain that
• If µ > β, then U1 is a unstable node; if µ < β, then
U1 is a unstable saddle point.

• If β > ρK, then U2 is a asymptotically stable node; if
β < ρK, then U2 is a unstable saddle point.

• If γ < αc and µ < β, then U3 is a asymptotically
stable node; if γ > αc and µ > β, then U3 is unstable;
If (γ − αc)(µ − β) < 0, then U3 is a unstable saddle
point.

At the equilibrium U4, the Jacobian matrix is

J ≡ J(U4) =

(
−γu

∗

K −αu∗
v∗(ρ− µ

K ) 0

)
=

(
a11 a12

a21 a22

)
,

since γ(1− 2u
K )− αρ = [γ(1− u

K )− αρ]− γu
K = −γuK and

µ(1− u
K ) + ρu− β = 0 at the equilibrium U4.

If ρK > µ, then

a11 < 0, a12 < 0, a21 > 0, a22 = 0.

Now the first principle diagonal minor is −γuK < 0, the
second principle diagonal minor is

Det

(
−γu

∗

K −αu∗
v∗(ρ− µ

K ) 0

)
= αu∗v∗(ρ− µ

K
).

The second principle diagonal minor would be positive if and
only if ρK > µ. Hence both the eigenvalues of the Jacobian
matrix have negative real part. Now we can demand that the
system is stable if ρK > µ, and unstable if ρK < µ.

iii) Let us define

D =

(
d11 d12

d21 d22

)
where d12 = 0 and

Mk ≡ J − k2D =

(
−k2d11 + a11 −k2d12 + a12

−k2d21 + a21 −k2d22 + a22

)
,

where k = 0, 1, 2, · · · . Then

λI −Mk =

(
λ+ k2d11 − a11 k2d12 − a12

k2d21 − a21 λ+ k2d22 − a22

)
,

where k = 0, 1, 2, · · · . By some calculations, we obtain

Trace(Mk) = Trace(J)− k2(d11 + d22),

Det(Mk) = k4(d11d22 − d12d21) + k2(−d22a11 + d21a12

+d12a21 − d11a22) +Det(J),

and

Det(λI −Mk) = λ2 + [k2(d11 + d22)− (a11 + a22)]λ

+ (k2d11 − a11)(k2d22 − a22)

− (k2d21 − a21)(k2d12 − a12).

Since Trace(J) < 0, Trace(Mk) < 0 is always true
since d11 > 0, d22 > 0. Hence if Mk has an eigenvalue with
positive real part, then it must be a real value one and the
other eigenvalue must be a negative real one. A necessary
condition is

H ≡ −d22a11 + d21a12 + d12a21 − d11a22 < 0,

if Det(D) > 0 and Det(J) > 0.
Notice that Det(Mk) achieves its minimum

min
k∈R+

Det(Mk) = − H2

4(d11d22 − d12d21)
+Det(J)

at the critical value k∗ > 0 where

k2
∗ = − H

2(d11d22 − d12d21)
.

Since

d12 = 0, a11 < 0, a12 < 0, a21 > 0, a22 = 0,

the necessary condition for cross-diffusion driven instability
of (u∗, v∗) is given by

min
k∈R+

Det(Mk) = − H2

4(d11d22 − d12d21)
+Det(J) < 0,

(5)
and

k2
∗ = − H

2(d11d22 − d12d21)
> 0. (6)

By simple calculations,

(5)⇒ −d22a11 + d21a12 < 0

⇒ d22
γu∗
k
− d21αu∗ < 0⇒ d21 >

γd22

kα
,
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(6)⇒ − (−d22a11 + d21a12)2

4d11d22
+Det(J) < 0

⇒ −
(d22

γu∗
k − d21αu∗)

2

4d11d22
+ αu∗v∗(ρ−

µ

k
) < 0

⇒ αv∗(ρ−
µ

k
) >

(d22
γ
k − d21α)2u∗

4d11d22

⇒ 4αkd11d22
(ρk − µ)v∗

u∗
> (γd22 − αkd21)2

⇒

√
4αkd11d22

(ρk − µ)v∗
u∗

> αkd21 − γd22

⇒ d21 <

√
4d11d22

(ρk − µ)v∗
αku∗

+
γd22

αk
.

To sum up, we have

γd22

αk
< d21 <

√
4d11d22

(ρk − µ)v∗
αku∗

+
γd22

αk
.

By the necessary conditions for instability above, let (k−)2

and (k+)2 be the two roots of Det(Mk). They can be
calculated as

(k±)2 =
d22a11 − d21a12 ± Λ1

2d11d22
, (7)

where Λ1 =
√

(d22a11 − d21a12)2 − 4d11d22Det(J). From
(6), we deduce that

0 < (k−)
2
< (k+)

2
.

Thus, in order to get the instability of (u∗, v∗), we must
have (k−)

2
< k2 < (k+)

2 for some positive integer k, and
a necessary condition is k+ − k− ≥ 1, which results in

2[(d22a11 − d21a12)2 − 4d11d22Det(J)]
≥ 2d11d22 ∗ (d22a11 − d21a12 +

√
Λ2)

= 2d11d22 ∗ (d22a11 − d21a12 + 2
√
d11d22Det(J)),

where Λ2 = (d22a11 − d21a12)2 − [(d22a11 − d21a12)2 −
4d11d22Det(J)]. Let d11 = d22 = 1. Then 2[(a11 −
d21a12)2 − 4Det(J)] ≥ 2(a11 − d21a12 + 2

√
Det(J)), and

we have

(a11 − d21a12)2 − 4Det(J)

≥ a11 − d21a12 + 2
√
Det(J)

⇔ a2
12 · d2

21 + a12(1− 2a11) · d21

+(a2
11 − a11 − 4Det(J)− 2

√
Det(J)) ≥ 0

⇒ d21 ≥ a12(2a11−1)+
√

Λ3

2a212

⇒ d21 ≥
a12(2a11−1)−a12

√
1+8(2Det(J)+

√
Det(J))

2a212

⇒ d21 ≥
(2a11−1)−

√
1+8(2Det(J)+

√
Det(J))

2a12
,

where Λ3 = a2
12(1− 2a11)2 − 4a2

12(a2
11 − a11 − 4Det(J)−

2
√
Det(J)). This concludes the proof of the theorem.

III. NUMERICAL SIMULATION

In this section, we using numerical simulations methods
illustrate to verify our theoretical findings. To illustrate the
results given by Theorem 2.1, we choose parameters K = 2,
γ = 1, α = 1 and ρ = 1.

We plot the phase portraits of system (1) for different β
in Fig.1. The equilibrium point e1 is unstable saddle point
and the equilibrium e2 is a asymptotically stable node when

β = 2.5 (see Fig.1(a)). The equilibrium e3 is a asymptotically
stable node and e1, e2 are unstable saddle points when β =
1.5 (see Fig.1(b)). The equilibrium e3 is a asymptotically
stable spiral point and e1, e2 are unstable saddle points when
β = 1.5 (see Fig.1(c)).
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Fig. 1. The phase portraits of system (1) with fixed K = 2, γ = 1,
α = 1 and ρ = 1. ei (i = 1, 2, 3) represents the constant equilibrium. (a):
β = 2.5; (b): β = 1.5; (c): β = 1.8.

In Fig.2, we plot the phase portraits of system (2). The
equilibrium point U1 is unstable node when µ > β (see
Fig.2(a, c)) or unstable saddle point when µ < β (see
Fig.2 (b, d)). The equilibrium U2 is a asymptotically stable
node when β > 2 (see Fig.2(a, d)) and unstable saddle
point when β < 2 (see Fig.2(b, c)). Black and green
rectangular line represent equilibrium U3 = (0, c) (where
c is an arbitrary positive constant) and asymptotically stable
node when c > 1, β > µ (see Fig. 2(b, d) black rectangular
line) and unstable when c < 1, β < µ (see Fig. 2(a, c)
green rectangular line). The equilibrium U4 is unstable when
µ > β > 2 (see Fig.2(a)) and stable when 2 > β > µ (see
Fig.2 (b)), the positive equilibrium U4 does not exist when
2 > µ > β and β > µ > 2 (see Fig.2(c, d)).

Here, we use parameters as γ = 1,K = 2, α = 1, µ =
0.5, ρ = 1, β = 1.5, d11 = 1 and d22 = 1. By Theorem 2.1,
we have dc21 = 1.366. According to Theorem 2.1 there exists
an unbounded region d21 > dc21 in which Turing instability
occurs. Taking cross-diffusion coefficient d21 = 1.066, a
value less than the critical diffusion coefficient dc21, we
observe that Re(λ) < 0 and Det(Mk) > 0 (red curve in
Fig.3) for all k. If we take d21 = 1.866, a value that is greater
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Fig. 2. The phase portraits of system (2) with fixed K = 2, γ = 1, α = 1
and ρ = 1. Ui (i = 1, 2, 4) represents the constant equilibrium. (a): β = 3,
µ = 4; (b): β = 1.5, µ = 1; (c): β = 1, µ = 1.5; (c): β = 4, µ = 3.

than the critical diffusion coefficient dc21, then Re(λ) > 0
and Det(Mk) < 0 (blue curve and red point in Fig.3) for
k = 1. If we take d21 = 2.366, a value that is greater than
the critical diffusion coefficient dc21, then Re(λ) > 0 and
Det(Mk) < 0 (magenta curve and blue point in Fig.3) for
k = 1, 2. Fig.3 implies that Re(λ) < 0 and Det(Mk) > 0 for
all k (green curve in Fig.3) when d21 > dc21 and Re(λ) > 0
and Det(Mk) < 0 for some k when d21 > dc21.

We consider the effect of µ on system (3). For the
fixed other parameters, the system (3) admits patterns when
d21(µ) > dc21(µ) (see red curve in Fig.4(a)), and stable when
d21(µ) < dc21(µ) , where dc21(µ) is given by Theorem 2.1.
Let γ = 1,K = 2, α = 1, ρ = 1, β = 1.5, d11 = 1 and
d22 = 1. It is easy to check that the system (3) has positive
equilibriums for all µ. From Fig.4(a), we can see pattern
formation in green region and homogenous state exists in
region yellow. Next, we fix parameters γ = 1,K = 2, α =
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Fig. 3. Plots of Det(M(k)) and Re(λ) with fixed reaction parameter
values γ = 1,K = 2, α = 1, µ = 0.5, ρ = 1, β = 1.5, d11 = 1 and
d22 = 1.

1, µ = 0.5, β = 1.5, d11 = 1 and d22 = 1, and consider
the effect of ρ on system (3). According to the Fig 4(b),
it is easy to deduce that positive equilibrium exist when
ρ > 1 and does not exist when ρ < 1. The system (3)
admits patterns when d21(ρ) > dc21(ρ) (see red curve in Fig
.4(b)), and stable when d21(ρ) < dc21(ρ) , where dc21(ρ) is
given by Theorem 2.1. We consider the effect of ρ on system
(3). To be more precise, pattern formation occurs in black
solid lines and does not emerge in black dashed lines when
d21 = 0.3, 1.366, 2.366.
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Fig. 4. The effects of parameter µ or ρ on pattern formation for the model
(3). (a): The parameter µ is vary and other parameters: γ = 1,K = 2, α =
1, ρ = 1, β = 1.5, d11 = 1 and d22 = 1; (b): The parameter ρ is vary and
other parameters: γ = 1,K = 2, α = 1, µ = 0.5, β = 1.5, d11 = 1 and
d22 = 1.

To investigate the impact of cross-diffusion on Turing
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pattern, we fixed γ = 1,K = 2, α = 1, µ = 0.5, ρ = 1, β =
1.5, d11 = 1 and d22 = 1 in system 3, which means the
equilibrium U4 of the corresponding kinetic and diffusion
systems is asymptotically stable (see Fig.5(a,b)). We illus-
trate the change in the pattern form as d21 = 0, 1.066, 1.866
and 2.366. By Fig.6(a,b), when the cross-diffusion rate
d21 = 0, 1.066, the equilibrium U4 is stable, which is
did not occurs Turing instability. When cross-diffusion rate
d21 = 1.866 and d21 = 2.366, the equilibrium U4 is unstable
(Fig.6(c-f)), which occurs Turing pattern state. It is easy to
see that small values of the time t, the system resides in a
stable homogeneously state (Fig.6(c)). As time increases to a
value great, the homogeneous state becomes Turing unstable
(Fig.6(c-f)). In Fig.6, we observe that the system (3) may
generates pattern formation for large diffusivity d21.
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Fig. 5. Numerical solutions of the system (3) for d21 = 0 in the region
0 ≤ x ≤ 10, and initial data U4, γ = 1,K = 2, α = 1, µ = 0.5, ρ =
1, β = 1, d11 = 1 and d22 = 1.
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Fig. 6. One dimensional numerical solutions of the system (1.3) for
different d21 in the region 0 ≤ x ≤ 10, and initial data U4, the green
curve for u and the red curve is v. The parameter d21 is vary and other
parameter: γ = 1,K = 2, α = 1, µ = 0.5, ρ = 1, β = 1.5, d11 = 1
and d22 = 1. (a): d21 = 0; (b): d21 = 1.066; (c,d,e): d21 = 1.866; (f):
d21 = 2.866.
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