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Abstract—The characterizations of all graphs of order n with
partition dimension 2, n − 2, n − 1 or n have been completely
studied. Recently, all graphs of order n ≥ 11 and diameter
two with partition dimension n−3 have been characterized. In
this paper, we continue characterizing all graphs on n vertices
with partition dimension n−3 and diameter either 3 or 4. This
completes the characterization of all graphs of order n ≥ 11
with partition dimension n− 3.

Index Terms—partition dimension, graph, characterization,
diameter.

I. INTRODUCTION

LET G(V,E) be a connected graph, u, v ∈ V (G) and
S ⊂ V (G). The distance between vertices u and v,

denoted by d(u, v), is the number of edges in a shortest
path connecting u and v in G. The distance of u and
S, denoted by d(u, S), is min{d(u, x) : x ∈ S}. The
eccentricity of u is defined as ecc(u) = max{d(u, v) :
v ∈ V (G)}. The diameter of G, denoted by diam(G),
is the maximum eccentricity of the vertices in G, namely
diam(G) = max{ecc(u) : u ∈ V (G)}. Furthermore, if
ecc(u) = diam(G), then u is called a peripheral vertex of
G.

Let Π = {S1, S2, . . . , Sk} be a partition of a connected
graph G. For any u ∈ V (G), the representation r(u|Π)
of u with respect to Π is the k-vector (d(u, S1), d(u, S2),
. . . , d(u, Sk)). Such partition Π is called a resolving partition
of G if r(u|Π) 6= r(v|Π) for any two vertices u, v ∈ V (G).
The cardinality of a minimum resolving partition of G is
called the partition dimension of G and it is denoted by
pd(G).

The study of the partition dimension of a connected graph
was initiated by Chartrand et al. [5]. They characterized all
connected graphs G of order n with pd(G) ∈ {2, n− 1, n}.
They showed that pd(G) = 2 if and only if G = Pn and
pd(G) = n if and only if G = Kn. Furthermore, they showed
that pd(G) = n − 1 if and only if G is one of the graphs
K1,n−1, Kn − e or K1 + (K1 ∪Kn−2), with e is an edge.
In [18] Tomescu proved that there are only 23 connected
graphs of order n ≥ 9 with partition dimension n−2. These
graphs are K2,n−2, K2 +Kn−2, Kn−E(P3), Kn−E(K3),
Kn − E(P4), K1 + (K1 ∪ (Kn−2 − e)), Kn − E(C4),
K1,n−1 + e, Kn−E(2K2), K2,n−2− e, Kn−E(K1,3 + e),
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G1, G2, . . . , G12, where e is an edge. However, Baskoro
and Haryeni [3] revised this characterization. They showed
that two of these above graphs, namely K1,n−1 + e and
Kn − E(K1,3 + e), have partition dimension n − 3 (not
n−2). Two other graphs, namely G3 and G5 are isomorphic
to two graphs in [3] namely H12 and (K1 ∪K2) + Kn−3,
respectively. Furthermore, the graph G4 is isomorphic to G6.
The characterization of Tomescu also missed one graph F
constructed from Kn−1− e by adding one new vertex x and
connecting x with vertex a, where a is one of the end-vertices
of e [3]. In addition, in this paper we show that G11 and
K2,n−2−e in [18] have partition dimension n−3 (not n−2),
where G11

∼= F30 and K2,n−2 − e ∼= (2K1 + Kn−2) − e.
This concludes that there are only 17 non-isomorphic graphs
of order n ≥ 9 with partition dimension n− 2.

Further results on the partition dimension of graphs ob-
tained from unary or binary graphical operations can be seen
in [1], [9], [16], [20]. The bounds of the partition dimensions
of certain graphs have been studied in [2], [6], [12]–[15],
[19]. The study on the partition dimension has been extended
so that it can also be applied to disconnected graphs, see
[7], [8], [10]. The applications of the concept of resolving
partition of graphs can be seen in [11], [17] and [12].

For any connected graph G of order n, we have pd(G) ≤
n − diam(G) + 1 [5]. This implies that if pd(G) = n − 3,
then diam(G) ∈ {2, 3, 4}. The characterization of graphs of
order n ≥ 11 with pd(G) = n − 3 has been completed for
diam(G) = 2 [3]. There are 114 non-isomorphic such graphs
G on n ≥ 11 vertices with pd(G) = n − 3 and diameter 2.
In this paper, we characterize all graphs G of order n ≥ 11
and diam(G) ∈ {3, 4} with pd(G) = n − 3. We show that
there are 46 non-isomorphic such graphs, 41 of them with
diameter 3 and the remaining 5 such graphs with diameter
4.

II. MAIN RESULTS

In the following result, Chartrand et al. [5] showed that
any two vertices of G having the same distance to all other
vertices belong to distinct elements of a resolving partition
of G.

Lemma 2.1: [5] Let Π be a resolving partition of G and
u, v ∈ V (G). If d(u, x) = d(v, x) any x ∈ V (G) \ {u, v},
then u and v belong to distinct elements of Π.

Baskoro and Haryeni [3] generated some conditions of
graphs so that forming certain graphs, as follows.

Lemma 2.2: [3] For n ≥ 8, let G be a graph on n vertices.
If G does not contain the following three configurations:
(C1) five vertices a, t1, t2, t3 and t4 forming at1, at2 ∈

E(G) and at3, at4 6∈ E(G), as depicted in Figure 1(a),
(C2) six vertices a, b, t1, t2, t3 and t4 forming at1, bt3 ∈

E(G) and at2, bt4 6∈ E(G), as depicted in Figure 1(b),
and

(C3) four vertices t1, t2, t3 and t4 forming t1t2 ∈ E(G) and
t1t4, t2t3, t3t4 6∈ E(G), as depicted in Figure 1(c),
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then G is isomorphic to either Kn, Kn, K1,n−1, Kn−1∪K1,
Kn − E(K1,n−2), or Kn − e for an edge e ∈ E(Kn).

Fig. 1. (a) Configuration C1, (b) Configuration C2, and (c) Configuration
C3

In the following theorem, we prove that there are 46 non-
isomorphic graphs G of order n ≥ 11, diam(G) ∈ {3, 4} and
pd(G) = n − 3. In particular, there are 41 non-isomorphic
graphs of pd(G) = n − 3 with diam(G) = 3, namely
(2K1 + Kn−2) − e, F1, F2, . . . , F40, and 5 non-isomorphic
such graphs with diam(G) = 4, namely H1, H2, . . . ,H5.
Note that the graphs F1, F2, · · · , F40 and H1, H2, · · · , H5

are presented in Appendix A.
Theorem 2.3: Let G be a connected graph of order n ≥ 11

and diam(G) ∈ {3, 4}. Then, pd(G) = n− 3 if and only if
G is one of the graphs (2K1 +Kn−2)− e, F1, F2, . . . , F40,
H1, H2, H3, H4 or H5.

Proof: It is easy to verify that the graphs
(2K1 + Kn−2) − e, Fi and Hj for each i and j have
partition dimension n − 3. Now, we will show for the
reverse direction. Let G be a connected graph of order
n ≥ 11 where pd(G) = n− 3 and diam(G) ∈ {3, 4}. Let x
be a peripheral vertex of G with ecc(x) ∈ {3, 4}. Denote
Ni(x) as the set of all vertices of G at distance i from x
and let ni = |Ni(x)|, for any i ∈ [1, diam(G)] . We divide
into two cases based on the diameter of G.

(A) diam(G) = 3.
Let x be a peripheral vertex of G with ecc(x) = 3. Let

N1(x) = {uj : 1 ≤ j ≤ n1}, N2(x) = {vj : 1 ≤ j ≤ n2},
and N3(x) = {wj : 1 ≤ j ≤ n3}. If each of {n1, n2, n3} is
at least 2, then (x)(u1, v1, w1)(u2, v2, w2)π is a resolving
partition of G having (n − 4) classes, where π is a
singleton partition consisting of a single vertex, which
contradicts the hypothesis. Therefore, there are at most
two of {n1, n2, n3} greater than or equal 2. However, only
one of {n1, n2, n3} is greater than 2. Since otherwise,
without loss of generality suppose that n1, n2 ≥ 3. Then
one deduces that (x)(u1, v1, w1)(u2, v2)(u3, v3)π, where
π is a singleton partition, is also an (n − 4)-resolving
partition of G, a contradiction. Therefore, based on the
values of (n1, n2, n3) we have the following 9 subcases:
(A1) (1, 1, n − 3), (A2) (1, n − 3, 1), (A3) (n − 3, 1, 1),
(A4) (1, 2, n − 4), (A5) (1, n − 4, 2), (A6) (2, 1, n − 4),
(A7) (2, n− 4, 1), (A8) (n− 4, 1, 2), and (A9) (n− 4, 2, 1).

(A1) (1, 1, n− 3).
Assume that N3(x) contains one of the configurations (C1),
(C2) or (C3) in Lemma 2.2 such that

(C1) w1w3, w1w4 ∈ E(G) and w1w5, w1w6 6∈ E(G), or
(C2) w1w3, w2w4 ∈ E(G) and w1w5, w2w6 6∈ E(G), or
(C3) w3w4 ∈ E(G) and w3w6, w4w5, w5w6 6∈ E(G),

then one deduces that (x)(w1)(w2)(u1, v1, w7)(w3, w5)
(w4, w6)π, where π is a singleton partition of the remaining
vertices, is a resolving partition of G having n − 4
classes, a contradiction. It follows that N3(x) induces

one of {Kn−3,Kn−3,K1,n−4,Kn−4 ∪ K1,Kn−3 −
E(K1,n−5),Kn−3 − e} by Lemma 2.2. If N3(x) induces
Kn−3, then the resulting graph is G ∼= F30 as depicted
in Figure 2(a). If N3(x) induces Kn−3, then G ∼= G10.
However pd(G10) = n − 2 by [18]. Now suppose that
N3(x) induces K1,n−4. Let w1 be the center of K1,n−4.
However, the partition (x,w2)(u1, w3)(v1, w4)(w1, w5)π,
where π is a singleton partition, is an (n − 4)-resolving
partition of G, which contradicts the hypothesis. Suppose
that N3(x) induces Kn−3 − E(K1,n−5) with the edge set
{wiwj : 1 ≤ i < j ≤ n − 3} \ {w2wi : 3 ≤ i ≤ n − 3}.
However, (w2)(w1, w3)(x, u1, v1, w4)π, where π is a
singleton partition, is an (n − 4)-resolving partition of
G, a contradiction. Finally assume that N3(x) induces
Kn−4 ∪K1 or Kn−3− e. The first case yields that G ∼= F32

and the second case yields that G ∼= F15 (Figures 2(b) and
2(c)).

Fig. 2. Graphs (a) F30, (b) F32, and (c) F15

(A2) (1, n− 3, 1).
By a similar reason to Subcase (A1), if N2(x) contains

one of the configurations (C1), (C2) or (C3) such that
(C1) v1v3, v1v4 ∈ E(G) and v1v5, v1v6 6∈ E(G), or
(C2) v1v3, v2v4 ∈ E(G) and v1v5, v2v6 6∈ E(G), or
(C3) v3v4 ∈ E(G) and v3v6, v4v5, v5v6 6∈ E(G),

then one deduces that (x)(v1)(v2)(u1, v7, w1)(v3, v5)
(v4, v6)π, where π is a singleton partition, is an (n − 4)-
resolving partition of G, a contradiction. Therefore by
Lemma 2.2, N2(x) induces one of graphs (A2.1) Kn−3,
(A2.2) Kn−3, (A2.3) K1,n−4, (A2.4) Kn−4 ∪ K1, (A2.5)
Kn−3 − E(K1,n−5), or (A2.6) Kn−3 − e.

(A2.1) N2(x) induces Kn−3. If v1w1, v2w1, v3w1 ∈ E(G)
and v4w1, v5w1 6∈ E(G), then (w1)(x, u1, v1)(v2, v4)
(v3, v5)π is an (n − 4)-resolving partition of G, a
contradiction. Therefore, the number of neighbors of w1 in
N2(x), denoted by d(w1), is either 1, 2, n− 4 or n− 3.

If d(w1) = n− 4 where v1w1 6∈ E(G), then one deduces
that (v1, v2)(x, v3)(u1, v4)(w1, v5)π is an (n− 4)-resolving
partition of G, a contradiction. Otherwise, G ∼= F30 if
d(w1) = 1, or G ∼= F31 if dN2(x)(w1) = 2, or G ∼= (2K1+
Kn−2)−e if d(w1) = n−3, as depicted in Figures 3(a)-3(c).

(A2.2) N2(x) induces Kn−3. By a similar reason to
subcase (A2.1), the number of neighbors of w1 in N2(x)
is either 1, 2, n − 4 or n − 3, since otherwise we have
an (n − 4)-resolving partition of G. However, G ∼= G12

if d(w1) = 1 and G ∼= F if d(w1) = n − 3. In this
case pd(G12) = n − 2 [18] and pd(F ) = n − 2 [3], a
contradiction. Hence the resulting graph is G ∼= F14 if
d(w1) = 2 or G ∼= F1 if dN2(x)(w1) = n − 4, as depicted
in Figures 3(d) or 3(e), respectively.
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Fig. 3. Graphs (a) F30, (b) F31, (c) (2K1 +Kn−2)− e, (d) F14 and (e)
F1.

(A2.3) N2(x) induces K1,n−4. Let v1 be the center
of K1,n−4. We consider the neighbors of w1 in
N2(x). If dN2(x)(w1) = 1, then one deduces that
(x, v2)(u1, v3)(v1, v4)(w1, v5)π is an (n − 4)–resolving
partition of G. If 2 ≤ dN2(x)(w1) ≤ n − 3, then one
can deduces that (x, v2)(u1, v3)(v1, v4)(w1, v5)π, where
w1vk ∈ E(G) and vk is element of a singleton partition, is
an (n− 4)– resolving partition of G, a contradiction.
(A2.4) N2(x) induces Kn−4 ∪ K1. Let v1 be an isolated
vertex of Kn−4 ∪K1. We consider the neighbors of w1 in
N2(x) \ {v1}. If w1v2, w1v3 ∈ E(G) and w1v4 6∈ E(G),
then (w1)(x, u1, v2)(v3, v4)(v1, v5)π is an (n− 4)-resolving
partition of G, a contradiction. Therefore, the number of
neighbors of w1 in N2(x) \ {v1} is either 0, 1 or n− 4.

If w1vi 6∈ E(G) for all i ≥ 2, then w1v1 ∈ E(G)
and one deduces G ∼= F32, as depicted in Figure 4(a). If
w1v2 ∈ E(G) and w1vi 6∈ E(G) for all other i ≥ 3, then we
have two cases. First, if w1v1 ∈ E(G) then it follows that
(x,w1)(v2, v3)(u1, v1, v4)π is an (n− 4)-resolving partition
of G, a contradiction. Second, if v1w1 6∈ E(G) one deduces
G ∼= F36, as depicted in Figure 4(b). Now, let w1vi ∈ E(G)
for all i ≥ 2, and one deduces G ∼= F16 if w1v1 6∈ E(G) or
G ∼= F19 if w1v1 ∈ E(G), as depicted in Figures 4(c) or
4(d), respectively.

Fig. 4. Graphs (a) F32, (b) F36, (c) F16, and (d) F19.

(A2.5) N2(x) induces Kn−3 − E(K1,n−5). Assume the
edge set of Kn−3 − E(K1,n−5) is {vivj : 1 ≤ i <
j ≤ n − 3} \ {v2vi : 3 ≤ i ≤ n − 3}. We consider the
neighbors of w1 in N2(x) \ {v1, v2}. If w1v3 ∈ E(G) and
w1v4 6∈ E(G), then (v2)(w1)(v3, v4)(x, u1, v5)(v1, v6)π
is an (n − 4)-resolving partition of G, a contradiction. In
addition, if w1vi 6∈ E(G) for all i ≥ 3 or w1v2 ∈ E(G),
then (v2)(x, u1, v3)(v1, v4)(w1, v5)π is an (n − 4)-

resolving partition of G, a contradiction. This implies that
w1vi ∈ E(G) for all i ≥ 3 and w1v2 6∈ E(G). This
case produces G ∼= F29 if w1v1 6∈ E(G) or G ∼= F20

if w1v1 ∈ E(G), as depicted in Figures 5(a) or 5(b),
respectively.

(A2.6) N2(x) induces Kn−3 − e. Let e = v1v2. If
w1v3, w1v4 ∈ E(G) and w1v5 6∈ E(G), then (w1)(v1)
(x, u1, v3)(v4, v5)(v2, v6)π is an (n− 4)-resolving partition
of G, a contradiction. This implies that the number of
neighbors of w1 in N2(x) \ {v1, v2} is 0, 1 or n− 5.

If w1vi 6∈ E(G) for all i ≥ 3, then one deduces G ∼=
F17 if w1v1 ∈ E(G) and w1v2 6∈ E(G), or G ∼= F21 if
w1v1, w1v2 ∈ E(G), as depicted in Figures 5(c) or 5(d),
respectively.

If w1v3 ∈ E(G) and w1vi 6∈ E(G) for all other i ≥ 4,
then w1vi 6∈ E(G) for at least one of i ∈ {1, 2}, since
otherwise (w1)(x, u1, v3)(v1, v4)(v2, v5)π is an (n − 4)-
resolving partition of G, a contradiction. In this case one
deduces G ∼= F18 if w1v1, w1v2 6∈ E(G), and otherwise
G ∼= F22, see Figures 5(e) and 5(f).

Now assume that w1vi ∈ E(G) for all i ≥ 3. It follows
that w1vi ∈ E(G) for at least one of i ∈ {1, 2}, since
otherwise (w1)(x, u1, v3)(v1, v4)(v2, v5)π is an (n − 4)-
resolving partition of G, a contradiction. One deduces
G ∼= F4 if w1v1 ∈ E(G) and w1v2 6∈ E(G), or G ∼= F8 if
w1v1, w1v2 ∈ E(G), as depicted in Figures 5(g) or 5(h),
respectively.

Fig. 5. Graphs (a) F29, (b) F20, (c) F17, (d) F21, (e) F18, (f) F22, (g)
F4, and (h) F8.

(A3) (n− 3, 1, 1).
By a similar reason to Subcase (A1), if that N1(x) contains
one of the configurations (C1), (C2) or (C3) in Lemma 2.2.
Without loss of generality, we may assume:

(C1) u1u3, u1u4 ∈ E(G) and u1u5, u1u6 6∈ E(G), or
(C2) u1u3, u2u4 ∈ E(G) and u1u5, u2u6 6∈ E(G), or
(C3) u3u4 ∈ E(G) and u3u6, u4u5, u5u6 6∈ E(G).

Then one deduces that (x)(u1)(u2)(u7, v1, w1)(u3, u5)(u4, u6)π
is an (n − 4)-resolving partition of G, a contradiction. It
follows that N1(x) induces one of graphs (A3.1) Kn−3,
(A3.2) Kn−3, (A3.3) K1,n−4, (A3.4) Kn−4 ∪ K1, (A3.5)
Kn−3 − E(K1,n−5), or (A3.6) Kn−3 − e, by Lemma 2.2.
(A3.1) If N1(x) induces Kn−3, then v1 is adjacent to
all vertices of N1(x), since otherwise diam(G) = 4. One
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deduces G ∼= (2K1 +Kn−2)− e, as depicted in Figure 6(a).

(A3.2) N1(x) induces Kn−3. By a similar reason to
subcase (A2.1), the number of neighbors of v1 in N1(x),
denoted by dN1(x)(v1), is either 1, 2, n − 4 or n − 3, since
otherwise we have an (n− 4)-resolving partition of G.

If dN1(x)(v1) = 1 or dN1(x)(v1) = n − 3, then G ∼= G10

or G ∼= F , respectively. However, pd(G10) = n−2 [18] and
pd(F ) = n− 2 [3], a contradiction. If dN1(x)(v1) = 2, then
G ∼= F13. Otherwise, dN1(x)(v1) = n − 4 and one deduces
G ∼= F2, see Figures 6(b) and 6(c).

(A3.3) N1(x) induces K1,n−4. Let u1 be the centre
of K1,n−4. Now we consider the neighbors of v1 in
N1(x) \ {u1}. If v1u2 ∈ E(G), then (u2)(x, u3)(u1, u4)
(v1, u5)(w1, u6)π is an (n − 4)-resolving partition of G, a
contradiction. Therefore, v1ui 6∈ E(G) for all i 6= 1 and one
deduces G ∼= F40 with v1u1 ∈ E(G), as depicted in Figure
6(d).

Fig. 6. Graphs (a) (2K1 +Kn−2)− e, (b) F13, (c) F2, and (d) F40.

(A3.4) N1(x) induces Kn−4 ∪ K1. Let u1 be an isolated
vertex of Kn−4 ∪ K1. Note that v1u1 ∈ E(G) and
v1ui ∈ E(G) for at least one i ≥ 2, since otherwise
diam(G) = 4. Now, we consider the neighbors of v1 in
N1(x)\{u1}. If v1u2, v1u3 ∈ E(G) and v1u4 6∈ E(G), then
(v1)(x, u2)(u3, u4)(u1, u5)(w1, u6)π is an (n−4)-resolving
partition of G, a contradiction. Therefore, we have two
cases. First, if v1 is only adjacent to exactly one vertex
of Kn−4, namely v1u2 ∈ E(G), then it is follows that
(u1, v1, w1)(u2, u3)(x, u4)π is an (n−4)-resolving partition
of G, a contradiction. Second, if v1 is adjacent to all vertices
of Kn−4 then one deduces G ∼= F19, as in Figure 7(a).

(A3.5) N1(x) induces Kn−3 − E(K1,n−5). Assume
the edge set of Kn−3 − E(K1,n−5) is {uiuj : 1 ≤ i < j ≤
n−3}\{u2ui : 3 ≤ i ≤ n−3}. Note that v1u2 6∈ E(G), since
otherwise (u2)(u1, u3)(x, u4)(u5, v1, w1)π is an (n − 4)-
resolving partition of G, a contradiction. This implies that
v1u1 ∈ E(G), since otherwise diam(G) = 4, a contradiction.
Furthermore, if v1u3 ∈ E(G) and v1u4 6∈ E(G), then
(u2)(v1)(u3, u4)(x, u5)(u1, u6)(w1, u7)π is an (n − 4)-
resolving partition of G, a contradiction. Therefore, we
have two cases. First, if v1ui 6∈ E(G) for all i ≥ 3,
then it is follows that (x, u4)(u1, u3)(u2, v1, w1)π is an
(n− 4)-resolving partition of G, a contradiction. Second, if
v1ui ∈ E(G) for all i ≥ 3, then one deduces G ∼= F23, as
depicted in Figure 7(b).

(A3.6) N1(x) induces Kn−3 − e. Let e = u1u2. By a
similar reason to subcase (A2.6), the number of neighbors
of v1 in N1(x) \ {u1, u2} is either 0, 1 or n− 5.

If v1ui 6∈ E(G) for all i ≥ 3, then v1u1, v1u2 ∈ E(G),
since otherwise diam(G) = 4, a contradiction. This case
yields that G ∼= F24 as depicted in Figure 7(c).

If v1u3 ∈ E(G) and v1ui 6∈ E(G) for all i ≥ 4, then
v1ui 6∈ E(G) for at least one of i ∈ {1, 2}, since otherwise
(v1)(x, u1)(u2, u4)(u3, u5)(w1, u6)π is an (n−4)-resolving
partition of G, a contradiction. This case produces G ∼= F15

if v1u1, v1u2 6∈ E(G), or G ∼= F25 if v1u1 ∈ E(G) and
v1u2 6∈ E(G), as depicted in Figure 7(d) or 7(e), respectively.

Now assume that v1ui ∈ E(G) for all i ≥ 3. It follows
that v1ui ∈ E(G) for at least one of i ∈ {1, 2}, since
otherwise (u1, u3)(u2, u4)(x, u5)(v1, w1)π is an (n − 4)-
resolving partition of G, a contradiction. One deduces
G ∼= F5 if v1u1 ∈ E(G) and v1u2 6∈ E(G), or G ∼= F8

if v1u1, v1u2 ∈ E(G), as depicted in Figure 7(f) or 7(g),
respectively.

Fig. 7. Graphs (a) F19, (b) F23, (c) F24, (d) F15, (e) F25, (f) F5, and
(g) F8

(A4) (1, 2, n− 4).
If there exist three vertices w1, w2, w3 ∈ N3(x) such that
w1w2 ∈ E(G) and w1w3 6∈ E(G), then (x)(w1)(u1, v1, w4)
(w2, w3)(v2, w5)π is an (n − 4)-resolving partition of G,
a contradiction. Therefore, N3(x) induces (A4.1) Kn−4 or
(A4.2) Kn−4.

(A4.1) N3(x) induces Kn−4. In this case, (x,w1)(u1, w2)
(v1, w3)(v2, w4)π is an (n − 4)-resolving partition of G,
a contradiction. Therefore, there exists no graph G with
pd(G) = n− 3 satisfying this condition.

(A4.2) N3(x) induces Kn−4. If v1w1, v1w2 ∈ E(G)
and v1w3, v1w4 6∈ E(G), then (x)(v1)(u1, v2, w5)(w1, w3)
(w2, w4)π is an (n − 4)-resolving partition of G, a contra-
diction. Therefore, the number of neighbors of vi in N3(x)
for any i ∈ {1, 2}, denoted by dN3(x)(vi), is either 0, 1, n−5
or n− 4.

If dN3(x)(v1) = 0, then dN3(x)(v2) = n− 4. This implies
that G ∼= F33 if v1v2 6∈ E(G) or G ∼= F34 if v1v2 ∈ E(G), as
depicted in Figures 8(a) or 8(b). Now let dN3(x)(v1) = 1 with
v1w1 ∈ E(G). If dN3(x)(v2) = n − 5 with v2w1 6∈ E(G),
then (w1)(x,w2)(u1, v1, w3)(v2, w4)π is an (n−4)-resolving
partition of G, a contradiction. If dN3(x)(v2) = n − 4, then
(v1)(w1, w2)(v2, w3)(x,w4)(u1, w5)π or (x, u1, v1)(w1, w2)
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(v2, w3)π is an (n− 4)-resolving partition of G for v1v2 ∈
E(G) or v1v2 6∈ E(G), respectively. However this leads
to a contradiction. Next, let dN3(x)(v1) = n − 5 with
v1w1 6∈ E(G). If dN3(x)(v2) = n − 5 with v2w2 6∈
E(G), then (v1)(v2)(w1, w3)(w2, w4)(x,w5)(u1, w6)π is
an (n − 4)-resolving partition of G, a contradiction. If
dN3(x)(v2) = n − 4, then v1v2 ∈ E(G), since otherwise
(v1)(w1, w2)(v2, w3)(x,w4)(u1, w5)π is an (n−4)-resolving
partition of G, a contradiction. One deduces G ∼= F25, as
depicted in Figure 8(c).

For the remaining case, let dN3(x)(v1) = dN3(x)(v2) =
n − 4. This condition yields G ∼= F24 if v1v2 6∈ E(G) or
G ∼= F13 if v1v2 ∈ E(G), as depicted in Figures 8(d) or
8(e), respectively.

Fig. 8. Graph (a) F33, (b) F34, (c) F25, (d) F24, (e) F13

(A5) (1, n− 4, 2).
By a similar reason to Case (A4), N2(x) also induces one
of (A5.1) Kn−4 or (A5.2) Kn−4.

(A5.1) N2(x) induces Kn−4. If w1v1 ∈ E(G) and
w1v2 6∈ E(G), then (x)(u1, v3)(v4, w2)(v5, w1)(v1, v2)π
is an (n − 4)-resolving partition of G, a contradiction.
Therefore, any vertex of N3(x) is adjacent to all vertices
N2(x). However, (v1)(v2, w2)(v3, w1)(x, u1, v4)π is an
(n − 4)-resolving partition of G, a contradiction. This
implies there exists no graphs satisfying this condition.

(A5.2) N2(x) induces Kn−4. If w1v1, w1v2 ∈ E(G) and
w1v3, w1v4 6∈ E(G), then (x)(w1)(v1, v3)(v2, v4)(u1, v5)
(v6, w2)π is an (n − 4)-resolving partition of G, a
contradiction. Therefore, the number of neighbors of wi in
N2(x) for any i ∈ {1, 2} is either 1, n− 5 or n− 4.

If dN2(x)(w1) = dN2(x)(w2) = 1 and w1 and w2 are
adjacent to the same vertex in N2(x), then G ∼= F36 if
w1w2 6∈ E(G) or G ∼= F37 if w1w2 ∈ E(G), as depicted
in Figure 9(a) or (b). If w1 and w2 are not adjacent to
the same vertex in N2(x), say w1v1, w2v2 ∈ E(G), then
(x, u1, v1)(v2, v3)(w1, w2)π is an (n−4)-resolving partition
of G, a contradiction.

Let dN2(x)(w1) = 1 and w1v1 ∈ E(G). If dN2(x)(w2) =
n − 5 and w.l.o.g. w2v1 6∈ E(G) or w2v2 6∈ E(G), then
(w2)(v1, v2)(u1, v3)(x, v4)(w1, v5)π is an (n− 4)-resolving
partition of G, a contradiction. If dN2(x)(w2) = n− 4, then

one can deduce G ∼= F17 if w1w2 6∈ E(G) or G ∼= F23 if
w1w2 ∈ E(G), as depicted in Figures 9(c) or 9(d)).

Let dN2(x)(w1) = n − 5 and w1v1 6∈ E(G). If
dN2(x)(w2) = n − 5, then w2v1 6∈ E(G), since other-
wise for w2v2 6∈ E(G) we have (w1)(w2)(v1, v3)(v2, v4)
(x, v5)(u1, v6)π is an (n − 4)-resolving partition of G, a
contradiction. Furthermore, w1 must be adjacent to w2,
since otherwise (w1)(v1, v2)(x, v3)(u1, v4)(w2, v5)π is also
an (n − 4)-resolving partition of G, a contradiction. This
condition yields G ∼= F11, as depicted in Figure 9(e). If
dN2(x)(w2) = n− 4 then w1 must be adjacent to w2, since
otherwise (w1)(v1, v2)(x, v3)(u1, v4)(w2, v5)π is an (n−4)-
resolving partition of G, a contradiction. This condition
yields G ∼= F5, as depicted in Figure 9(f).

For the remaining case, let dN2(x)(w1) = dN2(x)(w2) =
n − 4. This case produces G ∼= F9 if w1w2 6∈ E(G) or
G ∼= F2 if w1w2 ∈ E(G), as depicted in Figures 9(g) or
9(h), respectively.

Fig. 9. Graphs (a) F36, (b) F37, (c) F17, (d) F23, (e) F11, (f) F5, (g)
F9, and (h) F2

(A6) (2, 1, n− 4).
By a similar reason to Case (A4), N3(x) also induces
one of (A6.1) Kn−4 or (A6.2) Kn−4, since otherwise we
have an (n − 4)-resolving partition of G, a contradiction.
Note that for these two subcases, v1u1, v1u2 ∈ E(G) or
(one of {v1u1, v1u2} is in E(G) and u1u2 ∈ E(G)), since
otherwise diam(G) = 4.

(A6.1) N3(x) induces Kn−4. If v1u1, v1u2 ∈ E(G),
or one of {v1u1, v1u2} is in E(G) and u1u2 ∈ E(G), then
(x,w1)(u1, w2)(u2, w3)(v1, w4)π is an (n − 4)-resolving
partition of G, a contradiction. Therefore, we conclude that
there exists no graph G satisfying this condition.

(A6.2) N3(x) induces Kn−4. In this case, one deduces
G ∼= F38 if v1u1, u1u2 ∈ E(G) and v1u2 6∈ E(G), or
G ∼= F35 if v1u1, v1u2 ∈ E(G) and u1u2 6∈ E(G), or
G ∼= F39 if v1u1, v1u2, u1u2 ∈ E(G), as depicted in Figure
10.

(A7) (2, n− 4, 1).
By a similar reason to Case (A4), N2(x) induces (A7.1)
Kn−4 or (A7.2) Kn−4.
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Fig. 10. Graphs (a) F38, (b) F35, and (c) F39

(A7.1) N2(x) induces Kn−4. Suppose that w1v1 ∈ E(G).
However, (x, v1)(u1, v2)(u2, v3)(w1, v4)π is an (n − 4)-
resolving partition of G, a contradiction. This concludes
that there exists no graph G satisfying this condition.

(A7.2) N2(x) induces Kn−4. If u1v1, u1v2 ∈ E(G) and
u1v3, u1v4 6∈ E(G), then (x)(u1)(v1, v3)(v2, v4)(u2, v5)
(w1, v6)π is an (n − 4)-resolving partition of G, a
contradiction. Therefore the number of neighbors of ui in
N2(x) for any i ∈ {1, 2} is either 0, 1, n− 5 or n− 4.

If dN2(x)(u1) = 0, then dN2(x)(u2) = n − 4. This
implies that u1u2 ∈ E(G), since otherwise diam(G) =
4. Now we consider the number of neighbors of w1 in
N2(x). If w1v1, w1v2 ∈ E(G) and w1v3 6∈ E(G), then
(w1)(v1, v3)(u2, v2)(u1, v4)(x, v5)π is an (n− 4)-resolving
partition of G, a contradiction. Therefore, d(w1) = 1 or
d(w1) = n − 4. The first case produces G ∼= F37 and the
second case yields G ∼= F26 (Figures 11(a) and 11(b)).

Now assume that dN2(x)(u1) = 1 with u1v1 ∈ E(G). If
dN2(x)(u2) = n− 5, then u2vi ∈ E(G) for all i 6= 1. How-
ever, one deduces that (u2)(v1, v2)(x, v3)(u1, v4)(w1, v5)π is
an (n−4)-resolving partition of G, a contradiction. This im-
plies that dN2(x)(u2) = n−4. To see the number of neighbors
of w1 in N2(x), by a similar reason to the previous case we
also can conclude that d(w1) = 1 or d(w1) = n−4. However,
in the first case one deduces that (u1)(v1, v2)(x, v3)(u2, v4)
(w1, v5)π is an (n − 4)-resolving partition of G if u1u2 ∈
E(G), or (x, u1)(v1, v2, w1)(u2, v3)π is an (n−4)-resolving
partition of G if u1u2 6∈ E(G), a contradiction. In the second
case G ∼= F27 if u1u2 6∈ E(G) or G ∼= F28 if u1u2 ∈ E(G)
(Figures 11(c) or 11(d)).

Fig. 11. Graphs (a) F37, (b) F26, (c) F27, and (d) F28

Let dN2(x)(u1) = n − 5 where u1v1 6∈ E(G). If
dN2(x)(u2) = n − 5 where u2v2 6∈ E(G), then (x, u1)(u2)
(v1, v3)(v2, v4)(w1, v5)π is an (n − 4)-resolving partition
of G, a contradiction. Therefore, dN2(x)(u2) = n − 4. In
this case u1u2 ∈ E(G), since otherwise (u1)(v1, v2)(x, v3)
(u2, v4)(w1, v5)π is an (n − 4)-resolving partition of G,
a contradiction. Furthermore, we consider the number of
neighbors of w1 in N2(x)\{v1}. If w1v2, w1v3 ∈ E(G) and
w1v4 6∈ E(G), then (w1)(v1)(v2, v4)(u2, v3)(u1, v5)(x, v6)π

is an (n− 4)-resolving partition of G, a contradiction. This
implies that the number of neighbors of w1 in N2(x) \ {v1}
is either 0, 1 or n − 5. If w1vi 6∈ E(G) for all i 6= 1,
then w1v1 ∈ E(G) and one deduces G ∼= F23 as de-
picted in Figure 12(a). If w1v2 ∈ E(G) and w1vi 6∈
E(G) for all i 6= 1, 2. Then w1v1 6∈ E(G), since other-
wise (x)(w1)(v1, v3)(v2, v4)(u1, v5)(u2, v6)π is an (n− 4)-
resolving partition of G, a contradiction. We deduce G ∼=
F22, as depicted in Figure 12(b). Otherwise assume that
w1vi ∈ E(G) for all i 6= 1. Then w1v1 ∈ E(G), since
otherwise (w1)(v1, v2)(x, v3)(u1, v4)(u2, v5)π is an (n−4)-
resolving partition of G, a contradiction. We deduce G ∼= F6,
as depicted in Figure 12(c).

Fig. 12. Graphs (a) F23, (b) F22, and (c) F6

For the remaining case, let dN1(x)(u1) = dN1(x)(u2) =
n − 4. We consider the number of neighbors of w1 in
N2(x). If w1v1, w1v2 ∈ E(G) and w1v3, w1v4 6∈ E(G),
then (x)(w1)(v1, v3)(v2, v4)(u1, v5)(u2, v6)π is an
(n − 4)-resolving partition of G, a contradiction. If
w1v1, w1v2, w1v3 ∈ E(G) and w1v4 6∈ E(G), then
(w1)(u1, v1)(u2, v2)(v3, v4)(x, v6)π is an (n− 4)-resolving
partition of G, a contradiction. This implies that d(w1) = 1
or d(w1) = n−4. In the first case G ∼= F21 if u1u2 6∈ E(G)
or G ∼= F14 if u1u2 ∈ E(G). In the second case G ∼= F10

if u1u2 6∈ E(G) or G ∼= F3 if u1u2 ∈ E(G) (Figure 13).

Fig. 13. Graphs (a) F21, (b) F14, (c) F10, and (d) F3

(A8) (n− 4, 1, 2).
By a similar reason to Case (A4), N1(x) induces (A8.1)
Kn−4 or (A8.2) Kn−4.

(A8.1) N1(x) induces Kn−4. However, (x, u1)(u2, v1)
(u3, w1)(u4, w2)π is an (n − 4)-resolving partition of
G, a contradiction. Therefore, no graph G satisfying this
condition.

(A8.2) N1(x) induces Kn−4. We consider the number of
neighbors of vertex v1 in N1(x). If v1u1, v1u2 ∈ E(G) and
v1u3 6∈ E(G), then (v1)(x, u1)(u2, u3)(u4, w1)(u5, w2)π
is an (n − 4)-resolving partition of G, a contradiction.
Therefore, dN1(x)(v1) = 1 or dN1(x)(v1) = n − 4. In the
first case one deduces G ∼= F33 if u1u2 6∈ E(G) or G ∼= F38

if u1u2 ∈ E(G), as depicted in Figures 14(a) or 14(b). In
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the second case one deduces G ∼= F16 if u1u2 6∈ E(G) or
G ∼= F26 if u1u2 ∈ E(G) (Figure 14(c) or 14(d)).

Fig. 14. Graphs (a) F33, (b) F38, (c) F16, and (d) F26

(A9) (n− 4, 2, 1).
By a similar reason to Case (A4), N1(x) induces (A9.1)
Kn−4 or (A9.2) Kn−4.

(A9.1) N1(x) induces Kn−4. If v1u1, v2u2 ∈ E(G),
then (u1)(u2)(x, u3)(v1, u4)(v2, u5)(w1, u6)π is an (n−4)-
resolving partition of G, a contradiction. Therefore, no
graph G satisfying this condition.

(A9.2) N1(x) induces Kn−4. If v1u1, v1u2 ∈ E(G) and
v1u3, v1u4 6∈ E(G), then (x)(v1)(u1, u3)(u2, u4)(v2, u5)
(w1, u6)π is an (n − 4)-resolving partition of G, a
contradiction. This implies that the number of neighbors of
vi in N1(x) for any i ∈ {1, 2} is either 1, n− 5 or n− 4.

Let dN1(x)(v1) = 1 with v1u1 ∈ E(G). If dN1(x)(v2) =
1 with v2u2 ∈ E(G), then w1v1, w1v2 ∈ E(G), or
w1vi ∈ E(G) for some i and v1v2 ∈ E(G), since
otherwise diam(G) = 4. However, for the first case one
deduces that (x)(w1)(u1, u3)(u2, u4)(v1, u5)(v2, u6)π is an
(n − 4)-resolving partition of G, and for the second case
(x, u1)(u2, u3)(v1, v2, w1)π is also an (n − 4)-resolving
partition of G, a contradiction. If dN1(x)(v2) = 1 with
v2u1 ∈ E(G), then G ∼= F32 if w1v1 ∈ E(G) and
w1v2, v1v2 6∈ E(G), or G ∼= F34 if w1v1, v1v2 ∈ E(G)
and w1v2 6∈ E(G), or G ∼= F35 if w1v1, w1v2 ∈ E(G) and
v1v2 6∈ E(G), or G ∼= F39 if w1v1, w1v2, v1v2 ∈ E(G), as
depicted in Figure 15.

Fig. 15. Graphs (a) F32, (b) F34, (c) F35, and (d) F39

If dN1(x)(v2) = n − 5 with v2u1 6∈ E(G), then
(v2)(u1, u2)(x, u3)(v1, u4)(w1, u5)π is an (n− 4)-resolving
partition of G, a contradiction. Otherwise, assume that
dN1(x)(v2) = n− 4. One deduces G ∼= F15 if w1v1 ∈ E(G)
and w1v2, v1v2 6∈ E(G), or G ∼= F25 if w1v1, v1v2 ∈ E(G)
and w1v2 6∈ E(G), or G ∼= F17 if w1v2 ∈ E(G) and
w1v1, v1v2 6∈ E(G), or G ∼= F20 if w1v2, v1v2 ∈ E(G)
and w1v1 6∈ E(G), or G ∼= F27 if w1v1, w1v2 ∈ E(G) and
v1v2 6∈ E(G), or G ∼= F28 if w1v1, w1v2, v1v2 ∈ E(G)
(Figure 16).

Fig. 16. Graphs (a) F15, (b) F25, (c) F17, (d) F20, (e) F27, and (f) F28

Let dN1(x)(v1) = n − 5 with v1u1 6∈ E(G). If
dN1(x)(v2) = n − 5 with v2u2 6∈ E(G) or v1v2 6∈ E(G),
then (v1)(u2)(u1, u3)(x, u4)(v2, u5)(w1, u6)π is an (n−4)-
resolving partition of G, a contradiction. It follows that
if dN1(x)(v2) = n − 5 with v2ui 6∈ E(G) for some i,
then i = 1 and v1v2 ∈ E(G). One deduces G ∼= F11

if w1v1 ∈ E(G) and w1v2 6∈ E(G), or G ∼= F12 if
w1v1, w1v2 ∈ E(G). Otherwise, dN1(x)(v2) = n − 4. By
a similar reason to the previous case, v1v2 ∈ E(G), since
otherwise we have an (n − 4)-resolving partition of G. We
deduce G ∼= F5 if w1v1 ∈ E(G) and w1v2 6∈ E(G), or
G ∼= F4 if w1v2 ∈ E(G) and w1v1 6∈ E(G), or G ∼= F7 if
w1v1, w1v2 ∈ E(G).

For the remaining case, let dN1(x)(v1) = dN1(x)(v2) =
n − 4. We deduce G ∼= F9 if w1v1 ∈ E(G) and
w1v2, v1v2 6∈ E(G), or G ∼= F1 if w1v1, v1v2 ∈ E(G) and
w1v2 6∈ E(G), or G ∼= F10 if w1v1, w1v2 ∈ E(G) and
v1v2 6∈ E(G), or G ∼= F3 if w1v1, w1v2, v1v2 ∈ E(G)
(Figure 17).

(B) diam(G) = 4.
Let x be a peripheral vertex of G with ecc(x) = 4. Let
u ∈ N1(x), v ∈ N2(x), w ∈ N3(x) and z ∈ N4(x). If
there exist two other vertices p and q such that p ∈ N1(x)
and q ∈ N2(x), then (x)(u, v, w, z)(p, q)π is an (n − 4)-
resolving partition of G, a contradiction. This implies that
only one of {n1, n2, n3, n4} is greater than or equal to
2. Therefore, based on the values of (n1, n2, n3, n4) we
have the following subcases: (B1) (1, 1, 1, n − 4), (B2)
(1, 1, n−4, 1), (B3) (1, n−4, 1, 1), and (B4) (n−4, 1, 1, 1).
Now w.l.o.g., assume that n1 = n − 4. Since |V (G)| ≥ 11,
then there exist three other vertices a, b, c ∈ N1(x) \ {u}. If
ab ∈ E(G) and ac 6∈ E(G), then (x)(a)(u, v, w, z)(b, c)π
is an (n− 4)-resolving partition of G, a contradiction. This
implies that N1(x) induces either Kn−4 or Kn−4. Hence
we can conclude that if ni ≥ n − 4, then Ni(x) induces
either Kn−4 or Kn−4.

Let the set of vertices of Ni(x) for all
i ∈ {1, 2, 3, 4} be N1(x) = {ui : 1 ≤ i ≤ n1},
N2(x) = {vi : 1 ≤ i ≤ n2}, N3(x) = {wi : 1 ≤ i ≤ n3},
and N4(x) = {zi : 1 ≤ i ≤ n4}.

(B1) (1, 1, 1, n− 4).
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Fig. 17. Graph (a) F11, (b) F12, (c) F5, (d) F4, (e) F7, (f) F9, (g) F1,
(h) F10, and (i) F3

If N4(x) induces Kn−4, then (x, z1)(u1, z2)(v1, z3)
(w1, z4)π is an (n − 4)-resolving partition of G, a
contradiction. Therefore, N4(x) induces Kn−4 and it
follows that G ∼= H5, as dipected in Figure 18(a).

(B2) (1, 1, n− 4, 1).
If N3(x) induces Kn−4, then (x,w1)(u1, w2)(v1, w3)
(z1, w4)π is an (n − 4)-resolving partition of G,
a contradiction. Therefore, N3(x) induces Kn−4. If
w1z1, w2z1 ∈ E(G) but w3z1, w4z1 6∈ E(G), then (x)(z1)
(w1, w3)(w2, w4)(u1, v1, w5)π is an (n − 4)-resolving
partition of G, a contradiction. Therefore, the number of
neighbors of z1 in N3(x) is either 1, n−5 or n−4. However,
if d(z1) = 1, namely w1z1 ∈ E(G) and wiz1 6∈ E(G)
for all other i 6= 1, then (x, u1, z1)(w1, w2)(v1, w3)π is an
(n− 4)-resolving partition of G, a contradiction. Hence the
resulting graph is G ∼= H3 if d(z1) = n − 5 or G ∼= H1

if d(z1) = n − 4, as depicted in Figures 18(b) or 18(c),
respectively.

(B3) (1, n− 4, 1, 1).
Let N2(x) induces Kn−4. If w1v1, w1v2 ∈ E(G) and
w1v3 6∈ E(G), then (x, v1)(u1, v2)(z1, v3)(w1, v4)π is
an (n − 4)-resolving partition of G, a contradiction.
Furthermore, if w1vi ∈ E(G) for all i, then
(x, v1)(u1, v2)(w1, v3)(z1, v4)π is an (n − 4)-resolving
partition of G, a contradiction. This implies that
dN2(x)(w1) = 1 and one deduces G ∼= H4, as depicted in
Figure 18(d).

Let N2(x) induces Kn−4. If w1v1, w1v2 ∈ E(G) and
w1v3 6∈ E(G), then (w1)(v1, v3)(u1, v2)(x, v4)(z1, v5)π is
an (n − 4)-resolving partition of G, a contradiction. This
implies that the number of neighbors of w1 in N2(x) is
either 1 or n− 4. However, in the first case by considering

v1w1 ∈ E(G) one deduces that (x,w1, z1)(v1, v2)(u1, v3)π
is an (n − 4)-resolving partition of G, a contradiction. In
the second case, the resulting graph is G ∼= H2, as depicted
in Figure 18(e).

(B4) (n− 4, 1, 1, 1).
If N1(x) induces Kn−4, then v1 is adjacent to all
vertices of N1(x) since otherwise diam(G) = 5. However,
(x, u1)(v, u2)(w, u3)(z, u4)π is an (n − 4)-resolving
partition of G, a contradiction. Therefore, N2(x) induces
Kn−4. If u1v1, u2v1 ∈ E(G) but u3v1, u4v1 6∈ E(G), then
(v1)(u1, u3)(x, u2)(w1, u4)(z1, u5)π is an (n− 4)-resolving
partition of G, a contradiction. This implies that the number
of neighbors of v1 in N1(x) is either 1 or n − 4. One
deduces G ∼= H5 for the first case or G ∼= H1 for the second
case, as depicted in Figures 18(f) or 18(g), respectively.

Fig. 18. Graph (a) H5, (b) H3, (c) H1, (d) H4, (e) H2, (f)H5, (g) H1

III. CONCLUSION

In this paper, we give the characterization of all graphs G
of order n ≥ 11 and diam(G) ∈ {3, 4} with pd(G) = n− 3,
as stated in Theorem 2.3. There are 46 non-isomorphic such
graphs, 41 of them with diameter 3 and the remaining 5 such
graphs with diameter 4. By combining Theorem 2.3 and the
results of [3], we have a full characterization of all graphs
on n ≥ 11 vertices with partition dimension n − 3, namely
there are exactly 160 non-isomorphic such graphs.

APPENDIX

Graphs Fi and Hj , for i ∈ [1, 40] and j ∈ [1, 5], obtained
by Theorem 2.3 can be classified in the following manner.

Graphs of order n obtained from Kn−1 − E(P3) by
adding one new vertex adjacent to:
F1: one end vertex of P3;
F2: a center vertex of P3;
F3: two end vertices of P3;

Graphs of order n obtained from Kn−1 − E(P4) by
adding one new vertex adjacent to:
F4: one end vertex of P4;
F5: one vertex of P4 with degree two;

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_20

Volume 53, Issue 1: March 2023

 
______________________________________________________________________________________ 



F6: two vertices of P4 with degree two;
F7: two vertices of P4 with different degree;

Graphs of order n obtained from Kn−1 − E(2K2) by
adding one new vertex adjacent to:
F8: one end vertex of 2K2;

Graphs of order n obtained from Kn−1 − E(C3) by
adding one new vertex adjacent to:
F9: one vertex of C3;
F10: two vertices of C3;

Graphs of order n obtained from Kn−1 − E(C4) by
adding one new vertex adjacent to:
F11: one vertex of C4;
F12: two vertices of C4;

Graphs of order n obtained from Kn−2 by connecting
two new vertices x and y with:
F13: exactly two vertices a and b in Kn−2 such that (a, x),
(b, x), (x, y) are new edges;
F14: exactly three vertices a, b and c in Kn−2 such that
(a, x), (b, x), (c, y) are new edges;

Graphs of order n obtained from Kn−2 − e by connecting
two new vertices x and y with:
F15: two new edges (c, x), (x, y), where c is a vertex of
Kn−2 − e with maximum degree;
F16: two new edges (a, x), (a, y), where a is one of the end
points of e;
F17: two new edges (a, x), (c, y), where a is one of the end
vertex of e and c is a vertex of Kn−2 − e with maximum
degree;
F18: two new edges (c, x), (d, y), where c and d are two
vertices of Kn−2 − e with maximum degree;
F19: three new edges (a, x), (a, y), (b, y), where a and b are
the end points of e;
F20: three new edges (a, x), (a, y), (c, y), where a is one
of the end points of e and c is a vertex of Kn−2 − e with
maximum degree;
F21: three new edges (a, x), (b, x), (c, y), where a and b
are the end points of e and c is a vertex of Kn−2 − e with
maximum degree;
F22: three new edges (a, x), (c, x), (d, y), where a is one
of the end points of e, and c and d are two vertices of
Kn−2 − e with maximum degree;
F23: three new edges (a, x), (b, y), (c, y), where a and b are
the end points of e, and c is a vertex of Kn−2 − e with
maximum degree;
F24: three new edges (a, x), (b, x), (x, y), where a and b are
the end points of e;
F25: three new edges (a, x), (c, x), (x, y), where a is one
of the end points of e and c is a vertex of Kn−2 − e with
maximum degree;
F26: F16 by adding new edge (x, y);
F27: F17 by adding new edge (x, y);
F28: F27 by adding new edge (a, y);
H1: two new edges (a, x), (x, y), where a is one of the end
points of e;
H2: two new edges (a, x), (b, y), where a and b are end
points of e;

Graphs of order n obtained from Kn−2 − E(P3) by
adding two new vertices x and y with:
F29: three new edges (a, x), (c, x), (c, y), where a and c are
end points of P3;
H3: two new edges (a, x), (x, y), where a is an end point
of P3;

Graphs of order n obtained from Kn−2:
F30: K1 + Kn−2 and added by one new vertex adjacent to
one vertex of Kn−2;
F31: K1 + Kn−2 and added by one new vertex adjacent to
two vertices of Kn−2;
H4: K1 +Kn−2 − e and added by one new vertex adjacent
to two vertices of Kn−2 with different degrees;

Graphs of order n obtained from Kn−3 by connecting
three new vertices x, y, and z with:
F32: exactly one vertex a in Kn−3 such that (a, x), (a, y),
(y, z) are new edges;
F33: exactly one vertex a in Kn−3 such that (a, x), (x, y),
(x, z) are new edges;
F34: exactly one vertex a in Kn−3 such that (a, x), (a, y),
(x, y), (x, z) are new edges;
F35: exactly one vertex a in Kn−3 such that (a, x), (a, y),
(x, z), (y, z) are new edges;
F36: exactly two vertices a and b in Kn−3 such that (a, x),
(a, y), (b, z) are new edges;
F37: F36 by adding new edge (x, y);
F38: F33 by adding new edge (y, z);
F39: F34 by adding new edge (y, z);
H5: exactly one vertex a in Kn−3 such that (a, x), (x, y),
(y, z) are new edges;

Graphs of order n obtained from Kn−3:
F40: (K2 + Kn−3) − e where e is an edge connecting K2

and Kn−3, and added by one new vertex adjacent to one
end point of e with minimum degree;
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